Constraining landscape history and glacial erosivity using paired cosmogenic nuclides in Upernavik, northwest Greenland

Lee B. Corbett, Paul R. Bierman, Joseph A. Graly, Thomas A. Neumann and Dylan H. Rood

Copyright © 2013 Geological Society of America

Advance online articles have been peer reviewed and accepted for publication but have not yet appeared in the paper journal (edited, typeset versions may be posted when available prior to final publication). Advance online articles are citable and establish publication priority; they are indexed by GeoRef from initial publication. Citations to Advance online articles must include the digital object identifier (DOIs) and date of initial publication.
Constraining landscape history and glacial erosivity using paired cosmogenic nuclides in Upernavik, northwest Greenland

Lee B. Corbett1,*, Paul R. Bierman1, Joseph A. Graly1,*, Thomas A. Neumann1,*, and Dylan H. Rood2,3
1Department of Geology, University of Vermont, Burlington, Vermont 05405, USA
2Scottish Universities Environmental Research Centre (SUERC), East Kilbride G75 0QF, UK
3Earth Research Institute, University of California, Santa Barbara, California 93106, USA

ABSTRACT

High-latitude landscape evolution processes have the potential to preserve old, relic surfacess through burial by cold-based, nonerosive glacial ice. To investigate landscape history and age in the high Arctic, we analyzed in situ cosmogenic 10Be and 26Al in 33 rocks from Upernavik, northwest Greenland. We sampled adjacent bedrock-boulder pairs along a 100 km transect at elevations up to 1000 m above sea level. Bedrock samples gave significantly older apparent exposure ages than corresponding boulder samples, and minimum limiting ages increased with elevation. Two-isotope calculations (26Al/10Be) on 20 of the 33 samples yielded minimum limiting exposure durations up to 112 k.y., minimum limiting burial durations up to 900 k.y., and minimum limiting total histories up to 990 k.y. The prevalence of 26Al inherited from previous periods of exposure, especially in bedrock samples at high elevation, indicates that these areas record long and complex surface exposure histories, including significant periods of burial with little subglacial erosion. The long total histories suggest that these high-elevation surfaces were largely preserved beneath cold-based, nonerosive ice or snowfields for at least the latter half of the Quaternary. Because of high concentrations of inherited nuclides, only the six youngest boulder samples appear to record the timing of ice retreat. These six samples suggest deglaciation of the Upernavik coast at 11.3 ± 0.5 ka (average ± 1 standard deviation). There is no difference in deglaciation age along the 100 km sample transect, indicating that the ice-marginal position retreated rapidly at rates of ~120 m yr⁻¹.

INTRODUCTION

The surface morphology of many high-latitude landscapes is a product of not one, but numerous glacial-interglacial cycles (Sugden, 1977, 1978; Sugden and Watts, 1977). Because areas in Greenland, the Canadian Arctic, and Scandinavia are periodically covered by cold-based glacial ice and snowfields, bedrock surfaces evolve over hundreds of thousands of years and through repeated burial by nonerosive glacial ice (Anderson et al., 2000; Bierman et al., 1999; Blake, 1970; Briner et al., 2003, 2006; Harbor et al., 2006; Kleman, 1992; Klemant and Borgstrom, 1994; Marquette et al., 2004; Stroeven et al., 2002a, 2002b; Sugden et al., 2005). This implies that high-latitude landscapes may preserve relic surfaces that formed hundreds of thousands or even millions of years ago.

Study of these old glacial landscapes is important for understanding the time scales and processes of high-latitude landscape development; however, such studies are challenging because the complex exposure and burial histories of rock surfaces in these areas violate the assumptions of many chronological techniques such as traditional 10Be surface exposure dating. Here, we employ analysis of paired cosmogenic nuclides (10Be and 26Al) in adjacent bedrock and boulder samples to study the age and history of the landscape in Upernavik, northwest Greenland. We aim to understand the age of rock surfaces, durations of exposure and burial, efficiency of subglacial erosion, and rate of latest Pleistocene ice-margin retreat in a landscape characterized by deep fjords and extensive uplands.

Glaciers can erode their beds in a number of different ways, including abrasion and plucking. However, most forms of subglacial erosion require basal ice to be at its melting point; this enables processes such as basal sliding, regelation, and freeze-on of rock and sediment to operate (Herman et al., 2011). Warm-based glaciers, for which the basal temperature is at the pressure melting point, can erode their beds, but under cold-based glaciers, where the basal temperature does not reach the pressure melting point, little erosion occurs (Sugden, 1978). Although exceptions have been noted (Atkins et al., 2002; Cuffey et al., 2000; Waller et al., 2012), it is generally accepted that episodes of burial caused by cold-based glacial ice are incapable of removing sufficient material to expose fresh rock surfaces after glaciation.

Measurement of in situ–produced cosmogenic nuclides can provide information about landscape history and chronology (Balco, 2011; Fabel and Harbor, 1999). Production of 10Be and 26Al is dominated by nuclear spallation, which occurs when high-energy particles impact the nuclei of 16O and 28Si atoms in quartz, respectively. This impact causes material to be ejected from the nucleus, leaving behind the lighter isotopes, 10Be and 26Al. Spallation-induced cosmogenic nuclide production in rock surfaces decreases exponentially with depth, with the rate of decrease depending on the density of the material. The attenuation length of high-energy neutrons is ~160 g cm⁻²; thus, the highest concentrations of cosmogenic nuclides are produced in the upper several meters of rock. Efficient glacial erosion removes this preexisting inventory by abrading or plucking the rock’s surface.

In areas where glacial ice has not completely eroded the preexisting exposure history, analysis of paired 10Be and 26Al data can be used to...
make inferences about landscape age, exposure and burial durations, and subglacial erosion efficiency (Bierman et al., 1999; Briner et al., 2003; 2006; Briner and Swanson, 1998; Goehring et al., 2010; Harbor et al., 2006; Marquette et al., 2004; Nishiizumi et al., 1991; Roberts et al., 2009; Stone and Ballantyne, 2006; Stroeven et al., 2002b; Sugden et al., 2005). If a landscape also contains areas where glacial ice has stripped at least ~2–3 m of material from rock surfaces (Balco, 2011), sufficient to remove most nuclides from previous periods of exposure, \(^{10}\)Be surface exposure dating of glacially transported boulders and abraded bedrock can give estimates of the timing and rate of ice-margin retreat (Briner et al., 2009; Gosse et al., 1995a; Hughes et al., 2012; Kelly et al., 2008; Nishiizumi et al., 1991; Phillips et al., 1990; Young et al., 2011).

To understand the history of the landscape near Upernavik, northwest Greenland, we used an experimental design incorporating paired bedrock and boulder samples, paired \(^{10}\)Be and \(^{26}\)Al analyses, and samples collected at different elevations and different distances from the ice-sheet margin. This approach allowed us to make inferences about both subglacial erosion efficiency and the timing of ice-margin retreat during the latest Pleistocene deglaciation.

STUDY SITE AND PREVIOUS WORK

The Upernavik region (~73°N, 55°W; Fig. 1) is characterized by dissected terrain that encompasses table-top–shaped islands up to 1 km above sea level separated by deep fjords, including the large Upernaviks Isfjord to the north. Fjord depths are not well constrained; however, water depth in Upernaviks Isfjord is thought to be ~700 m (Peterson, 2003). The present-day ice margin lies ~100 km to the southeast of the outermost islands. The bedrock in the Upernavik area is predominately granite and granite pegmatite, some of which is weakly foliated; younger basalt flows cover the granite toward the southeastern end of the field area (Escher and Pulvertaft, 1995).

A pronounced contrast exists between the low-elevation and high-elevation landscapes. Much of the low-elevation bedrock is glacially streamlined (Fig. 2), although striations and glacial polish were not observed at the locations we visited. Conversely, many of the high-elevation bedrock forms exhibit pronounced surface weathering features (Fig. 3), including pedestals up to 10 cm in height, weathering pits, and pervasive frost shattering. At high elevations, much of the bedrock erodes by breaking into sheets that range from several centimeters to several tens of centimeters thick, and in many cases surfaces are mantled with grus. Both low- and high-elevation surfaces are covered with perched boulders.

Previous dating constraints on deglaciation of the Upernavik region are based on radiocarbon measurements in detrital organic material (Fig. 1); however, data from this region are relatively sparse in relation to the rest of Greenland’s coast (Bennike and Björck, 2002). A basal radiocarbon age from a lake on Svartenhuk Halvø, the large peninsula of land ~1° south of Upernavik, provides a minimum deglaciation age of 10.4–10.2 cal ka B.P. (Bennike, 2000). Farther away in Melville Bugt, ~2° north of Upernavik, a whale vertebra found on recently deglaciated terrain yielded a radiocarbon age of ca. 9.3–9.0 cal ka B.P. (Bennike, 2008). The vertebra was likely deposited on the ocean floor after the whale’s death and incorporated into the ice sheet during a later readvance. Bennike (2008) infers that, by ca. 9.3–9.0 ka, the ice-sheet margin at Melville Bugt was similar to or behind its present-day position, indicating that the coast had been deglaciated by the early Holocene. Also near Melville Bugt, a basal radiocarbon age from a lake sediment core yielded a minimum deglaciation age of ca. 9.9–9.3 cal ka B.P. (Bennike, 2008; Fredskild, 1985), and a radiocarbon age from shell fragments in marine sediment gave an age of ca. 9.0–8.5 cal ka B.P. (Bennike, 2008; Kelly, 1980).

USING COSMOGENIC NUCLIDES TO UNDERSTAND GLACIAL EXPOSURE AND EROSION

Theoretical Background

Measurement of in situ–produced cosmogenic nuclides is a useful technique for understanding the timing of surface exposure and burial, as well as the efficiency of subglacial erosion. Because cosmogenic radionuclides, such as \(^{10}\)Be and \(^{26}\)Al, form at known rates in...
minerals bombarded by cosmic rays (Lal, 1988), quantifying the nuclide concentration in a sample allows inferences to be made about that sample’s exposure history (Balco, 2011; Gosse and Phillips, 2001). In the simplest case, a surface is rapidly exposed to cosmic radiation after being buried beneath material sufficiently thick to block most cosmogenic nuclide production (e.g., many meters of glacial ice). The concentration of cosmogenic nuclides can then be used to determine when exposure occurred if the surface has not been eroded (Balco, 2011).

Figure 2. Low-elevation locations are characterized by streamlined bedrock forms and abundant perched boulders. No glacial striations or polish were observed. Photograph by P. Bierman.

The 26Al/10Be ratio data are commonly shown on a two-isotope plot, in which the vertical axis is the isotope ratio and the horizontal axis is the concentration of one of the measured isotopes, usually 10Be (Fig. 4). On this diagram, samples that have been continuously exposed plot along a “constant exposure” line characterized by slowly decreasing 26Al/10Be ratio but increasing 10Be inventory (Fig. 4). When a sample is buried, its position on the diagram travels leftward and downward from the constant exposure line, along a path characterized by both decreasing 26Al/10Be ratio and 10Be inventory (Fig. 4). Although any inverse solution is nonunique (the measured isotope concentrations could result from an infinite number of different exposure-burial scenarios), two-isotope data can be used to calculate the most parsimonious solution: a minimum duration of initial exposure followed by a minimum duration of burial (Bierman et al., 1999; Briner et al., 2006; Håkansson et al., 2008; Lilly et al., 2010; Stroeven et al., 2002b; Sugden et al., 2005). If samples have been re-exposed following burial (for example, during the Holocene period), the assumption of a single period of exposure followed by a single period of burial is violated. In these cases, minimum limiting exposure durations, burial durations, and total histories can be corrected for Holocene exposure by excluding the most recent period of nuclide production from the calculations. The minimum age of perched boulders free of inherited nuclides can provide an estimate of the timing of deglaciation and can be used to determine the duration of Holocene exposure for which this correction should be applied.

Application of the Two-Isotope Approach to Glacial Landscapes

The two-isotope approach has proven to be useful for investigating landscapes where surfaces at high elevation appear to be significantly...
more weathered than surfaces at low elevation (Dyke, 1979; Sugden, 1977, 1978). In particular, this technique can be employed to distinguish between two different scenarios: continuous exposure of uplands to subaerial weathering versus long-term preservation of uplands beneath intermittent cover by nonerosive glacial ice.

If the ice is not thick enough to cover the landscape completely, the highest upland surfaces are continuously exposed as nunataks (Dyke, 1979). In this case, high-elevation samples have old single-nuclide minimum limiting exposure ages, poor agreement between bedrock and boulder samples, and 26Al/10Be ratios that are indistinguishable from constant exposure. This scenario has been documented in southwestern Greenland (Roberts et al., 2009); such high-elevation surfaces protruded through the ice sheet, allowing inferences to be made about ice-surface elevation during the last glacial period (Håkansson et al., 2007; Rinterknecht et al., 2009; Roberts et al., 2008, 2009).

Conversely, elevation-dependent weathering differences can also result from burial of high-elevation surfaces by nonerosive, cold-based ice (Fig. 5), wherein highlands are covered by glacial ice for extended periods of time, but the ice is frozen to the bed and cannot perform erosion, leaving the landscape unaltered (Sugden, 1977, 1978; Sugden and Watts, 1977). This scenario could occur when ice cover over the lowlands is thick (allowing the base of the ice sheet to reach its pressure melting point), but ice cover over the highlands is thin (prohibiting the base of the ice sheet from reaching its pressure melting point). In this case, high-elevation samples have old single-nuclide minimum limiting exposure ages, poor agreement between bedrock and boulder samples, and 26Al/10Be ratios significantly below the constant exposure ratio that are indicative of burial (Fig. 5). Isotopic evidence for elevation-based erosion discrepancies has been found in Baffin Island, Canada (Bierman et al., 1999; Briner et al., 2003, 2006), Newfoundland, Canada (Gosse et al., 1993, 1995b), and Scotland (Phillips et al., 2006).

METHODS

Experimental Design

In the Upernavik region, we collected 20 bedrock and 13 boulder samples for analysis of in situ cosmogenic 10Be and 26Al. Samples were collected along a 100 km northwest-to-southeast transect extending from a nunatak ~2 km inside the present-day ice margin to the farthest outboard island (Table 1; Fig. 6). This transect is parallel to large fjords immediately to the north (Upernaviks Isfjord) and south (Lakefjorden) and roughly approximates paleo–ice-flow direction. Our sampling scheme, known as “dipstick sampling” (Stone et al., 2003), involved collecting samples at a variety of elevations at several locations along the transect normal to the ice margin. In Upernavik, we collected paired bedrock and boulder samples from a range of elevations (~20–1000 m above sea level [a.s.l.]) at each “dipstick.” Such a sample distribution yields information about both vertical and horizontal variability in nuclide concentrations as well as differences between the exposure history of bedrock and overlying boulders, allowing us to make inferences about ice extent, subglacial erosion, and exposure history.

We present five different types of ages calculated with cosmogenic nuclides, all of which are minimum limits. For single-nuclide interpretations, we present both 10Be and 26Al ages, which are concordant in simple exposure scenarios. For paired-nuclide interpretations, we present modeled exposure durations, burial durations, and total history (the sum of exposure and burial durations). We correct the paired nuclide interpretations for Holocene exposure after the last deglaciation.

Field Methods

Wherever possible, we sampled bedrock and boulder pairs in close proximity, usually less than 10 m apart. We collected the uppermost several centimeters of material from the top surfaces of bedrock forms and perched boulders using a chisel and hammer (Table 1). We recorded latitude and longitude and elevation data with a handheld Garmin 12 global positioning system (GPS) that has a positional uncertainty of <10 m and an elevation uncertainty of <25 m.

Laboratory Methods

Samples were prepared as outlined in Corbett et al. (2011). We isolated quartz from the rock using a series of both physical and chemical
Constraining landscape history and glacial erosivity using paired cosmogenic nuclides in Upernavik, northwest Greenland

![Figure 5. Illustration of bedrock-boulder minimum limiting age relationships and possible scenarios to explain them.](image)

processes, and Be and Al from the quartz through a series of chemical processes. We used two different ⁹Be carriers in the preparation of these samples: a commercial (SPEX) carrier for the first six samples and a low ⁹Be/Be beryl carrier made at the University of Vermont for all subsequent samples. We added ~250 µg of ⁹Be to each sample as a spike (see GSA Data Repository¹).

In order to ensure that enough Al was present in the sample for isotopic analysis (2000 µg), we added commercial Al carrier (SPEX) when necessary. Immediately after quartz dissolution, we removed two aliquots representing ~6% of the material from each sample. We used these replicate aliquots to quantify the Al

¹GSA Data Repository item 2013264, additional methodological information about sample isotopic analysis and retreat rate simulations, is available at http://www.geosociety.org/pubs/ft2013.htm or by request to editing@geosociety.org.

Geological Society of America Bulletin,
TABLE 1. SAMPLE LOCATION INFORMATION AND FIELD OBSERVATIONS

<table>
<thead>
<tr>
<th>Dipstick number</th>
<th>Sample name</th>
<th>Sample type</th>
<th>Relative elevation*</th>
<th>Elevation (m a.s.l.)†</th>
<th>Latitude (°N)†</th>
<th>Longitude (°W)†</th>
<th>Rock type</th>
<th>Thickness (cm)§</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dipstick 1</td>
<td>GU091</td>
<td>Bedrock</td>
<td>Low</td>
<td>24</td>
<td>72.78189</td>
<td>56.58601</td>
<td>Granite</td>
<td>2</td>
</tr>
<tr>
<td>Offshore island</td>
<td>GU092</td>
<td>Boulder</td>
<td>Low</td>
<td>21</td>
<td>72.78199</td>
<td>56.58644</td>
<td>Granite</td>
<td>1.5</td>
</tr>
<tr>
<td>Dipstick 2</td>
<td>GU093</td>
<td>Bedrock</td>
<td>High</td>
<td>91</td>
<td>72.79555</td>
<td>56.39520</td>
<td>Granite</td>
<td>2.5</td>
</tr>
<tr>
<td>Offshore island</td>
<td>GU094</td>
<td>Boulder</td>
<td>High</td>
<td>90</td>
<td>72.74016</td>
<td>56.38639</td>
<td>Granite</td>
<td>2</td>
</tr>
<tr>
<td>Dipstick 3</td>
<td>GU095</td>
<td>Bedrock</td>
<td>Low</td>
<td>20</td>
<td>72.74378</td>
<td>56.38154</td>
<td>Granite</td>
<td>3</td>
</tr>
<tr>
<td>Fjord-dissected terrain</td>
<td>GU096</td>
<td>Bedrock</td>
<td>High</td>
<td>778</td>
<td>72.75386</td>
<td>55.87299</td>
<td>Granite</td>
<td>3</td>
</tr>
<tr>
<td>Dipstick 4</td>
<td>GU097</td>
<td>Boulder</td>
<td>High</td>
<td>774</td>
<td>72.75388</td>
<td>55.87236</td>
<td>Granite</td>
<td>2</td>
</tr>
<tr>
<td>Fjord-dissected terrain</td>
<td>GU098</td>
<td>Bedrock</td>
<td>Mid</td>
<td>372</td>
<td>72.79260</td>
<td>55.93168</td>
<td>Granite</td>
<td>3</td>
</tr>
<tr>
<td>Dipstick 5</td>
<td>GU099</td>
<td>Boulder</td>
<td>Mid</td>
<td>366</td>
<td>72.79308</td>
<td>55.93111</td>
<td>Granite</td>
<td>1</td>
</tr>
<tr>
<td>Fjord-dissected terrain</td>
<td>GU100</td>
<td>Bedrock</td>
<td>Low</td>
<td>74</td>
<td>72.81168</td>
<td>55.82623</td>
<td>Granite</td>
<td>1</td>
</tr>
<tr>
<td>Dipstick 6</td>
<td>GU101</td>
<td>Boulder</td>
<td>Low</td>
<td>71</td>
<td>72.81164</td>
<td>55.82584</td>
<td>Granite</td>
<td>1</td>
</tr>
<tr>
<td>Fjord-dissected terrain</td>
<td>GU102</td>
<td>Boulder</td>
<td>High</td>
<td>980</td>
<td>72.71763</td>
<td>55.47279</td>
<td>Foliated granite</td>
<td>2</td>
</tr>
<tr>
<td>Dipstick 7</td>
<td>GU103</td>
<td>Bedrock</td>
<td>High</td>
<td>998</td>
<td>72.71811</td>
<td>55.47547</td>
<td>Granite</td>
<td>2</td>
</tr>
<tr>
<td>Fjord-dissected terrain</td>
<td>GU104</td>
<td>Bedrock</td>
<td>Mid-low</td>
<td>498</td>
<td>72.74086</td>
<td>55.55160</td>
<td>Granite</td>
<td>4</td>
</tr>
<tr>
<td>Dipstick 8</td>
<td>GU105</td>
<td>Boulder</td>
<td>High-mid</td>
<td>500</td>
<td>72.74085</td>
<td>55.55119</td>
<td>Foliated granite</td>
<td>2</td>
</tr>
<tr>
<td>Fjord-dissected terrain</td>
<td>GU106</td>
<td>Bedrock</td>
<td>Low-mid</td>
<td>253</td>
<td>72.77333</td>
<td>55.50386</td>
<td>Granite</td>
<td>2</td>
</tr>
<tr>
<td>Dipstick 9</td>
<td>GU107</td>
<td>Boulder</td>
<td>Low-mid</td>
<td>270</td>
<td>72.77360</td>
<td>55.50378</td>
<td>Granite</td>
<td>2</td>
</tr>
<tr>
<td>Fjord-dissected terrain</td>
<td>GU108</td>
<td>Bedrock</td>
<td>Low</td>
<td>33</td>
<td>72.78111</td>
<td>55.44319</td>
<td>Granite</td>
<td>2</td>
</tr>
<tr>
<td>Dipstick 10</td>
<td>GU109</td>
<td>Boulder</td>
<td>Low</td>
<td>27</td>
<td>72.78024</td>
<td>55.44223</td>
<td>Granite</td>
<td>2</td>
</tr>
<tr>
<td>Fjord-dissected terrain</td>
<td>GU110</td>
<td>Bedrock</td>
<td>High</td>
<td>745</td>
<td>72.66094</td>
<td>55.12159</td>
<td>Granite</td>
<td>1</td>
</tr>
<tr>
<td>Dipstick 11</td>
<td>GU111</td>
<td>Bedrock</td>
<td>Mid</td>
<td>325</td>
<td>72.68163</td>
<td>55.02502</td>
<td>Granite</td>
<td>1</td>
</tr>
<tr>
<td>Fjord-dissected terrain</td>
<td>GU112</td>
<td>Bedrock</td>
<td>Mid</td>
<td>325</td>
<td>72.68163</td>
<td>55.02502</td>
<td>Granite</td>
<td>1.5</td>
</tr>
<tr>
<td>Dipstick 12</td>
<td>GU113</td>
<td>Bedrock</td>
<td>Low</td>
<td>90</td>
<td>72.65953</td>
<td>54.98345</td>
<td>Granite</td>
<td>1</td>
</tr>
<tr>
<td>Fjord-dissected terrain</td>
<td>GU114</td>
<td>Bedrock</td>
<td>Low</td>
<td>91</td>
<td>72.65953</td>
<td>54.98345</td>
<td>Granite</td>
<td>1</td>
</tr>
<tr>
<td>Dipstick 13</td>
<td>GU115</td>
<td>Bedrock</td>
<td>High</td>
<td>603</td>
<td>72.53857</td>
<td>53.73338</td>
<td>Granite</td>
<td>3</td>
</tr>
<tr>
<td>Ice-marginal terrain</td>
<td>GU116</td>
<td>Bedrock</td>
<td>High</td>
<td>603</td>
<td>72.53857</td>
<td>53.73338</td>
<td>Granite</td>
<td>3</td>
</tr>
<tr>
<td>Dipstick 14</td>
<td>GU117</td>
<td>Bedrock</td>
<td>Low</td>
<td>539</td>
<td>72.53820</td>
<td>53.73214</td>
<td>Granite</td>
<td>3.5</td>
</tr>
<tr>
<td>Ice-marginal terrain</td>
<td>GU118</td>
<td>Bedrock</td>
<td>Low</td>
<td>539</td>
<td>72.53926</td>
<td>53.73214</td>
<td>Granite</td>
<td>1</td>
</tr>
<tr>
<td>Dipstick 15</td>
<td>GU119</td>
<td>Bedrock</td>
<td>High</td>
<td>898</td>
<td>72.61509</td>
<td>53.58727</td>
<td>Granite</td>
<td>4</td>
</tr>
<tr>
<td>Ice-marginal terrain</td>
<td>GU120</td>
<td>Bedrock</td>
<td>High-mid</td>
<td>895</td>
<td>72.61546</td>
<td>53.59204</td>
<td>Granite</td>
<td>4</td>
</tr>
<tr>
<td>Dipstick 16</td>
<td>GU121</td>
<td>Bedrock</td>
<td>Mid</td>
<td>857</td>
<td>72.61594</td>
<td>53.59608</td>
<td>Granite</td>
<td>3</td>
</tr>
<tr>
<td>Ice-marginal terrain</td>
<td>GU122</td>
<td>Bedrock</td>
<td>Low-mid</td>
<td>808</td>
<td>72.61743</td>
<td>53.59646</td>
<td>Granite</td>
<td>3</td>
</tr>
<tr>
<td>Dipstick 17</td>
<td>GU123</td>
<td>Bedrock</td>
<td>Low</td>
<td>776</td>
<td>72.61870</td>
<td>53.59650</td>
<td>Granite</td>
<td>3</td>
</tr>
</tbody>
</table>

*Refers to the relative elevation of samples within each vertically oriented “dipstick.”
†Elevations and locations were recorded in the field with a Garmin global positioning system (GPS) 12, in m above sea level (a.s.l.).
§Refers to the thickness of the slab that was collected for analysis.

Figure 6. Study site map. Bedrock and boulder samples were collected along a 100-km-long northwest-southeast transect near Upernavik, Greenland, at seven different “dipsticks.” Wherever possible, bedrock-boulder pairs were taken from a variety of elevations shown by gray ovals. Within each sample pair, the bedrock sample is listed first, followed by the boulder sample. In the few instances where boulders were not available, only the bedrock sample is listed. Satellite image is from the U.S. Geological Survey.
concentration of each sample through inductively coupled plasma-optical emission spectrometry (ICP-OES) using internal standardization (with Ga and Y) and measuring two different emission lines. The two measurements of sample Al concentration derived from these two aliquots were usually within 1%, and always within 3.5%, of each other. Measured Al concentrations of blanks were within 1% of expected Al concentrations based on the mass of 27Al carrier that was added. Thus, the uncertainty in the 26Al concentrations we report predominately reflects statistical limitations of accelerator mass spectrometry (AMS) measurements.

Isotopic Analysis

We measured isotopic 10Be/Be and 26Al/27Al ratios by AMS at Lawrence Livermore National Laboratory (Perren et al., 2012; Rood et al., 2010). We analyzed all 33 samples for 10Be, and normalized the samples to standard 07KNSTD3110, with a reported 10Be/Be ratio of 2850 ± 10−15 (Nishizumi et al., 2007). Measured 10Be/Be sample ratios ranged from 2.6 × 10−14 to 1.0 × 10−12 (see GSA Data Repository1), and 10Be AMS measurement precisions, including propagated blank uncertainties, ranged from 1.9% to 5.4% (1σ). We subtracted process blank ratios (see GSA Data Repository1) from sample ratios and propagated blank uncertainties in quadrature.

After determining 10Be concentrations and modeling minimum limiting exposure ages, we chose 20 samples to analyze for 26Al. Sixteen of these 20 samples were chosen because of their old 10Be ages (>20 ka); for these samples, 26Al analysis aids in distinguishing continuous exposure from complex exposure. Independent chronology from radiocarbon dating suggests that the Upernavik region was deglaciated ca. 10 cal k.a. B.P. (see “Study Site and Previous Work” section); therefore, we inferred that samples with 10Be ages appreciably above ca. 10 ka likely do not have simple exposure histories. We also analyzed 26Al in the two youngest bedrock samples (GU001 and GU008) and the two youngest boulder samples (GU002 and GU104); these four samples serve as a validation of simple exposure history in young samples and are herein referred to as “control” samples.

For 26Al analysis, we normalized all samples to standard KNSTD10650, with a reported 26Al/27Al ratio of 10650 ± 10−15 (Nishizumi, 2004). Measured sample 26Al/27Al ratios ranged from 1.3 × 10−13 to 1.7 × 10−12 (see GSA Data Repository1), and AMS measurement precisions for 26Al ranged from 2.4% to 12.8% (1σ). We subtracted process blank ratios (see GSA Data Repository1) from sample ratios and propagated blank uncertainties in quadrature.

Age Calculations

We calculated minimum limiting 10Be and 26Al exposure ages (Table 2) with the CRONUS Earth online exposure age calculator, developmental version 2.2, constants version 2.2 (Balco et al., 2008), under standard atmosphere. We used the regionally calibrated northeastern North American sea-level production rates of 3.93 ± 0.19 atoms g⁻¹ yr⁻¹ for 10Be and 26.5 ± 1.3 atoms g⁻¹ yr⁻¹ for 26Al (Balco et al., 2009), which are thought to be the most appropriate production rates for west Greenland (Briner et al., 2012). We also used the Lal/Stone constant production rate model and scaling scheme, which defines the variation in nuclide production rate with latitude and atmospheric pressure (Lal, 1991; Stone, 2000). In CRONUS, corrections were made for latitude, elevation, sample thickness (ranged from 1 to 7 cm), and sample density (assumed 2.7 g cm⁻³ for granite; Table 1).

We made no corrections for snow cover or till cover. Shielding by snow cover would lead to 10Be or 26Al age underestimates (Schildgen et al., 2005); however, seasonal snow-cover effects at our sample sites are likely minimal. Using data from a weather station in the town of Upernavik (www.weather-and-climate.com), we determined that mean temperatures are below freezing for 8 months of the year (October through May) and that ~140 mm of snow water equivalent falls during this time at a rate of ~7–35 mm/month. Assuming that winter precipitation was added in monthly increments, that the density of settled seasonal snow is 0.3 g cm⁻³, and that no melting or sublimation occurred until June, shielding calculations (Gosse and Phillips, 2001) suggest that reported exposure ages could underestimate the true age by no more than 2%. This calculation is likely a significant overestimate because the areas we sampled are windswept and exposed during winter months and because we did not account for snow loss during the winter. However, snowfall patterns during the Pleistocene were likely different than those indicated by the modern weather data.

We made no corrections for postexposure erosion of rock surfaces, which can lead to cosmogenic exposure age underestimates. Although boulders at low elevations did not preserve striations, the surfaces we sampled were glacially abraded (Fig. 2), indicating at most a few centimeters of erosion after the sample sites were exposed by deglaciation. Field observations suggest that subaerial erosion has removed mass from rock surfaces at high elevations (Fig. 3); however, because we have no reliable erosion rate estimates for these surfaces, we cannot correct cosmogenic ages for erosion. Thus, all reported ages for high- and low-elevation surfaces represent minimum limits.

Reported uncertainties reflect AMS errors only, which we refer to as “internal.” Because we are primarily interested in investigating relationships between samples within the data set (i.e., a bedrock sample vs. its paired boulder), we use internal uncertainties in our data analysis. Additional uncertainties are introduced in relation to nuclide production rates, elevation corrections, and latitude corrections when comparing the ages in this study to ages in other data sets. However, we can expect errors in calibration and correction to be correlated and thus to affect all samples similarly because our samples come from a geographically limited region.

Data Reduction and Interpretation

Single-nuclide minimum limiting 10Be and 26Al exposure ages for each sample were calculated with the CRONUS Earth online calculator (Balco et al., 2008). We also considered both nuclides together to present minimum limiting exposure and burial durations (Bierman et al., 1999). Elevation-scaled production rates for our samples range from 4.37 to 10.8 atoms g⁻¹ yr⁻¹ for 10Be and from 29.5 to 72.6 atoms g⁻¹ yr⁻¹ for 26Al. We assume a 26Al/10Be production ratio of 6.75 (Balco et al., 2009), a 10Be half-life of 1.36 × 10⁵ yr (Nishizumi et al., 2007), and a 26Al half-life of 7.05 × 10⁵ yr (Nishizumi, 2004). Calculations involving burial assume complete burial with no nuclide production.

We compare our results to a similar study (Bierman et al., 1999) conducted in Baffin Island, Canada, because of its close proximity and similar latitude, elevation, and sampling strategy. We recalculated the production rates for samples presented by Bierman et al. (1999) in CRONUS using the northeastern North American production rate, and modeled minimum limiting exposure and burial durations and total histories using updated decay constants so that the data from Upernavik and Baffin Island are directly comparable.

A correction for Holocene exposure was done as part of the two-isotope analysis. We chose a value of 11.3 k.y. for the Holocene exposure duration of Upernavik samples (see “Postglacial Ice Retreat” section of the Discussion) and 9.5 k.y. for Baffin Island samples based on measurements of deglaciation age from Briner et al. (2009). We normalized the elevation-scaled production rates in CRONUS to the sea-level production rate, calculated the inventory of 10Be and 26Al accumulated during the past 11.3 and 9.5 k.y., respectively, and subtracted these values from the total concentrations before proceeding with other calculations. Implementing
TABLE 2. SAMPLE ISOTOPIC INFORMATION AND AGE CALCULATIONS

<table>
<thead>
<tr>
<th>Sample name</th>
<th>Type</th>
<th>Exposure duration (k.y.)†</th>
<th>10Be (atoms g−1)</th>
<th>26Al (atoms g−1)</th>
<th>Total (atoms g−1)</th>
<th>10Be/26Al ratio</th>
<th>10Be age (k.y.)§</th>
<th>26Al age (k.y.)§</th>
<th>History (k.y.)§</th>
</tr>
</thead>
<tbody>
<tr>
<td>GU091</td>
<td>Bedrock</td>
<td>14.4</td>
<td>9.3</td>
<td>5.1</td>
<td>14.4</td>
<td>1.8</td>
<td>111</td>
<td>112</td>
<td>323</td>
</tr>
<tr>
<td>GU093</td>
<td>Bedrock</td>
<td>11.3</td>
<td>9.3</td>
<td>2.0</td>
<td>11.3</td>
<td>1.8</td>
<td>89.4</td>
<td>90.1</td>
<td>245</td>
</tr>
<tr>
<td>GU094</td>
<td>Boulder</td>
<td>11.5</td>
<td>9.3</td>
<td>2.2</td>
<td>11.5</td>
<td>1.8</td>
<td>89.4</td>
<td>89.4</td>
<td>245</td>
</tr>
<tr>
<td>GU096</td>
<td>Bedrock</td>
<td>23.7</td>
<td>19.7</td>
<td>4.0</td>
<td>23.7</td>
<td>1.0</td>
<td>19.6</td>
<td>19.6</td>
<td>90.1</td>
</tr>
<tr>
<td>GU097</td>
<td>Boulder</td>
<td>14.3</td>
<td>11.7</td>
<td>2.6</td>
<td>14.3</td>
<td>1.8</td>
<td>11.3</td>
<td>11.3</td>
<td>90.1</td>
</tr>
<tr>
<td>GU098</td>
<td>Bedrock</td>
<td>14.3</td>
<td>11.7</td>
<td>2.6</td>
<td>14.3</td>
<td>1.8</td>
<td>11.3</td>
<td>11.3</td>
<td>90.1</td>
</tr>
<tr>
<td>GU099</td>
<td>Boulder</td>
<td>14.3</td>
<td>11.7</td>
<td>2.6</td>
<td>14.3</td>
<td>1.8</td>
<td>11.3</td>
<td>11.3</td>
<td>90.1</td>
</tr>
<tr>
<td>GU100</td>
<td>Bedrock</td>
<td>23.7</td>
<td>19.7</td>
<td>4.0</td>
<td>23.7</td>
<td>1.0</td>
<td>19.6</td>
<td>19.6</td>
<td>90.1</td>
</tr>
<tr>
<td>GU101</td>
<td>Boulder</td>
<td>14.3</td>
<td>11.7</td>
<td>2.6</td>
<td>14.3</td>
<td>1.8</td>
<td>11.3</td>
<td>11.3</td>
<td>90.1</td>
</tr>
<tr>
<td>GU102</td>
<td>Boulder</td>
<td>14.3</td>
<td>11.7</td>
<td>2.6</td>
<td>14.3</td>
<td>1.8</td>
<td>11.3</td>
<td>11.3</td>
<td>90.1</td>
</tr>
<tr>
<td>GU103</td>
<td>Bedrock</td>
<td>23.7</td>
<td>19.7</td>
<td>4.0</td>
<td>23.7</td>
<td>1.0</td>
<td>19.6</td>
<td>19.6</td>
<td>90.1</td>
</tr>
</tbody>
</table>

†Ages were calculated using the northeastern North American production rates of 3.93 ± 0.19 atoms g−1 yr−1 for 10Be and 26.5 ± 1.3 atoms g−1 yr−1 for 26Al (Balco et al., 2009) and the Lal (1991)/Stone (2000) scaling scheme in CRONUS. Ages have been scaled for elevation, sample density, sample thickness, latitude, and longitude.

§Calculated with the Holocene-corrected and elevation-normalized 10Be and 26Al concentrations.

The 26Al/10Be ratios range from ~4.3 to 7.6 (Fig. 9). The four “control” samples used to test for consistency with the assumed 26Al/10Be production ratio of 6.75 (GU001, GU002, GU098, and GU104) fall along the constant exposure path (see “Using Cosmogenic Nuclides to Understand Glacial Exposure and Erosion” section) and have an average 26Al/10Be ratio of 6.9 ± 0.2 (average ± 1 standard deviation [SD]), which is indistinguishable from the production...
of the remaining 16 samples for which 26Al was measured, two (GU097 and GU100) have 26Al/10Be ratios that overlap the constant exposure path within uncertainty. The other 14 samples fall below the region of constant exposure and/or steady erosion; their 26Al/10Be ratios can be explained by varying lengths of burial after at least one period of surface exposure or by exposure under a thin cover of sediment or ice.

Bedrock and Boulder Comparisons

There is a pronounced contrast between bedrock and boulder nuclide concentrations and calculated minimum limiting exposure ages. Within all 13 sample pairs, the bedrock sample has a higher concentration of 10Be than the boulder sample by more than 1σ, considering analytical uncertainties. Bedrock samples contain, on average, ~2.3 times as much 10Be as corresponding boulder samples, although this value varies from ~1.1 to 5.1 times. Corresponding bedrock and boulder sample pairs have dissimilar minimum limiting 10Be exposure ages and do not have a 1:1 relationship ($r^2 = 0.41$; Fig. 10). A repeated measures t-test verifies that there is a statistically significant difference when minimum limiting bedrock and boulder ages are considered in a paired comparison ($p = 0.007$).

Considering bedrock and boulder samples in two distinct populations also results in nonoverlapping population distributions (Fig. 11); an independent samples t-test indicates that there is a statistically significant difference between the populations ($p = 0.022$).

Spatial Variability

Minimum limiting sample ages vary in the vertical dimension; both bedrock ($R^2 = 0.43$; $n = 20$) and boulder ($R^2 = 0.41$; $n = 13$) minimum limiting 10Be ages increase with elevation (Fig. 12). A one-way analysis of variance (ANOVA) shows that the minimum limiting bedrock sample 10Be age has a weakly significant relationship with elevation ($p = 0.051$), using the relative elevation of each sample within its own dipstick (Table 1). The same test performed on boulder samples shows that the minimum limiting 10Be age has a more significant relationship with elevation ($p = 0.01$). Spatial variability is not detectable in the horizontal dimension; there is no relationship between minimum limiting sample age and distance along the 100-km-long sample transect.

Five bedrock samples from the nunatak yielded minimum limiting 10Be ages of 43.3–80.9 ka, and minimum limiting 26Al ages of 35.6–67.6 ka. The lowest-elevation nunatak sample has the youngest minimum limiting single-nuclide ages (43.3 and 35.6 ka for 10Be and 26Al, respectively), while the highest-elevation nunatak sample has the oldest minimum limiting single-nuclide ages (80.9 and 67.6 ka for 10Be and 26Al, respectively). Calculated 26Al/10Be ratios range from 5.1 to 6.2, overlap within uncertainty, and all fall below the constant exposure path. The two-isotope minimum limiting exposure duration is least for the lowest-elevation nunatak sample (43 k.y.) and greatest for the highest-elevation nunatak sample (88 k.y.).

DISCUSSION

Results from this study suggest that the Upernavik landscape has a long and complex glacial history. The presence of young, Holocene-age boulder samples at low elevations demonstrates that at least some surfaces are free of cosmogenic nuclides inherited from previous periods of exposure. However, the majority of the data set has older (up to ca. 100 ka) minimum limiting 10Be and 26Al ages and therefore does not provide insight about the timing of the latest Pleistocene deglaciation. Using dual-isotope analysis and correcting for the past 11.3 k.y. of Holocene re-exposure, calculated minimum limiting exposure durations range up to 112 k.y., burial durations range up to 900 k.y., and total histories are as high as 990 k.y., all of which are indicative of a landscape that has been buried...
Figure 9. 26Al/10Be ratios plotted against 10Be concentrations for 15 bedrock and five boulder samples from Upernavik, as well as seven comparable samples from Baffin Island, Canada (recalculated from Bierman et al., 1999). Exposure durations (in yr) are shown along the thick black “constant exposure” path. Erosion rates, in m m.y.$^{-1}$, are shown along the bottom of the “steady erosion” envelope. Individual erosion paths for selected erosion rates are shown with black dotted lines. Burial paths are shown with thin gray lines, and burial isochrones are shown with thin gray dashed lines. Error bars show 1σ internal error.

Figure 10. Comparison of bedrock and boulder sample ages shown by a correlation of minimum limiting 10Be ages for 13 sample pairs. Error bars show 1σ internal error; in most cases, error bars are smaller than the data points. The gray dashed line represents a 1:1 relationship between ages.

Figure 11. Comparison of minimum limiting bedrock and boulder sample age populations shown by box and whisker plots (bedrock, $n = 20$; boulders $n = 13$). The box encloses the area between the first and third quartiles, and the horizontal line represents the median. Whiskers show one standard deviation. Samples that lie outside one standard deviation from the mean are shown with an asterisk; all other samples are shown with dots.
Glacial Period Ice Thickness and Extent

The presence of erratic boulders on upland surfaces demonstrates that ice during glacial periods in the Upernavik region covered the highest peaks (~1000 m a.s.l.) at least once since the initiation of glaciation on Greenland, which occurred during the late Pliocene (Bartoli et al., 2005). These glacially transported boulders, which do not match the local bedrock type (e.g., GU102, boulder, foliated granite; and GU103, bedrock, unfoliated granite), suggest that the Upernavik uplands were once covered by the Greenland Ice Sheet rather than just by local ice caps or ice fields. Similar observation of mismatched bedrock-boulder lithologies has been made in Melville Bugt, ~300 km to the north (Kelly, 1980), indicating that Greenland Ice Sheet cover of upland surfaces was regional in nature.

Deglaciation ages of the farthest outboard samples show that ice extended at least ~100 km northwest of the present-day ice-sheet margin, providing a minimum estimate for the spatial extent of ice cover that was lost during the last deglaciation. Several of these samples came from low elevations (e.g., GU091 at 24 m and GU092 at 21 m), and their ages could represent marine emergence rather than deglaciation. However, a compilation of data from around Greenland’s coast shows that relative sea level in the Upernavik region was only 0–20 m above modern sea level during the early Holocene following deglaciation (Funder and Hansen, 1996), placing Upernavik in the zone of least isostatic rebound around Greenland. Long et al. (2006) found that the marine limit could be approximated by the lowest elevation of perched boulders; since we sampled perched boulders even at the low elevations in Upernavik, the boulder samples in question are likely to have been above the local marine limit. Additionally, there is no indication in the data that the samples close to the marine limit are systematically younger than those at higher elevations. Even if these lowest samples were submerged, the rate of land surface rebound during the early Holocene was so rapid (Ten Brink, 1974) that the effect of initial submergence on their exposure ages would be insignificant.

Isotope Inheritance and Subglacial Erosion Efficiency

This data set demonstrates that cosmogenic isotopes inherited from prior periods of exposure are present in most of the rock surfaces near Upernavik. The old minimum limiting 10Be ages, positive skew of the data (Fig. 7), disagreement between bedrock and boulder samples (Figs. 10 and 11), and long exposure durations modeled from two-isotope data (Table 2) suggest that most samples contain more 10Be than could have accumulated during the Holocene. This excess 10Be is inherited from previous periods of exposure, when the climate warmed and bedrock surfaces and perched boulders were exposed. Such exposure would have occurred during many previous interglacial periods throughout the Quaternary when global ice volume was low (Lisiecki and Raymo, 2005).

Upland surfaces show the longest durations of burial. The highest-elevation bedrock samples (GU096, 778 m; GU103, 998 m; and GU110, 745 m) all have 10Al/10Be ratios less than ~5.75, indicating that burial occurred at least once after initial exposure. The average minimum burial duration for samples showing burial is 324 ± 226 k.y. (1SD, Holocene-corrected); because glacial periods last roughly ~100 k.y., these long burial durations demonstrate that high-elevation surfaces have been repeatedly covered by nonerosive ice or snow. Perennial snowfields may explain some of this burial signal; assuming a settled snow density of 0.4 g cm–3, the snowpack would need to reach a depth of ~10 m to effectively shield rock surfaces from spallation-induced nuclide production. Complete burial by cold-based glacial ice or thick snowfields, or partial burial by thin snowfields or till, could have occurred following initial exposure (Fig. 5).

The presence of discordant bedrock and boulder ages indicates that the boulders were emplaced at some point after the initial exposure and burial of the bedrock; thus, the most likely explanation for mismatched minimum limiting bedrock-boulder ages is burial by cold-based ice at least once after initial exposure (Fig. 5).

While elevation-related erosion intensity governs the overall trend of sample ages with elevation, there is still noise in the data. The sample with the longest modeled total history (GU110, 989 ka) is from an elevation of 745 m a.s.l.; there are numerous higher-elevation samples with shorter total histories. The five samples from the nunatak (dipstick 7; Fig. 6) do not show a correlation between elevation and modeled total history, maybe because all of the samples have similar elevations (within 100 m),...
and ice erosivity did not vary appreciably over this thickness. Deviations from the trend of increasing sample age with elevation likely arise from local variability in glacial erosive power, differences of subaerial erosion during interglacial periods, rock hardness, small shielding effects, and the possibility that ice lingered longer at lower elevations.

Some boulder samples also preserve inherited 10Be, although not as much as bedrock samples. Boulders were quarried farther inland and then transported coastward to their present locations. They may have originated from inheritance-bearing outcrops, which were originally covered by nonerosive ice but subsequently covered by erosive ice capable of quarrying. They also may have been plucked from outcrops far inland from the coast, where ice is thicker and more likely warm-based, before being transported into a zone of cold-based ice around the margin. There is appreciable spread in the minimum limiting 10Be ages of boulder samples (ranging fourfold, from 10.6 to 45.7 ka), possibly documenting a variety of different sources, erosion mechanisms, or transport histories.

The low efficiency of subglacial erosion we infer in Upernavik is consistent with findings in other high-latitude areas. Inheritance of cosmogenic nuclides from prior periods of exposure has been documented in Greenland (Goehring et al., 2010; Håkansson et al., 2008; Kelly et al., 2008), the Canadian Arctic (Bierman et al., 1999; Briner et al., 2003; Marquette et al., 2004), Scandinavia (Goehring et al., 2008; Harbor et al., 2006; Stroeven et al., 2002b), and Antarctica (Lilly et al., 2010; Sugden et al., 2005). These regions are characterized by cold mean annual temperatures that would favor the existence of an ice sheet partially frozen to the bed. However, not all high-latitude regions have cold-based ice. The presence of inherited nuclides in Upernavik differs notably from the Jakobshavn Isbræ region, 500 km south. There, no inheritance of cosmogenic isotopes from prior periods of exposure was detected, regardless of sample type or elevation (Corbett et al., 2009). The lack of inheritance there may reflect thicker ice in Jakobshavn Isbræ, which eroded sufficient material from bedrock outcrops to remove any inherited isotopes. The pronounced contrast between inferred subglacial erosion efficiency in Upernavik (low) and Jakobshavn (high) indicates that landscapes buried by ice in or around large ice streams likely experience more efficient erosion than those buried by thinner, more slowly flowing ice. Climate probably also plays a role, since the mean annual temperature in Upernavik is ~2.5 °C colder than in Ilulissat (www.weather-and-climate.com). Subglacial erosion efficiency, therefore, may be controlled by local factors such as ice thickness and ice-flow velocity, as well as larger-scale regional climatic conditions.

Landscape Evolution

Parts of the Upernavik landscape have been preserved through multiple glacial-interglacial cycles. High-elevation bedrock surfaces have minimum limiting total histories of hundreds of thousands of years, suggesting that the highlands were minimally altered through repeated burial by glacial ice. Burial dominates the landscape history; most high-elevation surfaces have minimum limiting burial durations of ~300–500 k.y. and minimum limiting total histories of ~500–600 k.y., suggesting that these surfaces experienced burial with limited erosion ~75% of the time.

The high-elevation surfaces on Baffin Island, ~600 km to the west, have longer minimum limiting exposure durations, burial durations, and total histories than similar surfaces in Upernavik (using recalculated data from Bierman et al., 1999; Figs. 9 and 13). On average, bedrock surfaces on Baffin Island record total histories almost two times as long (~900 k.y.) as those in Upernavik. However, despite differences in duration, the relative role of burial appears to be similar between Baffin Island and Upernavik. The Baffin Island samples have a burial to total history ratio of 0.79 ± 0.04 (average ± 1 SD); the Upernavik samples (taking into account only bedrock samples at elevations >600 m in order to match the Baffin Island data set) have a burial to total history ratio of 0.83 ± 0.07 (average ± 1 SD). Thus, despite recording different durations of Quaternary history, both upland surfaces have experienced burial for the same portion of time. The value of ~0.8 is likely a reflection of the fraction of time represented by glacial periods and expanded ice volume throughout the latter part of the Quaternary.

In Upernavik, the presence of cosmogenic nuclide inheritance in bedrock samples deep within fjords raises the question of how the fjords formed, if not by glacial erosion. Given that glaciers can form a recognizable U-shaped valley from a preexisting V-shaped valley in as little as 10,000 yr (Harbor, 1992), even one or two glacial periods of thick, highly erosive ice could cause significant reshaping of the landscape. However, it is probable that ice cover in Upernavik has been cold-based for the majority of the Quaternary, and has not been a major player in landscape development. More likely, the origin of these fjords is tectonic, and thus glacial activity has been only a recent overprint upon an older structure (England, 1987; Glasser and Ghiglione, 2009; Swift et al., 2008). Bonow et al. (2007) suggested that uplift of the west Greenland coast occurred during the late Miocene and Pliocene, as seafloor spreading was initiated in the North Atlantic. Continued erosion created planar surfaces, which were uplifted to create the low-relief highlands visible in western Greenland today. Fluvial erosion incised these surfaces as rivers responded to changing base levels, creating a landscape of planar highlands dissected by deep valleys (Bonow et al., 2007). Repeated burial by cold-based, nonerosive glacial ice during the Quaternary has likely done little to modify this landscape; this implies that the fjords in Upernavik may be relict features, preserved from the Miocene or Pliocene (Bonow et al., 2007).

![Figure 13. Histograms of minimum limiting exposure durations, burial durations, and total histories from highlands in Upernavik, Greenland (this study), and Baffin Island, Canada (recalculated from Bierman et al., 1999). The Upernavik data include only bedrock samples from elevations >600 m in order to be comparable to the samples from Baffin Island. All samples have been corrected for 11.3 k.y. (Upernavik) or 9.5 k.y. (Baffin) of Holocene exposure and scaled for elevation-based differences in production rates.](Image)
Postglacial Ice Retreat

Determining the timing of ice retreat in the deep fjords after the last glacial period is possible because a small subset of the samples appear to have simple exposure histories. The six youngest boulder samples have overlapping 10Be ages of 11.3 ± 0.5 ka, and we interpret this to be the best estimate for the deglaciation of the exposed land surface near Upernavik. This reported age is the mean exposure age ± one standard deviation; systematic uncertainties in production rate would shift the central tendency slightly but not change the relationship between samples. This cosmogenic estimate for deglaciation is consistent with other estimates of minimum limiting deglaciation age from radiocarbon dating discussed in the “Study Site and Previous Work” section.

The low-elevation boulder samples show no trend in age along the 100-km-long sample transect, suggesting that significant lateral retreat of the ice margin (~100 km) likely occurred within several hundred years. The modeled statistical maximum likelihood ice retreat rate was ~120 m yr$^{-1}$, with possible rates as low as 80 m yr$^{-1}$ and as high as 240 m yr$^{-1}$ (1 SD). Rapid retreat of the ice margin was likely facilitated by calving, since ice in the Upernavik region would have been largely marine-based due to local topography, which consists of small islands separated by large fjords (Fig. 6). These results support the proposition that areas of marine-based ice can undergo periods of rapid collapse in a warming climate (England, 1976; Mangerud et al., 2013; Straneo et al., 2012).

The retreat of the ice-sheet margin in Upernavik shows a pattern of retreat similar to that of the Helheim Glacier in southeastern Greenland. There, Hughes et al. (2012) used 10Be exposure dating on bedrock and boulder samples and determined that samples collected along the entire length of the ~60 km fjord had indistinguishable exposure ages within two SD. The mean age of boulders indicates that retreat took place very quickly at 10.8 ± 0.3 ka. The timing of rapid ice loss from Helheim Fjord (Hughes et al., 2012) overlaps with the estimate of rapid ice loss from Upernavik presented here (11.3 ± 0.5 ka) and suggests that the episode of abrupt early Holocene retreat seen in Upernavik is not spatially restricted. The rapid episode of glacial retreat documented in both Upernavik and in Helheim Fjord appears to have occurred earlier than retreat in Ilulissat, 500 km to the south, where the present-day coastline did not become ice free until ca. 10.3 k.y. B.P. (Corbett et al., 2011; Young et al., 2011).

The rate of ice-margin retreat in Upernavik is similar to some but higher than many estimates of retreat rates for large bodies of ice from the same time period (see Fig. 9 in Corbett et al., 2011). In Ilulissat, 500 km to the south, calculated rates of ice-margin retreat were ~100–110 m yr$^{-1}$ through Jakobshavn Isfjord, its tributary fjord, and its adjacent bay (Corbett et al., 2011; Long and Roberts, 2003; Long et al., 2006; Young et al., 2011). In Sisimiut Fjord, central western Greenland, retreat rates were ~20–50 m yr$^{-1}$ (Rinterknecht et al., 2009). In North America, retreat rates of ~60 m yr$^{-1}$ were calculated for Sam Ford Fjord on Baffin Island (Briner et al., 2009). Ice retreat rate, therefore, appears to be controlled by local and regional factors.

Rapid ice loss from the Upernavik area ca. 11.3 ± 0.5 ka may have been driven by external climate forcing (Fig. 14). Oxygen isotope ratios from the Greenland Ice Sheet Project 2 (GISP2) ice core (Stuiver and Grootes, 2000) and from the Greenland Ice Core Project (GRIP) and Dye3 ices cores (Dahl-Jensen et al., 1998) show that this time period was characterized by rapid warming. This warming may have coincided with the end of the Younger Dryas cold event (Alley, 2000; Taylor et al., 1993), which is thought to have occurred rapidly in the Arctic over several abrupt subdecadal pulses at 11,645 ± 200 and 11,612 ± 200 yr B.P. (Taylor et al., 1997). However, any causal relationship is speculative because only six of the samples appear to record deglaciation age, and because the average deglaciation age of the Upernavik fjords has an uncertainty of 500 yr (1 SD).

CONCLUSIONS

Analysis of 10Be and 26Al in paired bedrock and boulder samples near Upernavik, northwest Greenland, reveals a complex landscape history. Bedrock and boulder samples have discordant 10Be and 26Al minimum limiting ages, suggesting that nuclides inherited from previous periods of exposure are present. High-elevation surfaces have old single-nuclide minimum limiting exposure ages and record at least several hundred thousand years of burial after initial exposure. These surfaces, which exhibit pronounced surface weathering features, have likely been preserved under nonerosive, cold-based ice or perennial snowfields over the course of numerous glacial cycles. The existence of these relict surfaces suggests that, despite repeated glaciation, certain high-latitude landscapes have remained virtually unchanged for hundreds of thousands or even millions of years. Conversely, low-elevation surfaces have younger minimum limiting ages, although bedrock samples still preserve inheritance and evidence of burial. Boulders at low elevations indicate that deglaciation along the 100-km-long sample transect took place rapidly at a rate of ~120 m yr$^{-1}$ at ca. 11.3 ka, supporting the idea that large bodies of

Figure 14. Deglaciation timing and paleoclimate context. Thin black lines show the probability density functions for each individual boulder sample (the oldest boulder sample, 44.3 ka, has been omitted from this plot for better visibility). The thick black line shows the summed cumulative probability for the entire boulder data set. The dark gray line represents δ^{18}O values from the Greenland Ice Sheet Project 2 (GISP2) ice core from Greenland’s summit; these data, available online at http://depts.washington.edu/qil/datasets/, are courtesy of M. Stuiver and P.M. Grootes at University of Washington. Minimum limiting 10Be ages are plotted against the left axis, while GISP2 δ^{18}O values are plotted against the right axis.
ice can disintegrate on time scales that would be noticeable and meaningful to humans.

ACKNOWLEDGMENTS

Support for research was provided by the National Science Foundation under award number ARC-0713956 to Bierman and Neumann, a National Science Foundation Graduate Research Fellowship to Corbett, and the University of Vermont. Field support was provided by CH2MHILL Polarfield Services. We thank R.C. Finkel for assistance in measuring 39Al samples and for guidance throughout the project. This work was performed in part under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. The manuscript was greatly improved by thoughtful reviews from H. Linge and V. Rinkenkecht.

REFERENCES CITED

