Tone and Broadband Noise Separation from Acoustic Data of a Scale-Model Counter-Rotating Open Rotor (AIAA-2014-2744)

Dave Sree - Tuskegee University, Alabama, USA
David B. Stephens - NASA Glenn Research Center, Ohio, USA

Funding for this research was provided by:
NASA Environmentally Responsible Aviation Project,
NASA Fixed Wing Project,
NASA Glenn Faculty Fellowship Program.

20th AIAA/CEAS Aeroacoustics Conference (AIAA Aviation 2014 Forum), Atlanta, GA
Open Rotor Acoustics

✧ NASA/GE Open Rotor Test Campaign (2009-2012)

✧ Open rotor spectra composed of tones and broadband – 12 x 10 blade counts produce many tones

✧ Objective: Develop a tool to separate tones and broadband
For single shaft data (like fan data), synchronous or phase-locked averaging provides an unambiguous way to separate tone and BB.
For uncoupled two-shaft open rotor systems, phase between the rotors drifts and synchronous averaging only captures individual rotor tones, but not the interaction tones.
“Clipping” the tones (say, via moving median approach) is one way of estimating the broadband, but how accurate is it?
New Processing Method

New Processing Method

Shift second segment by the time delay, maintaining segment length

Calculate mean of the two segments and the deviation from the mean
New Processing Method

Calculate the FFT of mean and deviation

Repeat the process until end of the time record is reached, and then average the two groups of FFTs.

✧ Tones end up in “segment mean”

✧ Broadband split; need to correct

✧ Usual spectral estimation like windowing, overlapping, etc. can be included
New Method Applied to Fan Data

✦ Results match synchronous averaging decomposition well

✦ Some tone energy remaining in “broadband” at few frequencies
New Method Applied to Open Rotor Data

✧ Operating condition: nominal cruise

✧ Results satisfactory
New Method Applied to Open Rotor Data

✧ Operating condition: nominal take-off

✧ Results satisfactory; a few tones in the “broadband” spectrum
New Method Applied to Open Rotor Data

经营活动: 适宜条件

结果满意; “宽带”光谱中的少数几个音调
Sound Directivity

✧ Broadband can be an equal contributor at some operating conditions

✧ Tones dominate at cruise

✧ Implications for noise reduction
Investigation of limitations

✧ Operating condition: cruise (higher thrust level)
✧ Results un-satisfactory, many tones end up in broadband
Investigation of limitations

✧ Operating condition: approach (higher thrust level)

✧ Results unsatisfactory
Investigation of limitations

✧ This data set also challenging for spectral methods
Summary of Methods

<table>
<thead>
<tr>
<th>Spectral Methods</th>
<th>Phase Averaging</th>
<th>Vold-Kalman Order Tracking</th>
<th>Sree’s Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application</td>
<td>Any</td>
<td>Single shaft</td>
<td>Multi-Shaft</td>
</tr>
<tr>
<td>Input</td>
<td>Frequency Spectrum</td>
<td>Time Series</td>
<td>Time Series</td>
</tr>
<tr>
<td>Output</td>
<td>Frequency Spectra</td>
<td>Time Series</td>
<td>Time Series</td>
</tr>
<tr>
<td>Encoder Required</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Processing Speed</td>
<td>Fastest</td>
<td>Medium</td>
<td>Slowest</td>
</tr>
<tr>
<td>Other Advantages</td>
<td>Robust</td>
<td>Well defined</td>
<td>Quantifies tone coherence with each shaft</td>
</tr>
<tr>
<td>Other Disadvantages</td>
<td>Ad-hoc, subjective</td>
<td>Fails for Open Rotors</td>
<td>May require filter bandwidth tuning</td>
</tr>
</tbody>
</table>

Comparison of Methods

✧ Broadband levels largely similar

✧ Different tools fit different needs
Conclusions

✧ A new signal processing method has been developed

✧ Separates tones and broadband

✧ Most open rotor measurements result in good separation, but not all

✧ Improvements still underway

✧ Applicability to other data sets being investigated

✧ Algorithm available as a short MATLAB script