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Introduction: Dark inclusions (DIs) are lithic 

fragments that form a volumetrically small, but im-
portant, component in carbonaceous chondrites [1,2]. 
Carbonaceous clasts similar to DIs are also found in 
some ordinary chondrites and HEDs [3,4]. DIs are of 
particular interest because they provide a record of 
nebular and planetary processes distinct from that of 
their host meteorite [1,5]. DIs may be representative of 
the material that delivered water and other volatiles to 
early Earth as a late veneer [6]. Here we focus on the 
oxygen isotopic composition of DIs in a variety of set-
tings with the aim of understanding their formational 
history and relationship to the enclosing host meteorite.  

Materials and methods: DIs and related materials 
were obtained from the following meteorites: CV3s 
(Allende, NWA 2140, NWA 2364): Samples from Al-
lende cover all categories of the four-fold classification 
scheme [2] (inclusion numbers analyzed in brackets). 
Type A clasts (1a1, 4b1, 25s1-TW1) contain chon-
drules, inclusions and matrix, but are somewhat finer 
grained than normal Allende material. Type A/B clasts 
(MZB) are transitional between Types A and B (Fig. 1). 
Type B clasts (12b1) contain opaque matrix and oli-
vine-rich aggregates and may have experienced a hy-
dration-dehydration cycle [2]. Type C clasts (5a1, 
ekpb4b1, MZ15, USNM 3876) consist of fine-grained, 
opaque material similar to Allende matrix. Full de-
scriptions for of the Allende DI samples are given in 
[2]. DI material from NWA 2140 analyzed for this 
study is Type A/B and Type A for NWA 2364. HEDs: 
(Bholghati, PRA 04401, SCO 06040). DIs from the 
howardite Bholghati have not been analyzed by us for 
oxygen isotopes. Instead a sequence of 5-10 mg repre-
sentative whole rock samples have been run to assess 
its carbonaceous chondrite content. PRA 04401 is an 
extremely coarse-grained howardite containing a high 
concentration (~40-50% in places) of nearly cm-sized 
angular carbonaceous clasts that texturally resemble 
CM2 material [7].  SCO 06040 is also a coarse-grained 
howardite breccia, contains a lower amount (~10%) of 
rounded, up to 2mm diameter, CM2-like clasts [7].  
OCs: Sharps (H3.4) is a fragmental breccia containing 
accessory carbonaceous clasts up to 1 cm in diameter 
[8]. 

Oxygen isotope analysis was performed by infrared 
laser-assisted fluorination [9]. All analyses were ob-
tained on untreated whole rock samples (0.5-2 mg). 
System precision, as determined on an internal obsidi-

an standard is: ±0.05‰ for δ17O; ±0.09‰ for δ18O; 
±0.02‰ for 17O (2σ).  

 
Fig. 1 Mg Map of a Type A/B Allende clast (AMNH 
4301 [1]). Remnants of primary material are present in 
the centre of some larger chondrules. 
  

Results: All of the Allende DIs are displaced 
slightly to the right of the CCAM line in Fig.2 and de-
fine a linear trend with a slope of y = -4.30 + 0.89x R2 
= 0.99. The less altered chondrule-bearing clasts (A 
and A/B) plot closest to bulk Allende analysis in Fig. 2, 
with the most altered clast (Type B) (12b1) being ap-
proximately 5‰ heavier with respect to 18O. Matrix-
rich Type C clasts show a narrow range of oxygen iso-
tope variation, plotting roughly halfway between the 
most and least altered DIs in Fig. 2. These results are in 
agreement with previous studies of Allende DIs [1].    

DIs in CV3s NWA 2140 and NWA 2364  (Type 
A/B and A respectively) plot at the higher   δ18O values 
than their equivalents in Allende (Fig. 2). This is con-
sistent with the results of previous studies [1] which 
found that Allende DIs are relatively 16O-enriched 
compared to inclusions in other CV3s (Fig.3).  

Carbonaceous chondrite clast material from the 
howardite PRA 04401 plots at the extension of the 
CM2 field in Fig. 2 consistent with results of textural 
and mineralogical studies [7]. The other howardite 
samples analyzed in this study (SCO 06040 and Bhol-



ghati) have 17O values that vary from -0.265 to -
0.489‰, consistent with bulk carbonaceous  chondrite 
(CM2) contents of between about 1 and 10%. 

 
Fig. 2 Oxygen isotopic composition of Dark Inclusions. 
The blue dashed line is the best fit line through the 
Allende DIs only. Bulk Allende [10]. TFL = Terrestrial 
Fractionation Line, CRML = CR Mixing Line [11], 
CCAM = Carbonaceous Chondrite Anhydrous Mineral 
line [12]. CM2 field (blue shading) [12], CV-CK field 
(grey shading) [10]. 
  

DIs analyzed in Sharps are clearly distinct from 
those in either the CV3s or howardites and plot on the 
CR Mixing Line [11]. The composition of these DIs is 
not well understood, although they do not appear to be 
mineralogically related to CR chondrites [8]. 

Discussion: Mineralogical studies of DIs have 
played a crucial role in highlighting the importance of 
parent body processes in modifying the composition of 
CV chondrites [2, 13]. In particular, DI studies have 
shown that CV3s, previously regarded as pristine nebu-
lar condensates, underwent extensive aqueous altera-
tion [2, 13]. Furthermore, textural evidence indicates 
that, following aqueous alteration, some DIs experi-
enced a phase of thermal metamorphism, resulting in 
phyllosilicate dehydration and the formation of sec-
ondary Fe-rich olivine (Type B inclusions) [13]. This 
model was later extended to explain the origin of CV3 
Fe-rich matrix olivines in general [14].  

The results of previous oxygen isotope studies of 
DIs have also pointed to the role of aqueous alteration 
in modifying their primary compositions [1]. As shown 
in this study, DIs define linear arrays with a shallower 
slope than the CCAM and with less altered material 
plotting at the 16O-rich end (Type As) and more altered 
material  (Type Bs) at the 16O-poor end [1]. However, 
with respect to phyllosilicate dehydration and second-
ary Fe-rich olivine formation, oxygen isotope evidence 
appears less clear-cut [15]. Experimental evidence in-
dicates that dehydration will result in heavy-isotope 
enrichments, which for Allende matrix olivines are not 
seen, if the CCAM line is used as a reference [15]. 

 
Fig. 3 Oxygen isotope composition of DIs in CV3 
chondrites. Data this study and [1] (see text for details). 
 

However, DIs in Allende may point to a possible 
weakness in this argument. In Fig. 2 and 3 DIs do not 
sit on the CCAM line, but instead define a line of lower 
slope (Fig. 2). In a similar way, chondrules in Allende 
plot on a discrete line with a steeper slope than the 
CCAM line. Analysis of 22 Allende chondrules (OU 
unpublished data) yield an array with a slope of: y = -
3.45 + 0.97x (Fig. 3). If this reference line, rather than 
the CCAM, is used positive shifts of 7‰ along a mass 
fractionation line to the array defined by Vigarano DIs 
is feasible (Fig. 3). This is greater than required by 
earlier experiments [15]. More recent work has shown 
that shifts of 7‰ are produced during dehydration of 
serpentine [16]. Thus, phyllosilicate dehydration, lead-
ing to the formation of CV3 Fe-rich matrix olivines, 
may be a viable mechanism, provided the relevant ref-
erence line is steeper than the CCAM [17]. 
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