RECENT SUCCESSES AND FUTURE PLANS FOR NASA’S SPACE COMMUNICATIONS AND NAVIGATION TESTBED ON THE INTERNATIONAL SPACE STATION

David T. Chelmins

NASA John H. Glenn Research Center
Cleveland, Ohio

Authors
Richard C. Reinhart, John Sankovic, Sandra K. Johnson, James P. Lux
NASA John H. Glenn Research Center

65th International Astronautical Congress
Toronto, Canada
September 2014
SCaN Notional Integrated Communication Architecture

SCaN Services Provide:
• Integrated service-based architecture
• Space internetworking (DTN and IP)
• International interoperability
• Assured safety and security of missions
• Significant increases in bandwidth
Next Generation Communication and Navigation Technology

- Optical Communications
- Antenna Arraying Technology – Receive and Transmit
- Software Defined Radio
- Advanced Antenna Technology
- Spacecraft RF Transmitter/Receiver Technology
- Advanced Networking Technology
- Spacecraft Antenna Technology
- Spectrum Efficient Technology
- Ka-band Atmospheric Calibration
- Position, Navigation, and Time
- Space-Based Range Technology
- Uplink Arraying

SCaN Testbed Technologies
Pictures of Installation and First Operations

Launched: July 20, 2012
SCAN Testbed Mission Objectives

• **Mature Software Defined Radio (SDR) technologies and infrastructure for future SCaN architecture and NASA Missions**
 – Ready for space use/verification/reconfiguration/operations/new software aspects
 – Advance the understanding of SDR Standard, waveform repository, design references, tools, etc for NASA missions

• **Conduct Experiment’s Program**
 – Portfolio of experiments across different technologies; communication, navigation, and networking
 – Build/educate a group of waveform developers and assemble repository of waveforms

• **Validate Future Mission Capabilities**
 – Representative capabilities; S-band, Ka-band, GNSS
SCaN Testbed – Software Defined Radio-based Communication System

- SDRs - Two S-band SDRs (One with GPS), One Ka-band SDR
- RF - Ka-band TWTA, S-band switch network
- Antennas - Two low gain S-band antennas, One - L-band GPS antenna, Medium gain S-band and Ka-band antenna on antenna pointing subsystem.
- Antenna pointing system - Two gimbals, Control electronics
- Flight Computer/Avionics
Why Use Software Defined Radios?

• **SDRs provide unprecedented operational flexibility that allows communications functions in software to be updated in development or flight**
 – Functions can be changed within the same SDR across mission phases
 • E.g., launch phase, mission ops functions in mission phase, technology upgrades
 – Failure corrections can be implemented in flight
 • E.g., A Mars satellite corrected interference problem with software update in transit using an SDR

• **Software defined functionality enables standard radios to be tailored for specific missions with reusable software**
 – PCs use an operating system to abstract application software e.g. Word, Excel,
 – Standardization such as Space Telecommunications Radio System (STRS) enables different radio platforms to run common, reusable software across many missions
 – Cost reductions possible with common architecture, reusable software and risk avoidance

• **Software Defined Radios are the “instruments” of the SCaN Testbed;**

Jet Propulsion Lab
Harris Corp.
General Dynamics Corp.
Research & Technology On-orbit Accomplishments

• STRS-compliant SDRs successfully implemented and operational in space - NASA’s new standard for SDRs

• Independent 3rd party developed waveform operating on another provider’s SDR, according to STRS Architecture

• Operated NASA’s first Ka-band mission with TDRSS. Many lessons both for project team and Space Network Ka-band system

• Routine SDR reconfigurations. Demonstrated new software verification and new capability added on-orbit

• Processed GPS & Galileo carrier signals; first civilian reception of new L5 signals in space. Conducting tests with the newest GPS satellites.

• New waveforms under development for bandwidth efficient modulation (up to 600 Mbps), DTN, and on-board networking
Experiments

• Enable and encourage national participation with industry and academia to gain a broad level of ideas and concept
 – Increase the base of STRS experts

• Align with NASA’s objectives in developments & technology:
 – Cognitive Radio Applications and Adaptive Waveforms
 • Signal sensing, environment awareness, & interference mitigation
 – Spectrum/power efficient techniques (new modulations and coding)
 – GPS/GNSS demonstrations (L1/L2, L5, GPS corrections/augmentation), jammer detectors, scintillation (e.g. solar flares)
 – Networking including disruptive tolerant networking (store/forward), adaptive routing, secure routing, formation flying

SCaN Testbed Planned Experiments

Communications/Cognitive
- Bandwidth Efficient 8-PSK/16APSK & LDPC
- Integrating GMSK, LDPC, and DTN
- Signal sensing and classification - University
- Adaptive data rate, modulation, coding
- Single Carrier FDMA Modulation - University

Navigation
- GPS L1, L2, L5
- CNAV Test of L2c, L5
- GPS Scintillation-SBIR
- GPS/Galileo Receiver

Space Internetworking & Protocols
- IP On-board Routing
- DTN on a radio (network appliance)
- Secure DTN Links - SBIR
- DTN Interoperability (CNES)
- CCSDS Protocol Standards Validation

NASA Network Services Support
- TDRS-K/L Acceptance and Operation Testing
 - TDRS 8/9/10 Autotrack Testing
- New Receiver/Ground Station Testing
<table>
<thead>
<tr>
<th>TDRSS Mode</th>
<th>Modulation</th>
<th>Data Rate (kbps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tx - S-band</td>
<td>DG1, Mode 1</td>
<td>SQPN</td>
</tr>
<tr>
<td></td>
<td>DG1, Mode 2</td>
<td>SQPN</td>
</tr>
<tr>
<td></td>
<td>DG1, Mode 2</td>
<td>SS-BPSK</td>
</tr>
<tr>
<td></td>
<td>DG1, Mode 3</td>
<td>QPSK</td>
</tr>
<tr>
<td></td>
<td>DG2</td>
<td>SQPSK</td>
</tr>
<tr>
<td></td>
<td>DG2</td>
<td>BPSK</td>
</tr>
<tr>
<td>Tx</td>
<td>Ka-band</td>
<td>OQPSK</td>
</tr>
<tr>
<td></td>
<td>Ka-band</td>
<td>OQPSK, 8PSK, 16APSK, GMSK</td>
</tr>
<tr>
<td>Rx</td>
<td>S-band</td>
<td>QPSK. (PN spread)</td>
</tr>
<tr>
<td></td>
<td>S-band</td>
<td>BPSK (PN spread)</td>
</tr>
<tr>
<td></td>
<td>S-band</td>
<td>BPSK (non-PN spread)</td>
</tr>
<tr>
<td></td>
<td>Ka-band</td>
<td>BPSK</td>
</tr>
</tbody>
</table>
Summary

• As a technology demonstration mission, SCAN Testbed is primarily a benefit to future missions
 – Greater science data return from future missions
 – Enable new science capability and/or extend mission life through adaptive platforms

• Reduces technology and development risks for new SDR-based systems
 – Reduce SDR vendor dependence for waveform development
 – Demonstrate new capability and concepts in space

• The STRS Architecture is a NASA-wide SDR Standard (NASA-STD-4009)

• Strong relevance to future Agency communication and navigation needs
For more information

John Sankovic, Deputy Chief, Space Flight Systems, John H. Glenn Research Center
john.m.sankovic@nasa.gov

Richard Reinhart, Principal Investigator, SCaN Testbed
richard.c.reinhart@nasa.gov

David Chelmins, SCaN Testbed Experiment Lead
dchekmins@nasa.gov

Or visit SCaN Testbed on-line:
http://spaceflightsystems.grc.nasa.gov/SOPO/SCO/SCaNTestbed
STRS and SCaN Testbed References

- **Space Telecommunication Radio System NASA Standards and technical Assistance Resource Tool**
 - STRS Standard (NASA-STD-4009)
 - https://standards.nasa.gov/documents/detail/3315911
 - STRS Handbook (NASA-HDBK-4009)
 - https://standards.nasa.gov/documents/detail/3315910

- **SCaN Testbed Overview, Experimenter Documents**
 - http://spaceflightsystems.grc.nasa.gov/SOPO/SCO/SCaNTestbed/Candidate/
Software makes it go…
Waveform Application and Hardware Interfaces

Reprogrammable Software is the key!

Desktop Computer

Applications in Software
(Word, Excel, Financial, Games)

Hardware Abstraction Layer
(e.g. Windows Operating System)

Input Output
Processor Memory Keyboard Video/Monitor

Software Defined Radio

Applications in Software
(comm, networking, navigation)

STRS
(Space Telecommunications Radio System)

Input (Data) Output (Signal)
Processor Memory Science Instrument Antenna

Digital Signal Processing HW (e.g. FPGA, DSP)
digital ↔ RF conversion

New
Validate