Ocular Outcomes Comparison Between 14- and 70-day Head-down Tilt Bed Rest

R.L. Cromwell,1 G. Taibbi,2 S. B. Zanello,1 P.O. Yarbough,1 R.J. Ploutz-Snyder,1 and G. Vizzeri2

1 Universities Space Research Association, Division of Space Life Sciences, Houston, TX
2 Department of Ophthalmology and Visual Sciences, The University of Texas Medical Branch, Galveston, TX

BACKGROUND

• Ophthalmological changes have been recently reported in some astronauts involved in long-duration space missions:
 - Elevated intracranial pressure resulting from μG-induced cephalad fluid shifts may be responsible for most of these findings
 - Head-down tilt bed rest (HDTBR) produces cephalad fluid shifts; used to simulate the effects of μG on the human body

PURPOSE

• To compare structural and functional ocular outcomes between 14- and 70-day HDTBR in healthy human subjects.
• Hypothesis: 70-day HDTBR induces ocular changes of greater magnitude as compared to 14-day HDTBR

METHODS

• Experimental protocols:
 - 14-day HDTBR
 - Visual Acuity (Distance & Near)
 - Modified Amsler Grid
 - Red Dot Test
 - Color Vision
 - Confrontational Visual Field
 - Cycloplegic Refraction
 - IOP (Goldmann)
 - IOP (Spectralis)
 - OCT (Spectralis)
 - Color Fundus Photography
 - 70-day HDTBR

• Pre/post-HDTBR differences in near visual acuity, spherical equivalent, IOP and SD-OCT average RNFL thickness were compared between the two studies

RESULTS

- Table showing comparison between 14-day and 70-day HDTBR
 - Near Visual Acuity, logMAR
 - Spherical Equivalent, D
 - IOP (Goldmann), mmHg
 - Average RNFLT (Spectralis OCT), μm

• In both studies:
 - subjects remained asymptomatic throughout the duration of HDTBR
 - distance and near visual acuity was 20/20 or better pre- and post-HDTBR in all subjects
 - modified Amsler grid, red dot test, color vision, confrontational visual field were within normal limits at all visits
 - no detectable changes on stereoscopic color fundus photography

CONCLUSIONS

• There were no significant pre/post-HDTBR differences between 14- and 70-day HDTBR for the structural and functional ophthalmological variables evaluated
• Further HDTBR studies with different duration and/or angle of tilt and/or environmental conditions (e.g., high CO2 exposure during HDTBR) may help determine the validity of the HDTBR analog to investigate microgravity-induced ophthalmological changes

SUPPORT

NASA Flight Analogs Project, 516724.03.04.01
NIH/NCAT 1UL1RR029876-01

DISCLOSURE

Cromwell, RL None; Taibbi, G None; Zanello, SB None; Yarbough, PO None; Ploutz-Snyder, RJ None; Vizzeri, G None
ronita.l.cromwell@nasa.gov