<table>
<thead>
<tr>
<th>Fluid Shifts</th>
<th>Science Symposium</th>
</tr>
</thead>
<tbody>
<tr>
<td>PI: Michael Stenger, Ph.D., Alan Hargens, Ph.D.,</td>
<td>January 2014</td>
</tr>
<tr>
<td>Scott Dulchavsky, M.D., Ph.D.</td>
<td></td>
</tr>
</tbody>
</table>

Fluid shifts before, during and after prolonged space flight and their association with intracranial pressure and visual impairment

Fluid Shifts
Science Background

Future human space travel will primarily consist of long duration missions onboard the International Space Station or exploration class missions to Mars, its moons, or nearby asteroids.

Current evidence suggests that long duration missions might increase risk of permanent ocular structural and functional changes, possibly due to increased intracranial pressure resulting from a spaceflight-induced cephalad (headward) fluid shift.
- **Specific Aim I**: To characterize fluid distribution and compartmentalization before, during and after long-duration space flight.

- **Specific Aim II**: To correlate in-flight alterations of eye structure, ocular vascular parameters, and vision with headward fluid shifts, vascular dimensions and flow patterns.

- **Specific Aim III**: To determine systemic and ocular factors of individual susceptibility to the development of ICP elevation and/or vision alterations
Fluid compartmentalization/distribution measures:

- Total Body Water (D_2O dilution, saliva and urine collection)
- Extracellular Fluid Volume (NaBr, dilution, blood and urine collection)
- Intracellular Fluid Volume (Calculated)
- Plasma Volume (Carbon Monoxide rebreathing, blood collection)*
- Interstitial Fluid Volume (Calculated)*
- Vascular Ultrasound Assessment / MRI

* These measurements may require additional equipment or specific conditions not detailed in the slide.
Fluid Shifts

PI: Michael Stenger, Ph.D., Alan Hargens, Ph.D., Scott Dulchavsky, M.D., Ph.D.

<table>
<thead>
<tr>
<th>Science Symposium</th>
<th>January 2014</th>
</tr>
</thead>
</table>

- Optical Coherence Tomography (OCT)
- Cerebral and Cochlear Fluid Pressure (CCFP)
- Otoacoustic Emissions (OAE)
- Tonometry / Ultrasound / MRI
- Data Sharing w/ Med Ops
Lower Body Negative Pressure

Ultrasound measures of fluid shifts:
- Arterial and venous measures of head and neck
- Cardiac, ophthalmic, and portal vein measures
- Tissue thickness upper body

Other physiological measures:
- Intracranial Pressure (CCFP/DPOAE)
- Intraocular Pressure (Tonopen/iCare and Ultrasound)
- Ocular Structure (OCT)
- Blood Pressure / Heart Rate / Vascular Resistance
Fluid Shifts
PI: Michael Stenger, Ph.D., Alan Hargens, Ph.D., Scott Dulchavsky, M.D., Ph.D.

Science Symposium
January 2014

- L-21/18 months
- L-90
- FD45
- FD150
- R-30
- R+1/3
- R+10
- R+30
- R+180

MRI
- concurrent with Med Ops schedule

Day 1
- supine, upright sitting, 15° HDT baseline
- dilution measures

Day 2
- supine, 15° HDT with LBNP
- all other baseline measures

Day 3
- Chibi's LBNP - part 1

Day 4
- Chibi's LBNP - part 2

Single Day Sessions
- supine, upright sitting, 15° HDT measures
- No LBNP
Benefits

• This investigation will determine, for the first time, whether the well-known fluid shifts and cardiovascular adaptations associated with stays in microgravity are the predominant factors contributing to the development of visual impairment and the hypothesized increase in intracranial pressure and whether these can be temporarily alleviated by reversing fluid shifts. This information will guide the development of countermeasures and/or treatment protocols.

• Knowledge gained from this study also may inform medical professionals treating and studying patients suffering from idiopathic intracranial hypertension, a debilitating condition with some characteristics in common with that experienced by astronauts.