High-Resolution Mesoscale Model Setup for the Eastern Range and Wallops Flight Facility

Leela R. Watson
NASA Applied Meteorology Unit
ENSCO, Inc.
Cape Canaveral Air Force Station, Florida

Bradley T. Zavodsky
NASA Short-term Prediction Research and Transition Center
Huntsville, Alabama
Outline

- Project goal
- Background
- Modeling system
- Data and model configuration
- Model validation
- Summary
Project Goal

• Mesoscale conditions affect space launch, landing, and ground processing at the Eastern Range (ER) and Wallops Flight Facility (WFF)
• Need high resolution mesoscale model output to forecast unique weather phenomena at each range
• Provide a properly tuned data assimilation (DA)/numerical forecast model optimized for the ER and WFF
Background

• Phase I work
 – Compared model forecasts while varying the dynamical core, grid spacing, domain size, and forecast length
 – Varied model physics to determine which produced best forecasts
 – Ran test cases in the warm and cool seasons at the ER and for the spring and fall seasons at WFF
 – Results: Advanced Research Weather and Research Forecasting (WRF ARW) model, Lin microphysical scheme, Ferrier microphysical scheme (WFF only), and Yonsei University (YSU) planetary boundary layer (PBL) scheme
Cycled DA/NWP System

- NCEP’s Gridpoint Statistical Interpolation (GSI)/WRF
- NASA Short-term Prediction Research and Transition Center (SPoRT) Perl scripts
 - Easy-to-use interface for users to execute GSI/WRF
 - Cycled GSI system similar to operational North American Mesoscale (NAM) model

* Figure is a recreation of a NASA SPoRT produced schematic
Data and Model Configuration

• Test cases:
 – 1 km single domain (ER)
 – 2 km outer, 0.67 km inner domain (ER)
 – 9 km outer, 3 km middle, 1 km inner domain (ER & WFF)
 – 4 km outer, 1.33 km inner domain (WFF)
Data and Model Configuration, cont.

- WRF Initialization:
 - 35 irregularly spaced, vertical sigma levels
 - 12-h forecast run four times per day at 00, 06, 12, and 18 Z
 - 13-km Rapid Refresh (RAP) model for BCs and as the background model first-guess field
 - SPoRT Land Information System (LIS) data
 - Sea surface temperature (SST) data from both NCEP’s Real-time Global SSTs and the SPoRT 2-km SST composites
 - Initial conditions created using GSI/WRF scripts
 - Conventional/radar/satellite observations from NCEP PrepBUFR files
 - Period of record: 12Z 27 Aug 2013 to 06Z 10 Nov 2013
Model Validation

- Validated forecasts with local METAR and mesonet data
- Used Model Evaluation Tools (MET)
 - Point-Stat
 - MODE
- Verified surface forecasts using Mean Error (ME), Root Mean Square Error (RMSE), Pearson Correlation Coefficient (PCC)
- Verified precipitation using centroid distance, area ratio, and total interest value
ER Results: Surface Forecasts

- Overall, triple-nest configuration (5 doms) performed best, followed by nested domain (2 doms), and single domain (1 dom) for ME
- Similar results for RMSE
ER Results: Surface Forecasts

- Overall, triple-nested configuration performed best, followed by single domain, and nested domain for PCC
ER Results: Precipitation

- Compared 1-hr forecast to observed accumulated rainfall using NCEP Stage-IV analysis data for entire POR
- Overall, the nested domain outperformed both triple-nest and single domain configurations
WFF Results: Surface Forecasts

- Overall, triple-nest configuration (5 doms) performed better than the nested domain (2 doms) for ME
- Similar results for RMSE
WFF Results: Surface Forecasts

- Overall, triple-nested configuration performed best, followed by single domain, and nested domain for PCC
WFF Results: Precipitation

- Compared 1-hr forecast to observed accumulated rainfall using NCEP Stage-IV analysis data for entire POR
- Overall, the nested domain outperformed both triple-nest and single domain configurations
Summary

• Ran GSI/WRF model system for each range while varying grid resolutions on which DA was run and varying nesting configurations to determine the impact on model skill

• In general for both the ER and WFF, the triple-nest configuration outperformed the other configurations
 – However, nested configuration did the best in predicting precipitation for the ER

• Recommendation:
 – Either nested or triple-nest configuration is optimal for the ER
 – Triple-nest configuration is optimal for WFF

• Continuing to fine-tune modeling system for both ranges