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SUMMARY & CONCLUSIONS 

Software safety analysis for a large software intensive 
system is always a challenge.  Software safety practitioners 
need to ensure that software related hazards are completely 
identified, controlled, and tracked.  This paper discusses in 
detail how to incorporate the traditional reliability techniques 
into the entire software safety analysis process.  In addition, 
this paper addresses how information can be effectively shared 
between the various practitioners involved in the software 
safety analyses.  The author has successfully applied the 
approach to several aerospace applications.  Examples are 
provided to illustrate the key steps of the proposed approach. 

1 INTRODUCTION

The main objectives of software safety analysis is to 
identify hazards that are caused or controlled by software, to 
establish a process to eliminate or mitigate the identified 
hazards, and to develop methods to verify the safety controls.  
Software safety analysis for a large software intensive system 
is always a challenge.  Software safety practitioners need to 
ensure that software related hazards are completely identified, 
controlled, and tracked.  First, all the system level hazards 
have to be identified.  This could be accomplished by starting 
with the generic hazard list and continuing to system specific 
hazards.  System level hazards are normally identified through 
brainstorm sessions or based on the inputs from experienced 
systems engineers.  Can this approach capture all the system 
level hazards?  Even if all the system level hazards have been 
completely identified, how do you ensure that software related 
hazardous events are correctly recognized?  The involvements 
and contributions of software to hazards are typically more 
difficult to identify and track.  The interaction between the 
entire system and software functions, as well as between 
software functions, needs to be clearly understood.  
Furthermore, all the possible faulty states of the identified 
software need to be analyzed for their potential impacts on the 
system, as well as the likelihood and severity of the impacts.  
Corresponding controls can then be proposed to eliminate or 
mitigate the identified software hazards and therefore ensure 
the safety of the software and the system.  These tasks will not 
seem new to reliability engineers.  Indeed, these software 
safety analysis objectives and requirements should sound very 
familiar to reliability engineers.  For instance, reliability 
engineers use Failure Modes and Effects Analysis (FMEA) 
which involves reviewing as many components, assemblies, 
and subsystems as possible to identify failure modes, and their 

causes and effects.   
Researchers and practitioners have introduced reliability 

techniques, such as FMEA and Fault Tree Analysis (FTA), to 
software safety analysis [1] [2] [3].  As addressed in [1], each 
technique has its strengths, as well as limitations.  FMEA is 
normally very time-consuming if applied to all parts of a 
complex design.  FTA will not be able to model transitions 
and timing related events.  How to use these existing 
techniques properly and effectively in the entire system 
development life cycle remains unclear.  This paper will first 
briefly review the current available software safety techniques 
and then discuss how to effectively infuse reliability 
techniques into the software safety analysis, from hazards 
identification to hazard cause and control analysis.   

The remainder of this paper is organized as follows: 
Section 2 provides a brief review of the existing software 
safety techniques; Section 3 highlights techniques for hazards 
identification, hazards control, and tracking; Section 4 
addresses the importance of collaboration, and Section 5 
provides a summary of applying reliability techniques 
throughout the system development lifecycle. 

2 REVIEW OF SOFTWARE SAFETY TECHNIQUES 

Many software safety analyses are still conducted in an ad 
hoc manner.  Basic techniques such as brainstorming, 
checklists, and experiences from previous projects are 
normally used to facilitate the software safety analysis.  It is 
good to start with these analyses as they are easy to execute, 
but it is difficult to ensure their completeness. 

More systematic techniques, such as Hazard and 
Operability Study (HAZOP) which have been piloted in the 
chemical industry, have not been widely used in large 
aerospace applications.  This is because of its labor-intensive 
nature and sometimes HAZOP has to rely on subjective 
judgments.   

Other advanced modeling techniques, such as Dynamic 
Flowgraph Method (DFM) [4] or Petri-Nets [5] require 
accurate system modeling and therefore are very complicated 
for large scale applications.  Furthermore, they cannot be 
applied early in the development lifecycle.  

Failure Modes and Effect Analysis (FMEA) is a “bottom 
up” inductive failure analysis technique.  It starts with the 
failure of one component and its possible failure modes.  For 
each failure mode, how the failure propagates through the 
system is determined.  Next the likelihood and severity of the 
effects are evaluated.  Fault tree analysis (FTA) is a “top 



down” deductive failure analysis.  An undesired state of a 
system is analyzed using Boolean logic to combine a series of 
lower-level events.  Event Tree analysis (ETA) uses a forward 
search to identify all possible consequences of a giving 
initiating event.  These analyses can also be very time 
consuming to execute, but if used properly and systematically 
for hazard analysis purposes as shown later in section 3, they 
can be very effective in the hazard identification and control 
process.  

3 SOFTWARE SAFETY ANALYSIS 

Software safety analysis is associated with system hazards 
analysis and starts with hazards identification.  Software’s 
involvement in such hazards will need to be investigated.  If 
software is determined to be the cause of a hazard or is 
involved in controlling a hazard, the software will be labelled 
as safety critical software.  For NASA projects, the software 
safety standard [6] will be applicable for such safety critical 
software.   

3.1 Hazard Identifications 

At the early project life cycle, system level hazards will 
be identified first.  This could be accomplished by starting 
with generic hazard lists.  The generic hazards list for the 
space shuttle [2], shown below as Table 1, is used as a general 
guideline at NASA for system level hazard identification.  As 
seen from Table 1, most of the generic hazards are physical 
hazards and are not caused by software.  Software, however, 
can be used to control certain hazards.  For instance, 
operational or surviving heaters are used to mitigate extreme 
cold conditions for satellites in space.  Software is involved in 
controlling the proper operations of such heaters and therefore 
could be safety critical. 

System specific hazards will then need to be identified.  
We want to understand the scenario and consequence of a 
specific initiating event at a high level.  Basic techniques such 
as brainstorming, checklists, and experiences from previous 
projects can be used.  But to ensure the completeness of the 
hazard identification, we advocate functional FMEA 
(FFMEA).  FFMEA is based on a functional breakdown of a 
system and starts with each of the system breakdowns.  It can 
also be done early in the life cycle phase, i.e., as soon as the 
preliminary system architecture is available.   

In FFMEA, functions can be evaluated on potential 
functional failure effects before design details are available.  
The safety impact will then be assessed based on the evaluated 
failure effects.  If an impact on system/personal safety is 
assessed, the function will be identified as a system hazard.  
General controls or mitigations can be proposed to limit 

consequence of functional failures or limit the probability of 
occurrence in this early development.  For example, if a 
system decides to go with a deployable instrument cover, one 
needs to evaluate the possible safety impact of an unsuccessful 
cover deployment or an inadvertent cover deployment during 
system integration testing, during launch and orbit ascent, and 
during the normal operational mission phase.   

Table 1 Generic Hazards Checklist 
Hazard Category Hazards
Contamination/ 
Corrosion 

Chemical Disassociation; Chemical 
Replacement/Combination; Moisture; 
Oxidation; Organic; Particulate; Inorganic  

Electrical 
Discharge/Shock 

External/Internal Shock; Static Discharge; 
Corona; Short 

Environmental/ 
Weather 

Fog; Lightning; Precipitation; Sand/Dust; 
Vacuum; Wind; Temperature Extremes 

Fire/Explosion Chemical Change; Fuel & Oxidizer in 
Presence of Pressure and Ignition Source; 
Pressure Release/Implosion; High Heat 
Source 

Impact/Collision Acceleration; Detached Equipment; 
Mechanical Shock/Vibration/Acoustical; 
Meteoroids/Meteorites; Moving/Rotating 
Equipment 

Loss of Habitable 
Environment 

Contamination; High Pressure; Low 
Oxygen Content; Low Pressure; Toxicity; 
Low Temperature; High Temperature 

Pathological/ 
Physiological/ 
Psychological 

Acceleration/Shock/Impact/Vibration; 
Atmospheric Pressure; Humidity; Illness; 
Noise; Sharp Edges; Lack of Sleep; 
Visibility; Temperature; Workload 
Excessive 

Radiation EMI; Ionizing Radiation; Non-ionizing 
Radiation  

Temperature 
Extremes 

High, Low, Variations 

Using FFMEA and by following the functional 
breakdown of a system could ensure all the subsystems or 
functions are covered in the analysis and their impacts on 
system safety have been evaluated.  An example worksheet as 
shown below in Table 2 can be created to document FFMEA 
results.  Example spacecraft functions that could have safety 
impacts and therefore result in system hazards are listed 
below: 

Deployment of solar array  
Deployment of instrument cover 
Deployment of antenna  
Deployment of Magnetometer boom 
Laser firing 
Thrusters firing 

 

Table 2 Example FFMEA Worksheet 
Functions Functional Failure 

Mode 
Failure Effects Safety

Impact 
Impact Phases 

F1: Instrument 
Cover Deployment 

F1M1: Inadvertent 
Deployment 

Cover damage and spacecraft 
damage due to cover debris 

Yes Ground Integration and Testing, 
Launch and Orbit Ascent 

 F1M2: Can not deploy Instrument can not work and 
mission failure 

Yes Normal Mission Operation 



3.2 Role of Software in Hazards 

Once system hazards have been clearly identified, 
software’s contribution to the system hazards needs to be 
investigated.  In many cases, an experienced systems engineer 
will be able to identify whether there is software associated 
with an identified system hazard.  But this experience-based 
assessment is not always precise and complete.  Furthermore, 
software’s involvement in certain hazard scenarios is not 
obvious.  Scenario-based reliability analysis technique, e.g., 
Fault tree analysis and Event tree analysis can be used to assist 
in identifying software involvement and contribution to a 
certain hazard.  A Fault tree starts with an undesirable top 
event, in this case a system hazard, and breaks down to 
different levels of trees.  Each level consists of more basic 
events that are necessary and sufficient to cause the event 
shown in the level above it.  This approach is very effective in 
identifying software’s contribution in complex system design.  
We are not intended to quantify a specific system hazard, a 
qualitative fault tree is sufficient in this step.  Developing a 
fault tree down to the software interface level is our major 
objective.  Software interfaces with other system components 
will be clearly illustrated in the fault tree.  Whether software 
will be a cause or control of a hazard will be clearly 
illustrated, as well.   

We will continue to explain this step using a simplified 
inadvertent instrument cover deployment design as an 
example.  The actuation of the deployment is implemented by 
an actuator.  Typically inhibits, either hardware or software or 
a combination of both, are provided to prevent inadvertent 
deployment.  The actuators have independent spacecraft-
provided power services.  An arming plug is in line with 
actuator power and is installed only for critical ground 
integration and test (I&T) activities and for launch.  To actuate 
an instrument cover, the spacecraft will send an independent 
command through flight software to turn on the instrument 
power and specific actuator interface.  Next the spacecraft will 
coordinate with system hardware (e.g., FPGA) to enable the 
commanding process and coordinate with system software 
(flight software) to initiate independent two-step commands.  
This is used to first arm the actuator and then fire the actuator.   

At a first glance of the above design description, 
commands sent through flight software are involved in the 
entire actuation process.  One may not identify flight software 
(FSW) as a system inhibit in the actuation process until the 
following fault tree (Figure 1) is developed and the software 
interfaces, as well as the interactions with other system 
components, are clearly shown.  FSW is involved in all three 
“and” gates and has to work with other system hardware.  For 
example, FSW will send the arm command to the actuator to 
arm the instrument cover.  However, this command will not be 
valid without a system hardware enable signal.  Before launch 
(except for ground I&T), the arming plug, Instrument power 
OFF, actuator arm sequence (“and” gates #2) and actuator fire 
sequence (“and” gate #3) are considered four system inhibits 
for this hazard.  The malfunction of FSW will take out two of 
the inhibits (instrument power and “and” gate #3) and the 

remaining two inhibits are still sufficient to meet the system 
safety requirement (i.e., two inhibits are required for critical 
system hazards).  After launch and during I&T, the arming 
plug is installed and the instrument is turned on.  Only “and” 
gate #2 and #3 are active inhibits.  If the enable signals are 
purely hardware controlled, FSW will not be considered as 
safety critical software.  From the fault tree, however, we 
found out that the hardware switch for actuator fire sequence 
is also controlled by FSW.  If there is a bug in the FSW, it will 
take out “and” gate #3 entirely leaving only one system 
inhibit.  Therefore FSW functions involved in this hazard 
control are critical and will be considered as safety critical 
software functions. 

 
Figure 1 Example Fault Tree for Inadvertent Instrument Cover 

Deployment 

3.3 Hazard Control  

As discussed in section 3.1, functional FMEA will be 
used early in the development lifecycle to analyze the system 
at a high level.  As soon as the specific safety critical software 
function are identified, detailed design FMEA can be 
implemented for each specific critical software function for 
their associated failure modes, causes and effects.  The effects 
are described in terms of their potential impact to personnel or 
mission success and are evaluated for the likelihood of 
occurrence and severity of potential impact.  Since in this step, 
FMEA is applied mainly on software, we can call it Software 
FMEA (SFMEA).  At the preliminary design review (PDR), 
software functions in the form of Computer Software 
Configuration Items (CSCIs) or Computer Software Units 
(CSUs) are the target items.  Later in the life cycle, e.g., 
critical design phase (CDR), lower levels of the breakdowns, 
such as modules, may be used to start the SFMEA process.   

By continuing the inadvertent deployment of instrument 
cover example, flight software commanding functions are 
investigated.  Three failure modes may be identified by PDR:  

Inadvertent commanding,  
Failure to command and  



Incorrect commanding.   
More specific failure modes will need to be evaluated by 

CDR.  These failure modes are specific to detailed design, 
from the module level down to the line of code level.  Each 
function failure mode will be decomposed to component level.  
Detailed SFMEA guidance and instructions can be found in 
many literatures, e.g. [2] [9] [10]. Example failure mode 
categories include: 

Logic/Algorithm 
Data 
Timing/Sequence 
Hardware 
Memory 
Interface 

As for likelihood and severity, one can follow the 
guidance in MIL-STD-882 [9] as shown in Table 3 and Table 
4.   

It should be noted that by applying SFMEA only on an 
identified critical software function, one can obtain a 
comprehensive analysis on this particular function.  This 
focused approach will avoid unnecessary analysis on other 
non-critical functions.   

Once the failure mode and cause with severity and 
likelihood of the end effects have been laid out, hazard 
controls can then take the form of eliminating hazards, or 
mitigating hazards by reducing the likelihood of a hazard 

occurring, by minimizing the severity or by improving the 
awareness and notification of a hazardous state or condition.  
The verification approach includes, but is not limited to 
analysis, inspection, demonstration, and test.   

Table 3 Severity Categories 
Severity Mission Effects 

Catastrophic Death, permanent total disability, irreversible 
significant environmental impact, loss  $10M 

Critical Permanent partial disability, severe injuries or 
occupational illness, reversible significant 
environmental impact, or $1M  loss  $10M 

Marginal Moderate injury or occupational illness, reversible 
moderate environmental impact, or monetary loss 
equal to or exceeding $100K  loss  $1M 

Negligible Minor injury or occupational illness, minimal 
environmental impact, loss  $100K 

Table 4 Likelihood Levels 
Level Likelihood

Frequent Likely to occur often in the life of an item 
Probable Will occur several times in the life of an item 
Occasional likely to occur sometime in the life of an item 
Remote Unlikely, but possible to occur in the life of an item 
Improbable So unlikely, it can be assumed occurrence may not 

be experienced in the life of an item 
All the analysis results need to be documented in the 

SFMEA worksheet, similar to the example shown in Table 5. 
 

Table 5 Example SFMEA Worksheet 
Software 

Component 
Related

Requirements 
Failure Mode 

and Cause 
Failure 
Effects 

Severity Likelihood Hazard 
Controls

Verification 
Method 

        
        

 

3.4 Hazard Tracking 

Hazards with any software safety issues need to be 
tracked to closure, either by software assurance or safety 
assurance practitioners.  Existing project tracking systems can 
be used to track software safety issues.   

In addition, many software related failures/accidents are 
due to requirement flaws (i.e., missing or incorrect 
requirements).  Requirements analysis plays a critical role in 
the software safety analysis.  The identification of safety 
critical requirements starts by analyzing the decomposition 
from the system safety requirements.  Later, as described in 
section 3.2, once critical software/software functions are 
identified, one needs to make sure related requirements are 
marked as safety critical.   

Software safety requirements, as a subset of the functional 
requirements, will need to be correct, complete, consistent and 
verifiable.  Existing software engineering and assurance 
standard and guidance, e.g. [7] [8], are used to ensure the 
quality of the requirements.  As for safety critical 
requirements, we will need to ensure they are marked and can 
be tracked throughout the development life cycle.  By using 
the fault tree analysis shown in 3.2, one needs to cross check 
that all the safety critical software identified by a fault tree 

with their requirements are clearly marked in the requirements 
database.  Once there is any change to such safety critical 
requirements, its impact on system safety will then need to be 
re-evaluated.  Existing requirements databases, e.g., DOORS, 
can be used to store and track safety critical requirements. 

4 COLLABRATIONS 

The project’s software safety engineer (SSE) is the 
primary person responsible for software safety analysis.  The 
SSE must be familiar with the system and subsystem level 
architecture and requirements, must understand the nature of 
the system and software hazards, and must be able to develop 
fault trees and FMEAs for hazard analysis.  But since no 
single person understands all system components, software or 
hardware, it is important to interact and collaborate with other 
team members to effectively understand the full scope of 
software and to develop fault trees and software failure modes 
and effects analysis.  Critical information needs to be shared 
among software engineers, systems engineers, and safety and 
reliability representatives.  For example, as you are 
performing your software safety analysis, have your hardware 
and software systems engineers review your system 
decomposition analysis.  Request that your reliability engineer 
review your fault tree and FMEAs and have your software 



designers review your software requirements analysis.  
We still need some formalized meeting or review board to 

review and approve the analysis results.  The reviewers point 
of view will help uncover hidden assumptions or identify 
analysis insufficiency.  At NASA, a system safety review 
board (SSRB) ensures that all hazards identified by the system 
and software safety team are adjudicated by program 
management and customer representatives.  The SSRB also 
ensures that hazards are properly tracked throughout the 
development life cycle and that hazard risks are properly 
communicated to stakeholders.   

5 SUMMARY  

A summary of the proposed approach for infusing 
reliability techniques in software safety analysis can be 
illustrated using the flowchart shown in Figure 2.  One can 
start with the generic hazards checklist for generic hazards.  A 
Functional FMEA can help identify system specific hazards.  
Once system hazards are clearly identified, software 
involvement, either as a hazard cause or control can be 
identified using fault tree analysis.  Safety critical software 
functions identified by a fault tree will then be analyzed in 
detail using the Software FMEA process.   

 
Figure 2 Infusing Reliability Techniques into Software Safety 

Analysis 

It should be noted that brainstorming and checklists are 
still actively involved in the entire approach.  However, by 
following the FMEA and FTA process, one can assure the 
completeness of the failure/hazard analysis.  Also by applying 

SFMEA only on identified critical software functions one can 
avoid unnecessary analysis on other non-critical functions.  
These are the two major strengths of using reliability 
techniques in software safety analysis.  
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