Design and Performance of the GAMMA-400 Gamma-Ray Telescope for Dark Matter Searches

A.M. Galpera,b, O. Adrianic, R.L. Aptekard, I.V. Arkhangelinskajab, A.I. Arkhangeliskiyb, M. Boezioe, V. Bonvicinie, K.A. Boyarchukf, M.I. Fradkina, Yu.V. Gusakova, V.A. Kaplinb, V.A. Kachanovg, M.D. Kheymitsb, A.A. Leonovb, F. Longoe, E.P. Mazetsd, P. Maestroh, P. Marrocchesih, I.A. Mereminskib, V.V. Mikhailovb, A.A. Moiseevi, E. Mocchiuttie, N. Morie, I.V. Moskalenkoj, P.Yu. Naumovb, P. Papinie, P. Picozzak, V.G. Rodinl, M.F. Runtsb, R. Sparvolik, P. Spillantinie, S.I. Suchkova, M. Tavanim, N.P. Topchievaa, A. Vacchie, E. Vannuccinie, Yu.T. Yurkinb, N. Zampae, V.G. Zverevb, V.N. Zirakashvilin

aLebedev Physical Institute, Russian Academy of Sciences, Moscow, Russia
bNational Research Nuclear University MEPhI, Moscow, Russia
cIstituto Nazionale di Fisica Nucleare, Sezione di Firenze and Physics Department of University of Florence, Firenze, Italy
dIoffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg, Russia
eIstituto Nazionale di Fisica Nucleare, Sezione di Trieste, Trieste, Italy
fResearch Institute for Electromechanics, Istra, Moscow region, Russia
gInstitute for High Energy Physics, Protvino, Moscow region, Russia
hIstituto Nazionale di Fisica Nucleare, Sezione di Pisa and Physics Department of University of Siena, Siena, Italy
iNASA Goddard Space Flight Center and CRESST/University of Maryland, Greenbelt, Maryland, USA
jHansen Experimental Physics Laboratory and Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Stanford, USA
kIstituto Nazionale di Fisica Nucleare, Sezione di Roma 2 and Physics Department of University of Rome “Tor Vergata”, Rome, Italy
lSpace Research Institute, Russian Academy of Sciences, Moscow, Russia
mIstituto Nazionale di Astrofisica – IASF and Physics Department of University of Rome “Tor Vergata”, Rome, Italy
nPushkov Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Troitsk, Moscow region, Russia

Abstract. The GAMMA-400 gamma-ray telescope is designed to measure the fluxes of gamma-rays and cosmic-ray electrons + positrons, which can be produced by annihilation or decay of the dark matter particles, as well as to survey the celestial sphere in order to study point and extended sources of gamma-rays, measure energy spectra of Galactic and extragalactic diffuse gamma-ray emission, gamma-ray bursts, and gamma-ray emission from the Sun. GAMMA-400 covers the energy range from 100 MeV to 3000 GeV. Its angular resolution is \(\sim 0.01^\circ \) (\(E_\gamma > 100 \) GeV), the energy resolution \(\sim 1\% \) (\(E_\gamma > 10 \) GeV), and the proton rejection factor \(\sim 10^6 \). GAMMA-
INTRODUCTION

In the list of very important issues in modern cosmology at the beginning of XXI
Century, Nobel Laureate Academician V. L. Ginzburg noted “the issue of dark matter
and its detection” [1]. Today it is believed that the dark matter density (~ 25%) in the
universe is several times greater than the barionic matter density (~ 5%). One of the
candidates for dark matter particles are WIMPs, Weakly Interacting Massive Particles.
Scientists from around the world are trying to find WIMPs, using both direct and
indirect methods of detection. Indirect methods are based on the detection in the
cosmic-ray radiation of the annihilation or decay products of WIMPs, which can be
regular particles and their anti-particles (neutrinos, electrons, positrons), as well as
gamma-rays. Gamma-rays play an important role, as they propagate from the source
without a significant absorption and, therefore, can be used to determine the direction
to the source of the emission.

An analysis of observations of the region near the Galactic center by the Fermi
Large Area gamma-ray Telescope (Fermi-LAT) hints at a feature in the spectrum of
gamma-ray emission near ~130 GeV [2]. Such a feature, if confirmed, would be a
unique signature of new physics, but its reliable detection requires significant
improvements in the angular and energy resolutions of future instruments [3-7].

These challenges are addressed by a proposed new gamma-ray telescope GAMMA-
400. GAMMA-400 will have a unique capability to resolve gamma-ray lines predicted
to be signatures of the decay of WIMPs, and to determine the location of their
source(s).

THE GAMMA-400 GAMMA-RAY TELESCOPE

The GAMMA-400 gamma-ray telescope is designed to measure the gamma-ray and
cosmic-ray electron + positron fluxes, which may be associated with annihilation or
decay of dark matter particles, as well as to survey the sky in order to search for and
study gamma-ray sources, to measure the energy spectra of Galactic and extragalactic
diffuse gamma-ray emission, to study gamma-ray bursts and gamma-ray emission
from the Sun in the energy range from 100 MeV to 3000 GeV.

Previously described in [8,9], the GAMMA-400 physical scheme was recently
modified and is presented along with its basic parameters in Figure 1. The GAMMA-
400 gamma-ray telescope includes:
- top \((AC_{\text{top}}) \) and lateral \((AC_{\text{lat}}) \) anticoincidence detectors;
- converter-tracker \(C \), which represents 10 interleaved by tungsten \((x,y)\) planes
 with mutually perpendicular strips of silicon-strip coordinate detectors with 0.1
 mm strip pitch. The total thickness of the converter-tracker is 1.0 radiation
 length \((X_0)\). Currently Italian and US scientists consider the possibility of
adding to converter-tracker 15 additional silicon (x,y) planes to improve the instrument capabilities at low energies below ~ 300 MeV;
- time-of-flight system (TOF) between the S1 and S2 scintillation detectors separated by a distance of 500 mm;
- position-sensitive calorimeter, consisting of 2 parts:
 a) 4-layer imaging CC1. Each layer contains CsI(Tl) crystals and silicon-strip (x,y) planes with mutually perpendicular 0.5 mm pitch strips. CC1 thickness is 3 X_0.
 b) Electromagnetic CC2 made of 25x25x250 mm3 BGO crystals. The thickness of CC2 is 22 X_0. The total calorimeter (CC1 + CC2) thickness is 25 X_0 for the normal incidence particles, and ~70 X_0 for the lateral incidence;
- S3 and S4 scintillation detectors;
- Lateral calorimeter detectors LD;
- Neutron detector ND.

A gamma-ray photon is converted into an electron-positron pair in the converter-tracker, which then is detected in the instrument detectors. Anticoincidence detectors are used to identify the gamma-rays, and the time-of-flight system determines the direction of the incident particles and forms the telescope aperture. The electromagnetic shower created by the electron-positron pair develops in both parts of the calorimeter and is detected in the calorimeter and scintillation detectors S3 and S4.
Gamma-rays are detected by the absence of a signal in AC, while electrons (positrons) are detected by the presence of a signal in AC, when moving downward and from lateral directions.

Using the calorimeter with thickness ~25 \(X_0 \) extends the particle measurable energy range up to several TeV and increases the gamma-ray telescope energy resolution up to ~1% at energies more than 10 GeV. The energy dependence of the GAMMA-400 energy resolution for incident gamma-rays was simulated using Monte Carlo techniques and is shown in Figure 2a along with the same dependence for the Fermi-LAT [10] for comparison. It is seen that in the energy range from 10 GeV to ~10 TeV the energy resolution is ~1%, which is extremely important for resolving the gamma-ray lines from the decay of the dark matter particles.

![FIGURE 2. Energy resolution (a) and angular resolution (b) for the GAMMA-400 and Fermi LAT gamma-ray telescopes](image)

High angular resolution is achieved by determining the conversion point in a multilayer converter-tracker and the reconstruction of the shower axis in CC1. This method allows the high angular resolution of ~0.01° to be achieved at energies more than 100 GeV (Figure 2b) and enables an accurate localization of the source of the gamma-ray lines.

High-energy incident particles create a backsplash (upward moving products of the shower) in the calorimeter. To prevent the detection of the backsplash particles in the AC (thereby creating a self-veto), we use the method of separation of incident and backsplash particles in the AC by the time-of-flight along with the segmentation of the AC as used in Fermi-LAT [10,11] and AGILE [12].

The proton rejection factor of ~10^6, critical parameter for the background rejection, will be achieved by using the calorimeter and the neutron detector together with other instrument subsystems.

Table 1 shows the basic parameters of the existing and planned space-based (Fermi [10], AMS-2[13]) and ground-based (MAGIC [14], H.E.S.S.-II [15], and CTA [16]) experiments. It can be seen that the GAMMA-400 is well-suited for the search for the dark matter signatures including narrow gamma-ray lines.

The GAMMA-400 space observatory will be installed on the Navigator service platform designed by Lavochkin Association. It will be launched into high-elliptic orbit with initial parameters: an apogee of 300,000 km, a perigee of 500 km, and an inclination of 51.8°. After approximately half a year the orbit will evolve into an
almost circular orbit with radius of ~150,000 km, i.e. the observatory will fully leave the Earth’s radiation belt. The expected lifetime of the observatory will be more than 7 years. The launch of the space observatory is planned for 2018.

TABLE 1. A comparison of basic parameters of existing and planned space- and ground-based experiments

<table>
<thead>
<tr>
<th></th>
<th>Space-based experiments</th>
<th>Ground-based experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Fermi LAT</td>
<td>AMS-2</td>
</tr>
<tr>
<td>Energy range, GeV</td>
<td>0.02-300</td>
<td>10-1000</td>
</tr>
<tr>
<td>Field-of-view, sr</td>
<td>2.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Effective area, m²</td>
<td>0.8</td>
<td>0.2</td>
</tr>
<tr>
<td>Angular resolution (E>100 GeV)</td>
<td>0.2°</td>
<td>1.0°</td>
</tr>
<tr>
<td>Energy resolution (E>100 GeV)</td>
<td>10%</td>
<td>2%</td>
</tr>
</tbody>
</table>

ACKNOWLEDGMENTS

This work was supported by the Space Council of the Russian Academy of Sciences and the Russian Space Agency.

REFERENCES