Testing the Solar Probe Cup, An Instrument Designed to Touch the Sun

Phyllis Whittlesey¹, Anthony Case², Justin Kasper³, Kenneth Wright¹, Benjamin Alterman³, Jonathan Curtian⁴, Jay Bookbinder², Kelly Korreck², Michael Stevens², Todd Schneider⁴, and Jason Vaughn⁴.


Abstract: Solar Probe Plus will be the first, fastest, and closest mission to the Sun, providing the first direct sampling of the sub-Alfvénic corona. The Solar Probe Cup (SPC) is a unique re-imagining of the traditional Faraday Cup design and materials for immersion in this high temperature environment. Sending an instrument of this type into a never-seen particle environment requires extensive characterization prior to launch to establish sufficient measurement accuracy and instrument response. To reach this end, a slew of tests are created for allowing SPC to see ranges of appropriate ions and electrons, as well as a facility that reproduces solar photon spectra and fluxes for this mission. Having already tested the SPC at flight like temperatures with no significant modification of the noise floor, we recently completed a round of particle testing to see if the deviations in Faraday Cup design fundamentally change the operation of the instrument. Results and implications from these tests will be presented, as well as performance comparisons to cousin instruments such as those on the WIND spacecraft.

Where Are We Now?

To the Edge of the Corona

SPC is a Faraday Cup

A Faraday cup operates by:
1. Using a voltage biased, variable-value modulating grid which selectively prevents or permits portions of the plasma population with E/q greater than the modulating bias voltage.
2. Collecting the charged particles on rear collector plates, obtaining a current, often in picoamperes.

The Solar Probe Cup (SPC) and the Solar Probe ANalyzers (SPAN) form the plasma instruments in the Solar Wind Electrons Alphas and Protons suite on Solar Probe Plus (SPP). The spatial resolution of these instruments operating together is illustrated in the model below:

At R = 38.4Rₛ, Green – SPAN FOV
At R = 9.5 Rs, Blue – SPC FOV

The Solar Probe Cup (SPC) is mounted on a strut peering around SPP’s heat shield, where direct exposure to the Sun raises temperatures to an excess of 1500°C.

The Solar Wind Facility (SWF) exposes SPC to a range of ion and electron distribution energies.

Comparison to Past Faraday Cups

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Voyager</th>
<th>WIND</th>
<th>SPP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ion (e−, α) energy range</td>
<td>200eV – 5,950eV</td>
<td>150eV – 8keV</td>
<td>150eV – 8keV</td>
</tr>
<tr>
<td>Electron energy range</td>
<td>200eV – 5,950eV</td>
<td>N/A</td>
<td>100eV – 2keV</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>400Hz</td>
<td>200Hz</td>
<td>1371.857Hz</td>
</tr>
</tbody>
</table>

Abbreviations are as above.

Left: The modulation procedure in use on SPC. Each color represents a different energy 'window'. The size, or amplitude of the waveform, increases as SPC scans for higher energy values in the environment.

A measure of SPC collector plate noise with increasing temperature. No significant change in noise floor is observed.

By comparing relative signals on collector plates and measuring energy simultaneously, SPC can resolve plasma flow angles at up to 117Hz.

Results from an analytic model of SPC’s response to incident ion populations.

A Gaussian fit to SPC’s response for a 0.02% thermal spread in ion energy and expected response of SPC to a mono-energetic ion population are shown for comparison. The 'wings' are a measure of population thermal spread.

Vb = Ion Energy
Vo = Window Center Voltage
W = Window Width

https://ntrs.nasa.gov/search.jsp?R=20150001401 2019-10-24T22:16:39+00:00Z

This work is supported by NASA as part of SPP’s SWEAP Instrument Team. For More Information Contact –Phyllis L. Whittlesey – pw0004@uah.edu