Towards Test Driven Development for
Computational Science with pFUnit

Michael Rilee'? and Thomas Clune’

'NASA Goddard Space Flight Center
’Rilee Systems Technologies LLC

Abstract—Developers working in Computational Sci-
ence & Engineering (CSE)/High Performance Computing
(HPC) must contend with constant change due to advances
in computing technology and science. Test Driven Devel-
opment (TDD) is a methodology that mitigates software
development risks due to change at the cost of adding
comprehensive and continuous testing to the development
process. Testing frameworks tailored for CSE/HPC, like
pFUnit, can lower the barriers to such testing, yet CSE
software faces unique constraints foreign to the broader
software engineering community. Effective testing of nu-
merical software requires a comprehensive suite of oracles,
i.e., use cases with known answers, as well as robust esti-
mates for the unavoidable numerical errors associated with
implementation with finite-precision arithmetic. At first
glance these concerns often seem exceedingly challenging
or even insurmountable for real-world scientific applica-
tions. However, we argue that this common perception is
incorrect and driven by (1) a conflation between model
validation and software verification and (2) the general
tendency in the scientific community to develop relatively
coarse-grained, large procedures that compound numerous
algorithmic steps. We believe TDD can be applied routinely
to numerical software if developers pursue fine-grained
implementations that permit testing, neatly side-stepping
concerns about needing nontrivial oracles as well as the
accumulation of errors. We present an example of a
successful, complex legacy CSE/HPC code whose devel-
opment process shares some aspects with TDD, which we
contrast with current and potential capabilities. A mix of
our proposed methodology and framework support should
enable everyday use of TDD by CSE-expert developers.

I. INTRODUCTION

Computational Science and Engineering (CSE)
software development and testing has adapted to
pressures rarely found in the broader context of
Software Engineering (SE) [7]. As well described
elsewhere, the scientific result is the goal of CSE
effort [4]. As results are produced, or not, scientific

understanding evolves and software requirements
change [22], [23]. In contrast to more general soft-
ware usage, improvements in computational capa-
bility are allocated to improving the results, rather
than achieving the same result more cheaply or more
quickly. Adapting to these unique challenges, CSE
domain experts have evolved software development
styles with specialized approaches to verification
and validation and methodologies that can resemble
Agile and open source [13], [14].

Many important scientific applications have life-
times that span several decades; evolving incremen-
tally under pressures for improved physical fidelity
and/or exploiting new computational environments.
Because the goal is to advance science given limited
resources, a major concern is the portability of these
codes and the reliability of their results as new
platforms are brought to bear on important scientific
problems. Validation of a code’s results against ex-
periments, observations, or scientists’ understanding
of reality is widely recognized as crucial to scien-
tific advance. On the other hand, verification that
the software implementation accurately captures the
scientific understanding of the expert developers
involved is often assumed implicitly.

In the meantime, the broader SE community
has been able to address other, but shared, issues
associated with software development. Testing plays
an important role for both CSE and SE, but with
different emphases. In CSE the focus is often on val-
idation of the “final” results of the calculations with
an eye towards scientific advance, as mentioned
above. This is reminiscent of “acceptance testing,”
in the sense of “what impact does the code’s re-
sult have on our science”? Calculation results may
continuously force the scientist developer to change



their theoretical model or approach, which to those
with a more conventional SE background means
the software requirements continuously change [22],
[23], [7], [4]. The scientist developer may simply
see that their expectations for the results of the
scientific calculation haven’t been met, requiring a
change of ideas or approach.

Unit testing frameworks have made it possible
to include software system requirements (and con-
straints on properties leading to them) as part of the
software system itself as unit tests. In this context,
unit tests are a powerful tool aiding the construction
of new code and the analysis and revision of legacy
code [15]. Object technologies have reduced the
workload required to implement such testing, as
software frameworks for developing harnesses of
these tests have been developed [10], [12], [8]. Build
process technologies have allowed these harnesses
to be tightly integrated with software development,
covering the code with tests executed at every
compilation. As a result, verification of the software
against the current understanding of system require-
ments (as represented by the harness of unit tests)
is performed at every step of software development.
With the advent of unit testing frameworks more
attuned to the CSE/HPC development environment,
tools are becoming available that actually accom-
modate CSE development needs.

Test Driven Development (TDD) simultaneously
co-evolves the harness of unit tests and the software
under development [5]. As developers design and
build their system, their understanding of the system
and its requirements grows, which is then cycled
back into the growing software system, a process
that should be familiar to the scientist developer.
Developers alternate between enhancing and extend-
ing the test harness and the system code, potentially
rapidly cycling (< 10 minutes) through this process
to implement a test and then the code that allows
the system to pass. Through this rapid analysis and
experimentation, requirement, design, and imple-
mentation problems can be detected, isolated, and
corrected early. The emphasis on early analysis and
design improves software quality and modularity,
and the process provides more insight into how
software development is progressing towards system
goals. Thus TDD has many attractive features for
the science code developer, but science codes pose

unique challenges. Still, our initial forays into TDD
for science software are quite encouraging [9].

In this paper, we go into several specific needs
of current HPC CSE software development, namely
distributed parallelism and numerics, that could be
helped by the infusion of testing strategies devel-
oped for more conventional SE. We describe a
successful example of a complex CSE/HPC code in
which testing played an important but not leading
role, and how that testing compares to what is pos-
sible today. We point out gaps between the current
state-of-the-art in fine grained, low-level testing of
CSE code, pFUnit, and a usable TDD framework
for CSE, as well as our approach to closing these

gaps.

II. TDD FOR SCIENCE CODES

The every day use of TDD by CSE developers
requires a mix of development methodology en-
hancements and framework support. A key change
in methodology is to more strongly distinguish
science theory from computation and recognize
that verification between theory and computation
(implementation) is important. Verification is best
built on partitions of the computation (code units)
whose required behavior can be characterized and
understood. A powerful way to express this char-
acterization is with synthetic inputs and their con-
sequent solidly known expected outputs, to a re-
quired level of numerical tolerance. In the best
cases, we can require that behavior of code units
meets expectations that hold unavoidable error to
within machine precision. In this way, we can trace
(verify) the behavior of code units to the underlying
scientific understanding, i.e., the science, the theory,
approximations, etc., improving the trustworthiness
of a scientific model’s expression on HPC platforms.

In TDD, the verification that a science code is a
correct re-expression of scientific understanding is
aided by the software system’s set of unit tests. This
does not eliminate the judgment of the scientific
software developers from the ongoing analysis of
their work, but captures and automates some of their
analyses. The cost of capturing and implementing
this analysis is mitigated by the use of software
frameworks that ease test development and use, such
as pFUnit, described below [11], [8], [9].



The verification mentioned above is best per-
formed with fine-grained tests whose behavior is rel-
atively straightforward to characterize. A challenge
for fine-grained testing is that code units in (large-
scale) science software often bundle many behaviors
in coarse units that have many dependencies (espe-
cially as expressed in Fortran), making it difficult
to partition the code into isolated units for testing.
We believe the interactions of complex networks of
such dependencies are a major contributor to the
difficulty of providing oracles for checking coarse
code unit behaviors. In TDD, mock technologies
enhance isolation by enabling such dependencies to
be replaced with configurable software that records
and drives the behavior of the code unit being tested.
This replacement would allow some measure of
fine-grained testing to be recovered even for coarse-
grained procedures. Refactoring coarse grained code
while gradually building up a supporting harness
of fine-grained unit tests seems to be a powerful
strategy for code development and analysis. Adding
these capabilities to a unit testing framework like
pFUnit and providing them to CSE developers via
an Integrated Development Environment (IDE), e.g.,
Photran [2], [1], would make it easy for developers
to explore their codes’ design and implementation
via TDD, a path we are exploring in collaboration
with the R&D firm, Tech-X.

III. TESTING DURING SCIENCE CODE
DEVELOPMENT: PARAMESH

To explore these concepts, we recall a medium-
sized, but complex, computational science appli-
cation framework that illustrates a number of the
issues involved. PARAMESH is a Fortran 90-based
support framework for parallelizing serial calcula-
tions involving logically cartesian, block-structured
grids and providing adaptive mesh refinement in
development ~1998-2008, during which time it
went through four major versions [21], [19], [20],
[17]. Successful as infrastructure or middle ware for
science developers, from 1998-2006 at least 60 pa-
pers in a wide variety of disciplines were published
using results from codes built on PARAMESH [17].

Most science calculations at the time were se-
rial or vector-parallel and not expressed in object-
oriented terms, so the code provides a subrou-
tine library for the domain expert user, who is

also expected to modify the source if necessary.
PARAMESH provides a distributed data struc-
ture with a logically cartesian, block-structured
geometry and a variety of communication, work-
distribution, and grid management and reconfigura-
tion services. Science data could be associated with
edges, faces, vertices, or volumes in the grid, each
with its own communication needs and supporting
a wide variety of calculations. As an adaptive mesh,
the geometry could be subdivided into different
levels of refinement with data values set by interpo-
lation operators (prolongation to finer and restriction
to coarser) as needed. The calculation part of the
code, the “science algorithm,” thus provided scien-
tists a familiar-looking cartesian geometry, which
eased the porting of serial code. Calculations could
be expressed as one or more subroutines that op-
erated on a “block,” which PARAMESH invoked
in parallel across the different levels of grid re-
finement. This complex code is highly configurable
with many preprocessor options to take into account
different computing platforms, compilers, as well as
different communication and grid management and
interpolation schemes.

A. Tests & Exploratory Development

Testing played a crucial role in the development
of this complex functionality, albeit without the
benefit of unit tests, a testing framework, or even
an explicit testing policy. Tests were typically im-
plemented as standalone programs that were de-
veloped and run as new functionality was imple-
mented and when significant revisions were made.
Tests, or rather, demonstrations of new functionality
through appropriate means, whether as index tables
or visualizations, were important for “debugging”
and verification. Sometimes expected results were
encoded in tests and compared with those found
during code execution at other times, while at other
times analysis was based on scientific visualizations.
The bookkeeping and communication aspects of
grid management naturally lend themselves to unit
testing, which the existing example tests resemble.

More pertinent to scientific work, PARAMESH
provided both new approximation functionality with
its dynamically adaptive grid as well as the ability to
take advantage of large parallel computers coming
online at the time. This allowed science code devel-



opers to explore new ways to improve the quality of
their science models. Temporal and spatial resolu-
tion could be dynamically adapted to the calculation
encouraging exploration into higher-order mathe-
matical approximations as well as higher dimen-
sional representations of phenomena being studied.
These explorations often did not mesh precisely
with the developer preconceptions, driving revision
and code evolution.

One example of how science developments
drive code development was the application of
PARAMESH to the problem of the terrestrial mag-
netosphere. Obvious, unphysical artifacts in magne-
tohydrodynamic (MHD) simulations of the terres-
trial magnetosphere built on top of PARAMESH led
to many revisions of the underlying scientific model,
approximations, and algorithms, some of which
required new functions to be added to PARAMESH.
One key feature involved the unphysical creation
of flows generated in the direction of the Earth’s
magnetic field traced to an unphysical non-zero
divergence in the simulated magnetic field, e.g., [3].
Eliminating this divergence to any degree of accu-
racy places special requirements on the temporal
evolution scheme of the numerical simulation. Even
more critically the spatial (differential) operators de-
termining field properties and evolution affects both
the scientists’ numerical model and PARAMESH’s
spatial support infrastructure.

B. Tests & Extension

Thus we see in this brief example a great deal
of complexity of interaction that does not arise
in more typical non-science software settings. The
foundation of the code is the bookkeeping layer
that manages the distributed data structure for grid
geometries, science data, and their relationships. On
top of this are the spatial and temporal numerical
operators like interpolations and gradients, as with
the zero-divergence work. Using these operators,
scientific models are built that produce the scientific
results we are after, not to mention the integration
of customized scientific visualization graphics for
debugging (verification) and results analysis (a val-
idation step). Even at this level of detail, each one
of these layers has its own complexity associated
with implementing part of a science code. Unit tests

are an excellent way to define and check that the
components of each layer behave as required.
Lacking a unit testing framework, PARAMESH
developers essentially developed their own tests,
some of which had some persistence during the
project becoming a suite demonstrating essential
capability. Implementation, test, and debug was a
painstaking process, and though there was close
communication between developers as the code
progressed, many of the tests were not usually
shared by their developers. If a code change by
one developer touched on an area covered by a
certain test written by another, one generally asked
the test-writer to run the test again because they
were most familiar its building, execution, and the
interpretation of its results. While effective in a
group of expert, co-located developers, the lack
of automation, persistence, and sharing limits the
amount of testing and test configurations examined,
reducing test value and impact. This is particularly
a problem when non-PARAMESH-expert users are
extending the code and integrating their own science
models. It would be much better for these end-users
to be able to extend a test harness that is tightly
coupled to the build process itself, particularly since
access to the original developers and their “per-
sonal” test suites and expertise can be impractical.

C. Unit Tests & Test Driven Development

Unit tests address many of the development con-
cerns arising in the process described above. The
great configurability and continuous exploration and
analysis of science code development is supported
by unit testing frameworks’ provision of fixtures for
expressing and iterating through configurations. The
tests themselves become persistent, shared artifacts
that describe both intent and outline troublesome
areas of code development as well. Without such
reification, the goals and knowledge embedded in
the science code are implicit and ephemeral as the
original developers’ memory of design and coding
issues fades. Fine-grained, quickly executing tests
become a fundamental part of the build process,
dramatically increasing the coverage, precision, and
quality of information the tests provide. Shared with
system developers and users who are extending
the code, applying it to their scientific models,
the test harness becomes a net that catches issues



arising from tests over a much greater set of code
configurations and uses.

TDD organizes these efforts, recognizing that the
test harness itself represents an understanding or
model of the software system’s functionality, which
becomes an executable blueprint for the system
itself. The evolution of functions, software configu-
rations, or even experimental ideas can be expressed
via the test harness. Verifying the successful transfer
of theoretical constructs (e.g., approximations, nu-
merical constraints, scientific phenomena or mech-
anisms) into software can be expressed, code unit
by code unit, with unit tests. The experience gained
through these tests (experimental verifications that
theory has been properly expressed as software)
naturally affects developers’ understanding of the
system. These tests drive changes in system de-
sign to better support the expression of theory
in software, as well as to support re-examination
of the theory and its expression as a calculation,
without regard to software. For example, in reality
the divergence of the magnetic field is zero, which
is true in MHD too. In the theoretical domain, one
may approach a given scientific problem involving
magnetic fields by choosing different representa-
tions of the physical quantities, simplification, or
solving an arguably related model problem, e.g.,
like discretizing a continuous problem for numerical
calculation. Generally we may have estimates about
how one approach to a scientific answer may be
better than another, e.g., should we express the
magnetic field directly or via its vector potential?
Yet since the science is often complex and at the
edge of our understanding, we may not know how
the (theoretical or software) system may behave as
a whole.

We do know how the components or steps of
an approach to a solution should work. That is,
with sufficient code isolation, operating with known
(e.g., synthetic) inputs in a specified environment,
we should be able to specify the output of any
particular step in a calculation and hold its expres-
sion in software to that standard to an appropriate
tolerance, in most cases machine-e. While this error
may aggregate over multiple steps of the calculation
during the code’s execution, its implementation will
have been piecewise verified to machine accuracy.

Returning to our example, a particular approxi-

mation to the divergence of a field on a discretized
mesh can be tested in a number of synthetic situa-
tions to verify the divergence calculation’s represen-
tation in software, essentially to machine precision.
This sort of test is an especially important part of
analyzing and comparing the numerical quality of
different approaches to divergenceless fields, e.g.,
at least three different methods of divergenceless
prolongation to finer grids have been experimented
with in PARAMESH [18]. While the different steps
in each of these methods lead to different error dy-
namics, we claim each step is verifiable to machine
accuracy. Unit tests associated with such changes
would keep a record of where the research and
development has been, providing a foundation for
new tests and improvements.

D. Code Isolation for Testing

The high degree of code isolation enabling piece-
wise verification may be impeded by the wide and
deep pool of dependencies from which numeric
code can draw. Such code units often depend on
calls or references to external functionality or data,
which may be expensive or hard to characterize. In
the broader SE community, object technologies have
aided the development of methods to mock up such
dependencies and many frameworks exist to help
automate the generation of mocks for testing. Mocks
are reconfigurable software constructs that replace
those dependencies with stimulation and diagnostic
instruments, testing and recording the behavior of
the code in which they’re placed.

We are in the process of extending pFUnit
to include a suite of services that support the
use of mocks in Fortran code. Yet implement-
ing application-specific mocks remains a manual,
time-consuming effort as they must replicate the
interface of the original dependency, which may
change as the original code evolves. Automating the
creation of mocks in Fortran is quite difficult due
to the lack of language features for introspection
and templating. In pFUnit, we are circumventing
Fortran’s weakness in this area via python-based
preprocessing and code generation, though we are
continuing to look for other options. Additionally,
we are pursuing technologies to capture and express
interface information for the development of mocks



to improve the isolation and coverage of tests built
on pFUnit.

E. Extending Usefulness via TDD

While PARAMESH is a success at providing
parallel computing capability to a certain class of
science codes, there are a number of factors that
hinder its continued development and use. It is
designed to be used and extended by a domain
expert user working within the context of Fortran
90. Therefore its API provides a degree of modu-
larity and abstraction, easing the use of the code,
hiding a great deal of complexity underneath the
hood. In particular, the array index conventions
used are particularly complex, and great deal of
the bookkeeping is done via carefully constructed
array argument index ranges, which are difficult to
modify consistently throughout the code. A good
test suite is provided, which provides some of the
same benefits that a more extensive harness of unit
tests would provide. These tests allow for some error
detection and isolation, but not nearly as much as
would be possible with fine grained testing enabled
by a unit testing framework enhanced with mocking.
More detailed analysis is left as an exercise for the
domain expert developer.

Again, we note that a great deal of testing and
analysis went into the development (and debug-
ging) of PARAMESH functionality, much of which
was not saved. Implementing a new test was es-
sentially like implementing a new application on
PARAMESH, so these tended to exercise extended
groups of behaviors at a fairly high level. A unit test
framework would have allowed the more important
ephemera to be retained, which would help the
code be adapted to new and updated platforms.
PARAMESH is well documented and commented,
but lacks tests that illustrate design decisions point-
ing the way to how the code might be refactored.
Example code is provided to help users extend
PARAMESH into their own domain, but the tools
to revise and update the code itself are limited.

Advances in object orientation in Fortran might
be applied to help broaden the range of op-
erators and algorithms that could be built onto
PARAMESH, easing their use and experimentation,
and extending the code’s usefulness. The current
data vectors defined on the grids with an abstract

type and associated operators or advanced numerical
needs like the Div-B problem mentioned above
could be aided by using object extension and op-
erator overloading. These would provide the ex-
pert developer the opportunity to write code that
looks more like the theoretical expressions. Object-
oriented techniques could allow functions like geo-
metric intersections and unions to be implemented
in a way that shields the user from referring to array
indices and the complexities of distributed parallel
data management, but these would entail widespread
changes to the code and much analysis. A TDD
approach would ease analysis and debugging by
starting with a harness of unit tests, mocking de-
pendencies to isolate the code units, and then co-
evolving the unit tests during the code’s renovation.

In a real sense, PARAMESH is an example of
the benefits of a relatively fine-grained approach
to structuring code. Although current technologies
support a much finer-grained approach to testing
than was originally feasible for PARAMESH, the
focused behaviors of its large library of procedures
are arguably concise and orthogonal. Ephemeral
tests and print statements would have properties
similar to a fine-grained test harness when active
for limited periods of time during development.
Built with the intention to be extended, the code
encourages these practices to be continued dur-
ing adaptation to an end-user’s domain, though
PARAMESH supports any code, however coarsely
structured, that appropriately interacts through its
interface of library support procedures.

IV. PFUNIT: SUPPORTING TDD FOR SCIENCE

pFUnit, the parallel Fortran Unit testing frame-
work, is a software testing framework that is highly
tailored to the needs of the CSE/HPC community
and 1s well-suited for the use of TDD. The frame-
work is implemented in Fortran, but the basic design
is otherwise quite similar to many other so-called
xUnit testing frameworks (e.g., JUnit, pyUnit, etc.)
[6], [16]. As with those frameworks, pFUnit enables
developers to readily create unit tests, collect them
into test suites, and routinely execute those suites to
detect any failures as they arise. Beyond the obvious
implied capability to work with Fortran, pFUnit
includes extensive support for (1) multidimensional



arrays, (2) floating point (FP) data, (3) parallelism
via MPI and OpenMP, and (4) parametrized tests.

A major element of most testing frameworks is
a suite of “asserts” that express the intent of tests,
generally in the form of checking the equality of
two expressions. While most frameworks have some
limited support for comparing FP data and one-
dimensional arrays, pFUnit supports comparison of
single/double precision quantities, with an optional
tolerance, for arrays up through 5-dimensional (or
more if supported by the compiler). Tolerance can
either be absolute or relative, and similar support
is included for complex numbers. Other niceties
include the ability to test for infinity and NaN.

Testing of parallel software raises a number of
unique issues including the need to test the same
procedure at various PE counts, identification of
which processes have detected failures, and detect-
ing deadlocks. The pFUnit MpiTestCase class is a
container for user-defined unit tests that automat-
ically generates a new MPI subcommunicator for
each requested process count. Any exceptions are
labeled according to process rank and PE count and
then gathered to the root process. Users can thereby
easily exercise their test logic across a variety of
scenarios with relatively little effort.

MpiTestCase is actually only a special subclass
of the more general ParameterizedTestCase that
allows users to exercise a unit-test across a user-
defined collection of parameters. This can be ex-
tremely valuable in scientific applications where
functionality is often parameterized (e.g., boundary
conditions, interpolation order, stencil-size).

V. APPLYING TDD TO THE CHALLENGE

In this paper, we have anecdotally described some
of the development and testing associated with a
code that was intended to be extended to aid the
parallelization of legacy applications, but developed
before unit testing frameworks and object support in
Fortran had matured. Like other CSE/HPC codes, it
is highly configurable, portable, and was modified a
great deal as calculations were performed and sci-
ence models adapted. It provides intricate bookkeep-
ing services and must support calculations involving
subtle numeric issues from the demands of modeling
continuous systems as discrete ones. Extensively
tested for correct behavior and performance, the

code’s most important function tests are provided
to the end users for verifying correct compilation.
Many tests, and the concerns that drove them, are
lost to time. Still, it serves as a positive example of
the benefits to development of being a finely struc-
tured code, with a large number of concise, focused
procedures. The code is complex, but it provides
a straightforward and extensive API attuned to its
target audience. Documentation and examples are
provided to aid the expert user adapting the code to
their calculation. In the context of relating CSE to
more conventional computing, it shows complexities
that may be found in conventional software engi-
neering (e.g., the distributed data structure). Others
are unique to CSE/HPC, namely the tight coupling
of computation across the distributed computer, the
continuous change driven by scientists’ changing
understanding, and subtle numerical issues that dra-
matically affect result quality. The regard for speed
1s also different in CSE/HPC, since inefficient use
of computational bandwidth yields poorer quality
results for the same highly sought-after resources.
Finally, with the primacy of the scientific re-
sults, which progress incrementally, there are strong
drivers to maintain backward compatibility to retain
the existing, understood if not trusted, code base.
Great emphasis is placed on the comparison of CSE
code results against measurements or observations
of physical reality, a validation step. Conversely,
verifying the expression of theoretical constructs
in software plays a subordinate role as theory and
computation are conflated [4]. It is not surprising
that developers in CSE and broader SE have adapted
differently to their environmental drivers.
Technologies and methodologies pioneered out-
side of CSE/HPC are maturing to the point where
they can provide value for acceptable costs. Support
for object orientation is improving in Fortran, easing
the infusion of software techniques using them.
pFUnit, one of several unit testing frameworks im-
plemented in Fortran, is inspired and patterned after
JUnit, but is tailored to the CSE/HPC environment,
making it easy to develop test harnesses for CSE
code. A nascent mock services capability points
towards the capability to better isolate code units,
while specifying inputs, and monitoring behaviors.
Proposed improvements such as the automated gen-
eration of mocks will make it simple to use test



harnesses as analysis tools, models of expectations
for the system being evolved. Such framework ca-
pabilities, provided to domain expert developers in
easy-to-use, easy-to-learn, configurable workflows
via IDEs will allow scientists to codify their ex-
pectations as fine-grained test harnesses co-evolving
with the science software itself.

Fine-grained tests, supported by mocks, have the
scientific benefit of being easier to understand, nu-
merically easier to characterize, and readily verified
against theoretical understanding. Coarse-grained
code requires a more careful treatment than we
have space for here and will be dealt with in a
future paper. Yet extensive use of mocks to replace
networks of dependencies in coarse-grained code
units opens up the possibility of verifying the glue
code holding them together. When bringing very
large projects into a test harness and TDD, it’s likely
that the code will be incrementally be brought under
unit testing as a major refactoring effort, leading to
a mix of coarse and finely structured code and tests.

PARAMESH developers continuously tested and
analyzed their code during development, changing
their approach and fixing problems as their expecta-
tions and understanding were informed by their re-
peated tests. It was, however, a labor intensive effort
aided by maintaining a co-located team of expert
developers, and much of their thought and analysis
is now implicit in the code itself. By making such
knowledge explicit, Test Driven Development can
greatly enhance the productivity of CSE software
development and maintenance, enabling codes of
greater capability and complexity to be more rapidly
and confidently adapted as computational platforms
and science progress.

REFERENCES

[1] Parallel tools platform. http://www.eclipse.org/ptp/. The Eclipse
Foundation. Accessed: 2014-07-08.

Photran - an integrated development environment and refac-
toring tool for fortran. http://www.eclipse.org/photran/. The
Eclipse Foundation. Accessed: 2014-06-29.

Dinshaw S Balsara. Divergence-Free Adaptive Mesh Refine-
ment for Magnetohydrodynamics. Journal of Computational
Physics, 174(2):614-648, December 2001.

V.R. Basili, J.C. Carver, D. Cruzes, L. M. Hochstein, J.K.
Hollingsworth, F. Shull, and M.V. Zelkowitz. Understanding
the high-performance-computing community: A software engi-
neer’s perspective. Software, IEEE, 25(4):29-36, July 2008.

(2]

(3]

(4]

(3]

(6]
(71

(8]
(91

(10]

(1]

[12]

(13]

[14]

[15]
[16]

(171

(18]

(19]

[20]

(21]

(22]

(23]

K. Beck. Test Driven Development: By Example. Addison-
Wesley Professional. Pearson Education, Inc., Boston, MA,
2003.

K. Beck and E. Gamma. JUnit: A cook’s tour. Java Report,
4(5):27-38, May 1999.

J C Carver, R P Kendall, S E Squires, and D E Post. Software
Development Environments for Scientific and Engineering Soft-
ware: A Series of Case Studies. In Software Engineering, 2007.
ICSE 2007. 29th International Conference on, pages 550-559.
IEEE, 2007.

T. Clune and M. Rilee. pFUnit 3.0 - a unit testing framework for
parallel fortran software. Technical report, 2014. In preparation.
T. Clune and M. Rilee. Testing as an essential process for de-
veloping and maintaining scientific software. 2014. Submitted.
T. Clune, B. Womack, B. Foote, and J. Overbey. Tools, trends
and techniques for developing scientific software. In High
Performance Computing 2006. European Centre for Medium-
Range Weather Forecasts (ECMWF), November 2006. Ac-
cessed: 2014-06-23.

T. L. Clune. pFUnit - unit testing framework for fortran. "http:
/Ipfunit.sourceforge.org”. Accessed: 2014-07-08.

T. L. Clune and R.B. Rood. Software testing and verification
in climate model development. Software, IEEE, 28(6):49-55,
Nov 2011.

S. M. Easterbrook. Do Over or Make Do? Climate Models as a
Software Development Challenge (Invited). AGU Fall Meeting
Abstracts, page B1, December 2010.

S M Easterbrook and Timothy C Johns. Engineering the
Software for Understanding Climate Change. Computing in
Science & Engineering, 11(6):65-74, 2009.

M. Feathers. Working Effectively with Legacy Software. Prentice
Hall. Pearson Education, Inc., Upper Saddle River, NJ, 2005.

E. Gamma and K. Beck. PyUnit - the standard unit testing
framework for python. “http://pyunit.sourceforge.org”.

P. MacNeice and K. Olson. Paramesh adaptive mesh re-
finement. http://www.physics.drexel.edu/~olson/paramesh-doc/
Users_manual/amr.html, 2008. Accessed: 2014-08-29.

P. MacNeice and K. Olson. Paramesh adaptive mesh re-
finement. http://www.physics.drexel.edu/~olson/paramesh-doc/
Users_manual/amr_users_guide.html#divergence, 2008. Ac-
cessed: 2014-08-29.

P MacNeice, K Olson, J Merritt, M Bhat, and M Rilee.
PARAMESH: A Toolkit for Parallel Adaptive Models. Earth
Science Technology Conference 2002, June 2002.

Peter MacNeice, Kevin M Olson, Clark Mobarry, Rosalinda
de Fainchtein, and Charles Packer. PARAMESH: A parallel
adaptive mesh refinement community toolkit. Computer Physics
Communications, 126(3):330-354, April 2000.

Kevin M Olson and Peter MacNeice. An Overview of the
PARAMESH AMR Software Package and Some of Its Applica-
tions. In Adaptive Mesh Refinement - Theory and Applications,
pages 315-330. Springer Berlin Heidelberg, Berlin/Heidelberg,
January 2005.

J Segal. Models of scientific software development. In Proc.
Workshop Software Eng. in Computa- tional Science and Eng.
SecSe, 2008.

Judith Segal and Chris Morris. Developing Scientific Software.
Software, IEEE, 25(4):18-20, 2008.



