
Infusing Reliability Techniques into Software Safety Analysis

Ying Shi, NASA Goddard Space Flight Center

Key Words: Software Safety, FMEA, Hazard Analysis, FTA

SUMMARY & CONCLUSIONS

Software safety analysis for a large software intensive
system is always a challenge. Software safety practitioners
need to ensure that software related hazards are completely
identified, controlled, and tracked. This paper discusses in
detail how to incorporate the traditional reliability techniques
into the entire software safety analysis process. In addition,
this paper addresses how information can be effectively shared
between the various practitioners involved in the software
safety analyses. The author has successfully applied the
approach to several aerospace applications. Examples are
provided to illustrate the key steps of the proposed approach.

1 INTRODUCTION

The main objectives of software safety analysis is to
identify hazards that are caused or controlled by software, to
establish a process to eliminate or mitigate the identified
hazards, and to develop methods to verify the safety controls.
Software safety analysis for a large software intensive system
is always a challenge. Software safety practitioners need to
ensure that software related hazards are completely identified,
controlled, and tracked. First, all the system level hazards
have to be identified. This could be accomplished by starting
with the generic hazard list and continuing to system specific
hazards. System level hazards are normally identified through
brainstorm sessions or based on the inputs from experienced
systems engineers. Can this approach capture all the system
level hazards? Even if all the system level hazards have been
completely identified, how do you ensure that software related
hazardous events are correctly recognized? The involvements
and contributions of software to hazards are typically more
difficult to identify and track. The interaction between the
entire system and software functions, as well as between
software functions, needs to be clearly understood.
Furthermore, all the possible faulty states of the identified
software need to be analyzed for their potential impacts on the
system, as well as the likelihood and severity of the impacts.
Corresponding controls can then be proposed to eliminate or
mitigate the identified software hazards and therefore ensure
the safety of the software and the system. These tasks will not
seem new to reliability engineers. Indeed, these software
safety analysis objectives and requirements should sound very
familiar to reliability engineers. For instance, reliability
engineers use Failure Modes and Effects Analysis (FMEA)
which involves reviewing as many components, assemblies,
and subsystems as possible to identify failure modes, and their

causes and effects.
Researchers and practitioners have introduced reliability

techniques, such as FMEA and Fault Tree Analysis (FTA), to
software safety analysis [1] [2] [3]. As addressed in [1], each
technique has its strengths, as well as limitations. FMEA is
normally very time-consuming if applied to all parts of a
complex design. FTA will not be able to model transitions
and timing related events. How to use these existing
techniques properly and effectively in the entire system
development life cycle remains unclear. This paper will first
briefly review the current available software safety techniques
and then discuss how to effectively infuse reliability
techniques into the software safety analysis, from hazards
identification to hazard cause and control analysis.

The remainder of this paper is organized as follows:
Section 2 provides a brief review of the existing software
safety techniques; Section 3 highlights techniques for hazards
identification, hazards control, and tracking; Section 4
addresses the importance of collaboration, and Section 5
provides a summary of applying reliability techniques
throughout the system development lifecycle.

2 REVIEW OF SOFTWARE SAFETY TECHNIQUES

Many software safety analyses are still conducted in an ad
hoc manner. Basic techniques such as brainstorming,
checklists, and experiences from previous projects are
normally used to facilitate the software safety analysis. It is
good to start with these analyses as they are easy to execute,
but it is difficult to ensure their completeness.

More systematic techniques, such as Hazard and
Operability Study (HAZOP) which have been piloted in the
chemical industry, have not been widely used in large
aerospace applications. This is because of its labor-intensive
nature and sometimes HAZOP has to rely on subjective
judgments.

Other advanced modeling techniques, such as Dynamic
Flowgraph Method (DFM) [4] or Petri-Nets [5] require
accurate system modeling and therefore are very complicated
for large scale applications. Furthermore, they cannot be
applied early in the development lifecycle.

Failure Modes and Effect Analysis (FMEA) is a “bottom
up” inductive failure analysis technique. It starts with the
failure of one component and its possible failure modes. For
each failure mode, how the failure propagates through the
system is determined. Next the likelihood and severity of the
effects are evaluated. Fault tree analysis (FTA) is a “top

down” deductive failure analysis. An undesired state of a
system is analyzed using Boolean logic to combine a series of
lower-level events. Event Tree analysis (ETA) uses a forward
search to identify all possible consequences of a giving
initiating event. These analyses can also be very time
consuming to execute, but if used properly and systematically
for hazard analysis purposes as shown later in section 3, they
can be very effective in the hazard identification and control
process.

3 SOFTWARE SAFETY ANALYSIS

Software safety analysis is associated with system hazards
analysis and starts with hazards identification. Software’s
involvement in such hazards will need to be investigated. If
software is determined to be the cause of a hazard or is
involved in controlling a hazard, the software will be labelled
as safety critical software. For NASA projects, the software
safety standard [6] will be applicable for such safety critical
software.

3.1 Hazard Identifications

At the early project life cycle, system level hazards will
be identified first. This could be accomplished by starting
with generic hazard lists. The generic hazards list for the
space shuttle [2], shown below as Table 1, is used as a general
guideline at NASA for system level hazard identification. As
seen from Table 1, most of the generic hazards are physical
hazards and are not caused by software. Software, however,
can be used to control certain hazards. For instance,
operational or surviving heaters are used to mitigate extreme
cold conditions for satellites in space. Software is involved in
controlling the proper operations of such heaters and therefore
could be safety critical.

System specific hazards will then need to be identified.
We want to understand the scenario and consequence of a
specific initiating event at a high level. Basic techniques such
as brainstorming, checklists, and experiences from previous
projects can be used. But to ensure the completeness of the
hazard identification, we advocate functional FMEA
(FFMEA). FFMEA is based on a functional breakdown of a
system and starts with each of the system breakdowns. It can
also be done early in the life cycle phase, i.e., as soon as the
preliminary system architecture is available.

In FFMEA, functions can be evaluated on potential
functional failure effects before design details are available.
The safety impact will then be assessed based on the evaluated
failure effects. If an impact on system/personal safety is
assessed, the function will be identified as a system hazard.
General controls or mitigations can be proposed to limit

consequence of functional failures or limit the probability of
occurrence in this early development. For example, if a
system decides to go with a deployable instrument cover, one
needs to evaluate the possible safety impact of an unsuccessful
cover deployment or an inadvertent cover deployment during
system integration testing, during launch and orbit ascent, and
during the normal operational mission phase.

Table 1 Generic Hazards Checklist
Hazard Category Hazards
Contamination/
Corrosion

Chemical Disassociation; Chemical
Replacement/Combination; Moisture;
Oxidation; Organic; Particulate; Inorganic

Electrical
Discharge/Shock

External/Internal Shock; Static Discharge;
Corona; Short

Environmental/
Weather

Fog; Lightning; Precipitation; Sand/Dust;
Vacuum; Wind; Temperature Extremes

Fire/Explosion Chemical Change; Fuel & Oxidizer in
Presence of Pressure and Ignition Source;
Pressure Release/Implosion; High Heat
Source

Impact/Collision Acceleration; Detached Equipment;
Mechanical Shock/Vibration/Acoustical;
Meteoroids/Meteorites; Moving/Rotating
Equipment

Loss of Habitable
Environment

Contamination; High Pressure; Low
Oxygen Content; Low Pressure; Toxicity;
Low Temperature; High Temperature

Pathological/
Physiological/
Psychological

Acceleration/Shock/Impact/Vibration;
Atmospheric Pressure; Humidity; Illness;
Noise; Sharp Edges; Lack of Sleep;
Visibility; Temperature; Workload
Excessive

Radiation EMI; Ionizing Radiation; Non-ionizing
Radiation

Temperature
Extremes

High, Low, Variations

Using FFMEA and by following the functional
breakdown of a system could ensure all the subsystems or
functions are covered in the analysis and their impacts on
system safety have been evaluated. An example worksheet as
shown below in Table 2 can be created to document FFMEA
results. Example spacecraft functions that could have safety
impacts and therefore result in system hazards are listed
below:

Deployment of solar array
Deployment of instrument cover
Deployment of antenna
Deployment of Magnetometer boom
Laser firing
Thrusters firing

Table 2 Example FFMEA Worksheet
Functions Functional Failure

Mode
Failure Effects Safety

Impact
Impact Phases

F1: Instrument
Cover Deployment

F1M1: Inadvertent
Deployment

Cover damage and spacecraft
damage due to cover debris

Yes Ground Integration and Testing,
Launch and Orbit Ascent

 F1M2: Can not deploy Instrument can not work and
mission failure

Yes Normal Mission Operation

3.2 Role of Software in Hazards

Once system hazards have been clearly identified,
software’s contribution to the system hazards needs to be
investigated. In many cases, an experienced systems engineer
will be able to identify whether there is software associated
with an identified system hazard. But this experience-based
assessment is not always precise and complete. Furthermore,
software’s involvement in certain hazard scenarios is not
obvious. Scenario-based reliability analysis technique, e.g.,
Fault tree analysis and Event tree analysis can be used to assist
in identifying software involvement and contribution to a
certain hazard. A Fault tree starts with an undesirable top
event, in this case a system hazard, and breaks down to
different levels of trees. Each level consists of more basic
events that are necessary and sufficient to cause the event
shown in the level above it. This approach is very effective in
identifying software’s contribution in complex system design.
We are not intended to quantify a specific system hazard, a
qualitative fault tree is sufficient in this step. Developing a
fault tree down to the software interface level is our major
objective. Software interfaces with other system components
will be clearly illustrated in the fault tree. Whether software
will be a cause or control of a hazard will be clearly
illustrated, as well.

We will continue to explain this step using a simplified
inadvertent instrument cover deployment design as an
example. The actuation of the deployment is implemented by
an actuator. Typically inhibits, either hardware or software or
a combination of both, are provided to prevent inadvertent
deployment. The actuators have independent spacecraft-
provided power services. An arming plug is in line with
actuator power and is installed only for critical ground
integration and test (I&T) activities and for launch. To actuate
an instrument cover, the spacecraft will send an independent
command through flight software to turn on the instrument
power and specific actuator interface. Next the spacecraft will
coordinate with system hardware (e.g., FPGA) to enable the
commanding process and coordinate with system software
(flight software) to initiate independent two-step commands.
This is used to first arm the actuator and then fire the actuator.

At a first glance of the above design description,
commands sent through flight software are involved in the
entire actuation process. One may not identify flight software
(FSW) as a system inhibit in the actuation process until the
following fault tree (Figure 1) is developed and the software
interfaces, as well as the interactions with other system
components, are clearly shown. FSW is involved in all three
“and” gates and has to work with other system hardware. For
example, FSW will send the arm command to the actuator to
arm the instrument cover. However, this command will not be
valid without a system hardware enable signal. Before launch
(except for ground I&T), the arming plug, Instrument power
OFF, actuator arm sequence (“and” gates #2) and actuator fire
sequence (“and” gate #3) are considered four system inhibits
for this hazard. The malfunction of FSW will take out two of
the inhibits (instrument power and “and” gate #3) and the

remaining two inhibits are still sufficient to meet the system
safety requirement (i.e., two inhibits are required for critical
system hazards). After launch and during I&T, the arming
plug is installed and the instrument is turned on. Only “and”
gate #2 and #3 are active inhibits. If the enable signals are
purely hardware controlled, FSW will not be considered as
safety critical software. From the fault tree, however, we
found out that the hardware switch for actuator fire sequence
is also controlled by FSW. If there is a bug in the FSW, it will
take out “and” gate #3 entirely leaving only one system
inhibit. Therefore FSW functions involved in this hazard
control are critical and will be considered as safety critical
software functions.

Figure 1 Example Fault Tree for Inadvertent Instrument Cover

Deployment

3.3 Hazard Control

As discussed in section 3.1, functional FMEA will be
used early in the development lifecycle to analyze the system
at a high level. As soon as the specific safety critical software
function are identified, detailed design FMEA can be
implemented for each specific critical software function for
their associated failure modes, causes and effects. The effects
are described in terms of their potential impact to personnel or
mission success and are evaluated for the likelihood of
occurrence and severity of potential impact. Since in this step,
FMEA is applied mainly on software, we can call it Software
FMEA (SFMEA). At the preliminary design review (PDR),
software functions in the form of Computer Software
Configuration Items (CSCIs) or Computer Software Units
(CSUs) are the target items. Later in the life cycle, e.g.,
critical design phase (CDR), lower levels of the breakdowns,
such as modules, may be used to start the SFMEA process.

By continuing the inadvertent deployment of instrument
cover example, flight software commanding functions are
investigated. Three failure modes may be identified by PDR:

Inadvertent commanding,
Failure to command and

Incorrect commanding.
More specific failure modes will need to be evaluated by

CDR. These failure modes are specific to detailed design,
from the module level down to the line of code level. Each
function failure mode will be decomposed to component level.
Detailed SFMEA guidance and instructions can be found in
many literatures, e.g. [2] [9] [10]. Example failure mode
categories include:

Logic/Algorithm
Data
Timing/Sequence
Hardware
Memory
Interface

As for likelihood and severity, one can follow the
guidance in MIL-STD-882 [9] as shown in Table 3 and Table
4.

It should be noted that by applying SFMEA only on an
identified critical software function, one can obtain a
comprehensive analysis on this particular function. This
focused approach will avoid unnecessary analysis on other
non-critical functions.

Once the failure mode and cause with severity and
likelihood of the end effects have been laid out, hazard
controls can then take the form of eliminating hazards, or
mitigating hazards by reducing the likelihood of a hazard

occurring, by minimizing the severity or by improving the
awareness and notification of a hazardous state or condition.
The verification approach includes, but is not limited to
analysis, inspection, demonstration, and test.

Table 3 Severity Categories
Severity Mission Effects

Catastrophic Death, permanent total disability, irreversible
significant environmental impact, loss $10M

Critical Permanent partial disability, severe injuries or
occupational illness, reversible significant
environmental impact, or $1M loss $10M

Marginal Moderate injury or occupational illness, reversible
moderate environmental impact, or monetary loss
equal to or exceeding $100K loss $1M

Negligible Minor injury or occupational illness, minimal
environmental impact, loss $100K

Table 4 Likelihood Levels
Level Likelihood

Frequent Likely to occur often in the life of an item
Probable Will occur several times in the life of an item
Occasional likely to occur sometime in the life of an item
Remote Unlikely, but possible to occur in the life of an item
Improbable So unlikely, it can be assumed occurrence may not

be experienced in the life of an item
All the analysis results need to be documented in the

SFMEA worksheet, similar to the example shown in Table 5.

Table 5 Example SFMEA Worksheet
Software

Component
Related

Requirements
Failure Mode

and Cause
Failure
Effects

Severity Likelihood Hazard
Controls

Verification
Method

3.4 Hazard Tracking

Hazards with any software safety issues need to be
tracked to closure, either by software assurance or safety
assurance practitioners. Existing project tracking systems can
be used to track software safety issues.

In addition, many software related failures/accidents are
due to requirement flaws (i.e., missing or incorrect
requirements). Requirements analysis plays a critical role in
the software safety analysis. The identification of safety
critical requirements starts by analyzing the decomposition
from the system safety requirements. Later, as described in
section 3.2, once critical software/software functions are
identified, one needs to make sure related requirements are
marked as safety critical.

Software safety requirements, as a subset of the functional
requirements, will need to be correct, complete, consistent and
verifiable. Existing software engineering and assurance
standard and guidance, e.g. [7] [8], are used to ensure the
quality of the requirements. As for safety critical
requirements, we will need to ensure they are marked and can
be tracked throughout the development life cycle. By using
the fault tree analysis shown in 3.2, one needs to cross check
that all the safety critical software identified by a fault tree

with their requirements are clearly marked in the requirements
database. Once there is any change to such safety critical
requirements, its impact on system safety will then need to be
re-evaluated. Existing requirements databases, e.g., DOORS,
can be used to store and track safety critical requirements.

4 COLLABRATIONS

The project’s software safety engineer (SSE) is the
primary person responsible for software safety analysis. The
SSE must be familiar with the system and subsystem level
architecture and requirements, must understand the nature of
the system and software hazards, and must be able to develop
fault trees and FMEAs for hazard analysis. But since no
single person understands all system components, software or
hardware, it is important to interact and collaborate with other
team members to effectively understand the full scope of
software and to develop fault trees and software failure modes
and effects analysis. Critical information needs to be shared
among software engineers, systems engineers, and safety and
reliability representatives. For example, as you are
performing your software safety analysis, have your hardware
and software systems engineers review your system
decomposition analysis. Request that your reliability engineer
review your fault tree and FMEAs and have your software

designers review your software requirements analysis.
We still need some formalized meeting or review board to

review and approve the analysis results. The reviewers point
of view will help uncover hidden assumptions or identify
analysis insufficiency. At NASA, a system safety review
board (SSRB) ensures that all hazards identified by the system
and software safety team are adjudicated by program
management and customer representatives. The SSRB also
ensures that hazards are properly tracked throughout the
development life cycle and that hazard risks are properly
communicated to stakeholders.

5 SUMMARY

A summary of the proposed approach for infusing
reliability techniques in software safety analysis can be
illustrated using the flowchart shown in Figure 2. One can
start with the generic hazards checklist for generic hazards. A
Functional FMEA can help identify system specific hazards.
Once system hazards are clearly identified, software
involvement, either as a hazard cause or control can be
identified using fault tree analysis. Safety critical software
functions identified by a fault tree will then be analyzed in
detail using the Software FMEA process.

Figure 2 Infusing Reliability Techniques into Software Safety

Analysis

It should be noted that brainstorming and checklists are
still actively involved in the entire approach. However, by
following the FMEA and FTA process, one can assure the
completeness of the failure/hazard analysis. Also by applying

SFMEA only on identified critical software functions one can
avoid unnecessary analysis on other non-critical functions.
These are the two major strengths of using reliability
techniques in software safety analysis.

REFERENCES
[1] N. Leveson, Safeware:System Safety and Computers,

Addison-Wesley, 1995.
[2] NASA, "NASA Software Safety Guidebook NASA-GB-

8719.13," Washington DC, 2004.
[3] Joint Services Computer Resources Management Group,

U.S. Navy,U.S. Army, and the U.S. Air Force, "Software
System Safety Handbook: A Technical & Managerial
Team Approach," 1999.

[4] Garrett, C., Guarro, S., Apostolakis, G., "The Dynamic
Flowgraph Methodology for Assessing the Dependability
of Embedded Software Systems," IEEE Trans. on
Systems, Man and Cybernetics., vol. 25, pp. 824-840,
1995.

[5] T. Murata, "Petri Nets: Properties, Analysis and
Applications," Proceedings of the IEEE, vol. 77, pp. 541-
580, 1989.

[6] NASA, "NASA Software Safety Standard NASA-STD
8719.13C," Washington DC, 2013.

[7] Herbert Hecht, Xuegao An,Myron Hecht, "Computer
Aided Software FMEA for Unified Modeling Language,"
in RAMS, 2004.

[8] N. W. Ozarin, "Applying Software Failure Modes and
Effects Analysis to Interfaces," in RAMS, 2009.

[9] DoD, "Department of Defense Standard Practice System
Safety MIL-STD-882E," 2012.

[10] NASA , "NASA Software Engineering Requirements,
NASA-NPR-7150.2A," Washington DC, 2009.

[11] DoD, "Software Considerations in Airborne Systems and
Equipment Certification, DO-178B," 1992.

BIOGRAPHIES

Ying Shi, PhD
NASA Goddard Space Flight Center, Code 320.1
Greenbelt, MD 20771

Email: ying.shi@nasa.gov

Dr. Ying Shi is a Software Reliability and Safety Engineer at
NASA Goddard Space Flight Center, providing technical
support for all Goddard projects related to software reliability
and safety. She received her Ph.D. in Software Reliability
Engineering from the University of Maryland and her M.S. in
Reliability Engineering from the University of Arizona. She
is a member of IEEE and IEEE Reliability Society.

