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ABSTRACT

A new spectral-spatial method for classification of hyperspec-

tral images is proposed. The HSegClas method is based on

the integration of probabilistic classification and shape anal-

ysis within the hierarchical step-wise optimization algorithm.

First, probabilistic support vector machines classification is

applied. Then, at each iteration two neighboring regions with

the smallest Dissimilarity Criterion (DC) are merged, and

classification probabilities are recomputed. The important

contribution of this work consists in estimating a DC between

regions as a function of statistical, classification and geomet-

rical (area and rectangularity) features. Experimental results

are presented on a 102-band ROSIS image of the Center of

Pavia, Italy. The developed approach yields more accurate

classification results when compared to previously proposed

methods.

Index Terms— Classification, segmentation, hyperspec-

tral images, geometrical features, rectangularity.

1. INTRODUCTION

The recent advances in hyperspectral remote sensor technol-

ogy makes it possible to acquire data with a very high spectral

(hundreds of spectral channels) and spatial (order of a meter)

resolution. The rich spectral information of the hyperspec-

tral data allow to discriminate different physical substances,

leading to the potential of a more accurate classification [1].

However, when classifying hyperspectral images, two major

challenges must be addressed: 1) data processing in a high-

dimensional spectral space [2]; 2) extraction and analysis of

spatial information [3, 4].

In previous works, we have proposed to apply a segmen-

tation procedure to a hyperspectral image in order to use the

identified regions as pixels’ spatial neighborhoods [4, 5]. Re-

cently, we developed a spectral-spatial classification method,

which concurrently performs best merge region growing and

classification, yielding accurate classification maps [5]. In

this method, the decision to merge regions at each iteration

was based on mean spectral vectors, sizes and classification

probabilities of the corresponding regions.

In this work, we aim to further improve hierarchical

model for hyperspectral image classification. For this pur-

pose, we propose to include shape features in the region

model. Analysis of shape features for object classification

in remotely sensed images has been previously investigated

in [6, 7, 8]. In all these works, segmentation was first per-

formed, and then shape features of the detected regions, such

as elongation, rectangularity, compactness, were analyzed.

We propose to analyze shape features during the construction

of a segmentation map, thus seeking for more accurate seg-

mentation results. Thus, a new method for improved spectral-

spatial classification of hyperspectral data is proposed in this

paper. For a given hyperspectral image, probabilistic Sup-

port Vector Machines (SVM) classification is first applied.

Then, best merge region growing is performed, by iteratively

merging neighboring regions with the smallest Dissimilarity

Criterion (DC) and recomputing classification probabilities.

The important novelty consists in adding shape analysis for

computing DCs. In this paper, we include rectangularity

feature for driving the segmentation process.

The paper is organized as follows. In the next section,

we present a new Hierarchical Segmentation with integrated

Classification (HSegClas) approach. Experimental results are

described in Section 3. Finally, conclusions are drawn in Sec-

tion 4.

2. PROPOSED CLASSIFICATION METHOD

On the input a B-band hyperspectral image is given, which

can be considered as a set of n pixel vectors X = {xj ∈
R

B , j = 1, 2, ..., n}. The aim is to compute a classification

map L = {Lj , j = 1, 2, ..., n}, where each pixel xj is as-

signed to one of K thematic classes, i.e., has a class label Lj .

The proposed HSegClas method consists of two main steps:

2.1. Probabilistic pixelwise classification

First, a pixelwise classification of the input hyperspec-

tral image is performed, resulting in a classification map

L = {Lj , j = 1, 2, ..., n}, where each pixel has a unique

class label, and class probabilities for each pixel {P (Lj =
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Fig. 1. Flowchart of computing a DC between two regions

Ri and Rj . “RectSet” means a set of labels for classes which

represent objects with high rectangularity values.

k|xj), k = 1, ...,K}, j = 1, 2, ..., n. We propose to use an

SVM classifier, which is well suited for classifying high-

dimensional data [1]. We refer the reader to [4] for details on

how class probabilities are estimated using pairwise coupling

of binary probability estimates.

2.2. Hierarchical step-wise optimization

At the next step, Hierarchical Step-Wise Optimization (HSWO)

segmentation with integrated classification is performed us-

ing the following procedure:

1) Assign a new region label for each pixel. Each

new region Ri gets a preliminary class label L(Ri) and

a K-dimensional vector of class probabilities {Pk(Ri) =
P (L(Ri) = k|Ri), k = 1, ...,K}.

2) Calculate the dissimilarity criterion DC(Ri, Rj) be-

tween all pairs of spatially adjacent regions {Ri, Rj}, using

an eight-connectivity neighborhood (see Fig. 1):

• First, the spectral dissimilarity DCspec(Ri, Rj) be-

tween two regions is estimated by computing Spectral

Angle Mapper (SAM) between the region mean vectors

ui = (ui1, ..., uiB)
T and uj = (uj1, ..., ujB)

T [9]:

DCspec(Ri, Rj) = SAM(ui, uj) =

arccos

( ∑B
b=1 uibujb

[
∑B

b=1 u
2
ib]

1/2[
∑B

b=1 u
2
jb]

1/2

)
. (1)

• If the regions have equal class labels L(Ri) = L(Rj) =
k′,

DC(Ri, Rj) =

(2−max(Pk′(Ri), Pk′(Rj)))DCspec(ui, uj). (2)

• If L(Ri) �= L(Rj), analyze region size: if a number of

pixels in each region is larger than M , DC(Ri, Rj) =
∞ (the upper maximum value of float), otherwise:

DC(Ri, Rj) =

(2−min(PL(Rj)(Ri), PL(Ri)(Rj)))DCspec(ui, uj). (3)

Furthermore, for adjacent regions with non-equal class la-

bels, their rectangularity features are analyzed. A region rect-
angularity rect(·) is defined as a ratio of the region area and

the area of a minimum area rectangle of an arbitrary orienta-

tion including the region, and has values in the range (0, 1]. A

set of classes which represent objects with high rectangularity

values is previously selected. We denote by “RecSet” a set of

labels for such classes. Then, if

((card(Rr) > M)&(L(Rr) ∈ RecSet)&

(rect(Ri ∪Rj) > rect(Rr)) = true, r ∈ {i, j},
then DC(Ri, Rj) = W ·DC(Ri, Rj), (4)

where card(R) is a number of pixels in the region R, W is a

user set parameter, W < 1. This means that if:

• a class label of one of the regions under consideration

belongs to the RecSet set

• a size of this region is larger than M pixels,

• and the rectangularity value of this region increases af-

ter it is merged with another region under consideration,

the DC between these two regions is reduced by a constant

multiple. Once the DC between all pairs of neighboring re-

gions are computed, the proposed algorithm proceeds as fol-

lows:

3) Find the smallest DC value DCmin.

4) Merge all pairs of neighboring regions with DC =
DCmin. For each new region Rnew = Ri ∪Rj recompute:

• A vector of new class probabilities as

Pk(Rnew) =
Pk(Ri)card(Ri) + Pk(Rj)card(Rj)

card(Rnew)
, (5)

k = 1, ...,K, card(Rnew) = card(Ri) + card(Rj).



Table 1. Results for the Center of Pavia data set. Information Classes, Number of Labeled Samples (No of samples), Global

and Class-Specific Accuracies in Percentage. The Highest Accuracies are Bolded in Each Category.
No of samples SVM SVMMSF HSWO+MV HSwC HSegClas

Overall accuracy - 94.96 91.31 96.67 96.89 97.12
Average accuracy - 92.56 92.64 95.41 96.41 97.03
κ - 93.61 89.11 95.77 96.06 96.35
Water 12734 98.12 87.99 97.76 97.62 97.62

Trees 2405 90.48 89.14 92.80 93.64 93.64
Meadows 1788 94.08 93.52 91.30 95.39 95.39
Bricks 2140 79.86 87.87 87.96 91.09 92.89
Bare soil 4677 97.12 98.00 97.96 99.01 99.01
Asphalt 4844 93.52 93.04 99.07 96.07 96.05

Bitumen 972 82.48 92.57 93.21 95.97 99.58
Tile 1112 97.41 100 98.61 98.89 99.08

Shadows 2020 99.95 91.61 100 100 100

• Class label as

L(Rnew) = argmax
k

{Pk(Rnew)}. (6)

5) Stop if each image pixel has been involved at least once

in the region merging procedure. Otherwise, update the DC

values between the new regions and all regions spatially ad-

jacent to them, and go to step 3. This convergence criterion

assumes that the image does not contain one-pixel objects. If

it does, the algorithm may converge when [(1 − P )n] pixels

get involved in region merging, where P (0 < P < 1) is a

probability of occurrence of one-pixel regions in the consid-

ered image.

3. EXPERIMENTAL RESULTS AND DISCUSSION

We applied the proposed approach to the Center of Pavia im-

age acquired by the ROSIS (Reflective Optics System Imag-

ing Spectrometer) sensor over the city of Pavia, Italy. The

image is of 785 by 300 pixels, with a spatial resolution of 1.3

m/pixel and 102 spectral channels. Nine information classes

are considered, which are detailed in Table 1, with the number

of labeled samples for each class. Fig. 2 shows a three-band

false color image and the reference data. Thirty samples for

each class were randomly chosen from the reference data as

training samples. The remaining samples composed the test

set.

A probabilistic classification of the considered image was

applied using the multiclass one versus one SVM classifier

with the Gaussian radial basis function kernel and parameters

chosen by five-fold cross validation: C = 128 and γ = 2−5.

Then, the proposed hierarchical optimization was performed,

with the empirically set parameters M = 30 and W = 0.8.

The RecSet = {7, 8} was composed of labels for classes “bi-

tumen” and “tiles”, representing rectangular roofs.

Table 1 gathers global (overall, average accuracies and

kappa coefficient [10]) and class-specific accuracies of the

SVM classification and the proposed HSegClas method. In

order to compare the efficiency of the proposed approach

with previously proposed methods, we have included re-

sults of classification using the construction of a minimum

spanning forest from the probabilistic SVM-derived markers

and using the SAM DC (SVMMSF) [4], which is a recently

proposed and promising method. Furthermore, we have in-

cluded accuracies of the classification by majority voting

within the neighborhoods defined by HSWO segmentation

with the SAM DC (HSWO+MV method) [11]. The optimal

hierarchical level was selected by quantitatively evaluating

classification accuracies of the considered method at several

hierarchical levels versus the test data and retaining the best

results. We also included results of the HSwC approach [5],

which is similar to the HSegClas method, but does not include

shape analysis. Figure 2(c-e) shows some of the correspond-

ing classification maps.

It can be seen from Table 1 that the proposed HSegClas
yields the highest global and most of class-specific accura-

cies. It is important to note that when comparing the HSwC
and HSegClas results, accuracies for both classes “bitumen”

and “tile” are improved when applying rectangularity analy-

sis in the new HSegClas approach, while accuracies for other

classes are similar. This proves the interest of including shape

features in the region model for hierarchical segmentation and

classification.

4. CONCLUSIONS

Hyperspectral imagery enables accurate remote sensing

data classification, but also presents challenges of high-

dimensional data analysis. In this paper, we have proposed

a new HSegClas method for spectral-spatial classification

of hyperspectral images. The method consists in applying

probabilistic SVM classification, followed by iterative best

merge region growing with integrated classification. The

main novelty lies in the definition of a DC between neigh-

boring regions as a function of region statistical, geometrical

(area and rectangularity) and classification features. Experi-
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Fig. 2. Center of Pavia image. (a) Three-band color composite. (b) Reference data. (c) SVM classification map. (d) HSwC

classification map. (e) HSegClas classification map.

mental results did show that the proposed method succeeded

in taking advantage of both spatial and spectral information

for accurate hyperspectral image classification.
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