ANALYSES OF MAGNETIC RESONANCE IMAGING OF CEREBROSPINAL FLUID DYNAMICS PRE AND POST SHORT AND LONG-DURATION SPACE FLIGHTS

Noam Alperin¹, Yael Barr², Sang H. Lee¹, Sara Mason³, and Ahmet M. Bagci¹

¹Departments of Radiology, University of Miami Miller School of Medicine, Miami, FL
²University of Texas Medical Branch, Galveston, TX, ³MEI Technologies, Houston, TX

Material and Methods

Preliminary results are based on analyses of data from 17 crewmembers. The initial analysis compares pre to postflight changes in total cerebral blood flow (CBF) and cranio-spinal CSF flow volume. Total CBF is obtained by summation of the mean flow rates through the 4 blood vessels supplying the brain (right and left internal carotid and vertebral arteries). Volumetric flow rates were obtained using an automated lumen segmentation technique shown to have 3-4-fold improved reproducibility and accuracy over manual lumen segmentation (6). Two cohorts, 5 short-duration and 8 long-duration crewmembers, who were scanned within 3 to 8 days post landing were included (4 short-duration crewmembers with MRI scans occurring beyond 10 days post flight were excluded). The VIIP Clinical Practice Guideline (CPG) classification is being used initially as a measure for VIIP syndrome severity. The CPG classification is shown in the table below:

CPG Classification

<table>
<thead>
<tr>
<th>CPG Score</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No evidence of papilledema, nerve sheath distention, choroidal folds, etc.</td>
</tr>
<tr>
<td>1</td>
<td>"≤ 25 cm H2O "</td>
</tr>
<tr>
<td>2</td>
<td>"≤ 25 cm H2O "</td>
</tr>
<tr>
<td>3</td>
<td>"≤ 25 cm H2O "</td>
</tr>
<tr>
<td>4</td>
<td>"≤ 25 cm H2O "</td>
</tr>
</tbody>
</table>

Results

Median CPG scores of the short and long-duration cohorts were similar. 2 Mean preflight total CBF for the short and long-duration cohorts were similar, 863±144 and 747±119 mL/min, respectively. Percentage CBF changes for all short duration crewmembers were 11% or lower, within the range of normal physiological fluctuations in healthy individuals. In contrast, in 4 of the 8 long-duration crewmembers, the change in CBF exceeded the range of normal physiological fluctuation. In 3 of the 4 subjects an increase in CBF was measured. Large pre to postflight changes in the cranial spinal CSF flow volume were found in 6 of the 8 long-duration crewmembers. Box-Whisker plots of the CPG and the percent CBF and CSF flow changes for the two cohorts are shown in Figure 5. Examples of CSF flow waveforms for a short and two long-duration (CPG 0 and 3) are shown in Figure 5.

Conclusion

Changes in CBF and CSF flow dynamics larger than normal physiological fluctuations were observed in the long-duration crewmembers. Changes in CSF flow were more pronounced than changes in CBF. Decreased CSF flow dynamics were observed in a subject with VIIP signs. Study limitations include a slightly longer landing-to-MRI scan period for the short-duration cohort and limited sensitivity of the subjective discrete ordinal CPG scale. This limitation can be overcome by using imaging based parametric measures of VIIP severity such as globe deformation measures (7).

References and Acknowledgements

This work is supported by directed study grant to Alperin Noninvasive Diagnostics, Inc., the developers of MRICP.