Overview of NASA Power Technologies for Space and Aero Applications

Presented to

IEEE Cleveland Power and Energy Society

Raymond F. Beach
NASA Glenn Research Center
October 16, 2014
Topics

• Space Power Development Objectives and Roadmap
• Aircraft Power Development Objectives and Roadmap
• Component Technology Development
Space Power Development Objectives and Roadmap
The Future of Human Space Exploration

NASA’s Building Blocks to Mars

U.S. companies provide affordable access to low Earth orbit

Mastering the fundamentals aboard the International Space Station

Pushing the boundaries in cis-lunar space

Developing planetary independence by exploring Mars, its moons, and other deep space destinations

The next step: traveling beyond low-Earth orbit with the Space Launch System rocket and Orion crew capsule

Missions: 6 to 12 months
Return: hours

Missions: 1 month up to 12 months
Return: days

Missions: 2 to 3 years
Return: months

Earth Reliant
Proving Ground
Earth Independent
The Space Launch System (SLS)

- Designed to carry the Orion spacecraft, cargo, equipment and science experiments to Earth's orbit and destinations beyond.

- The SLS will have an initial lift capacity of 70 metric tons and will be evolvable to 130 metric tons.

- It will use a liquid hydrogen and liquid oxygen propulsion system, which will include the RS-25 from the Space Shuttle Program for the core stage and the J-2X engine for the upper stage.

- SLS will use solid rocket boosters for the initial development flights, follow-on boosters will be competed based on performance requirements and affordability considerations.
Orion MPCV Electrical Power System

Solar Array Wings
- 4 wings with 3 deployable panels
- Triple junction solar cells for high conversion efficiency
- Two axis articulation for sun tracking
- 11.1 kW total power for user loads and battery recharge

Battery Energy Storage
- 4 batteries of ≈ 30 A-hr each
- Li ion chemistry for high energy density
- High voltage for direct connection to power distribution
- Cell balancing for high charge/discharge cycle life

Power Distribution Equipment
- 4 power distribution channels
- High voltage (120 VDC) distribution for reduced weight
- Current-limiting SiC switchgear for fault protection
- Transient protection for lightning strikes (on ground)
Solar Electric Propulsion (SEP)

NASA is developing high-performance SEP capability to enable future in-space exploration missions.

• High propellant efficiency
 • Reduced launch mass
 • Lower mission cost
Potential Deep Space Vehicle Power System Characteristics

- Power 10 kW average
- Two independent power channels with multi-level cross-strapping
- Solar array power
 - 24+ kW Multi-junction arrays
- Lithium Ion battery storage
 - 200+ amp*hrs
 - Sized for deep space or low lunar orbit operation
- Distribution
 - 120 V secondary (SAE AS 5698)
 - 2 kW power transfer between vehicles

Deep space vehicle concept
Aero Power Development Objectives and Roadmap
Aircraft Turboelectric Propulsion

Projected Timeframe for Achieving Technology Readiness Level (TRL) 6

Spinoff Technologies Benefit More/All Electric Architectures:
- High-power density electric motors replacing hydraulic actuation
- Electrical component and transmission system weight reduction

- **>10 MW**
 - Turboelectric and hybrid electric distributed propulsion 300 PAX
- **5 to 10 MW**
 - Hybrid electric 737–150 PAX
 - Turboelectric 737–150 PAX
- **2 to 5 MW class**
 - Hybrid electric 100 PAX regional
 - Turboelectric distributed propulsion 150 PAX
- **1 to 2 MW class**
 - Hybrid electric 50 PAX regional
 - Turboelectric distributed propulsion 100 PAX regional
- **kW class**
 - All-electric and hybrid-electric general aviation

(Power level for single engine)

<table>
<thead>
<tr>
<th>Power Level for Electrical Propulsion System</th>
<th>Today</th>
<th>10 Year</th>
<th>20 Year</th>
<th>30 Year</th>
<th>40 Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>kW class</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 to 2 MW class</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 to 5 MW class</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 to 10 MW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>>10 MW</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

National Aeronautics and Space Administration
Superconducting motor-driven fans in a continuous nacelle

Power is distributed electrically from turbine-driven generators to motors that drive the propulsive fans.
Advanced Power Technologies
Development Needs and Directions
Power System Taxonomy

Sources
- Solar Arrays
- Brayton Rotating Unit
- Stirling Radioisotope
- Fuel Cells

Power Management And Distribution
- Source Regulator
- Power Distribution
- Charge/Discharge Regulator
- Load Converters
- Power System Control
- Load Leveling

Energy Storage
- Batteries
- Flywheel Energy Storage

Loads
- Electric Propulsion
- Communications
- Instruments
- Actuators
Photovoltaic Arrays

<table>
<thead>
<tr>
<th>Current State</th>
<th>Drivers</th>
<th>Missions</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Solar Cell Efficiency approx. 30%</td>
<td>• High Power Scalability</td>
<td>• Low cost, low mass blanket technology using automated manufacturing methods</td>
</tr>
<tr>
<td>• 6 mil thick, non-flexible cells</td>
<td>• Higher efficiency</td>
<td>• Large multi-hundred kilowatt solar arrays w/ improved stowed volume and deployability.</td>
</tr>
<tr>
<td>• Relatively high cost with only limited automation</td>
<td>• Lower Cost</td>
<td>• Arrays tailored for low intensity / low light operation</td>
</tr>
<tr>
<td>• Honey-comb panels @ 10-15 kW power levels</td>
<td>• Lower Mass</td>
<td></td>
</tr>
<tr>
<td>Current State</td>
<td>Drivers</td>
<td>Future State</td>
</tr>
<tr>
<td>--------------</td>
<td>---------</td>
<td>--------------</td>
</tr>
</tbody>
</table>
| MMRTG | • Long duration deep space missions
| | • Greater distance from sun
| | • Planet surface ops
| | • Large power generations for nuclear electric propulsion
| | • 100sW – MW needs | • Advanced Stirling Generation
| | | > 20% Conversion Efficiency
| | | • Nuclear surface power
| | | • Large fission for NEP

- **MMRTG**
 - 110 W modules
 - Low efficiency

- **Advanced Stirling Generation**
 > 20% Conversion Efficiency

- **Nuclear surface power**

- **Large fission for NEP**
Batteries

<table>
<thead>
<tr>
<th>Current State</th>
<th>Drivers</th>
<th>Future State</th>
</tr>
</thead>
</table>
| • Rechargeable: Ni-H$_2$ (45Wh/kg, > 10 years); Li-Ion (100 Wh/kg, > 5 years life)
• Primary: Ag-Zn (100 Wh/kg; 20 cycles); Li-SO$_2$ (200 Wh/kg; 5 years life)
• Heavy, Bulky
• Safety Concerns | • Very high specific energy
Rechargeable batteries to enable longer operation
• Emphasis on safety
• Longer cycle life
• Extreme temperature environments | • “Beyond Li ion”
Rechargeable Batteries: > 500 Wh/kg, 5 yrs
• Rechargeable Li ion Long cycle life batteries: > 220 Wh/kg, 5 yrs
• Primary: 1000 Wh/kg, > 20 yrs |
<table>
<thead>
<tr>
<th>Current State</th>
<th>Drivers</th>
<th>Future State</th>
</tr>
</thead>
</table>
| **Regenerative Fuel Cells** | • Power rating 2-10 kW
• 35-50% Efficient
• Life: 50 Cycles
• Heavy, Bulky, Complex, Safety Concerns | • Longer missions – days / weeks
• High Efficiency
• “Passive” management of fluids and gasses
• High Power Rating and energy storage capability
• Long Life, high reliability, safe
• Operate with flexible fuels | • Power Rating: 10-30 kW
>8 hrs.
• Operable with reactants at > 2000 psi to reduce tank volume
• Life: 10,000 hours
• 70% Efficient, Reliable & Safe
• Solid oxide fuel cells capable of CO₂ processing and oxygen production |

| **Flywheels** | • Specific Energy
50Whr/kg | • High power
• Long life
• High Energy Density
• High Strength Fibers
• Low Loss Bearings
• Reliability
• Mass | • Carbon fiber or Graphene specific power >200+ W-hr/kg.
• Cycle life >150,000 cycles
• Operating temperature
• -150C to +150C |
<table>
<thead>
<tr>
<th>Current State</th>
<th>Drivers</th>
<th>Future State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Conversion and Distribution Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Power converters 94% efficient</td>
<td>• Need for unique vehicle configurations</td>
<td>• Modular PMAD</td>
</tr>
<tr>
<td>• Power Distribution: 170V and 120 V</td>
<td>• Extreme Space environments</td>
<td>• Power Converter >97%</td>
</tr>
<tr>
<td>• Switchgear – Solid State, Electromechanical Relays</td>
<td>• Maximize efficiency, power density, safety, reliability</td>
<td>• Voltage >300V</td>
</tr>
<tr>
<td></td>
<td>• Minimize mass/volume, DDT&E costs, integration and operations cost</td>
<td>• Novel Switching Devices</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Superconductors</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• High radiation tolerance</td>
</tr>
<tr>
<td>Intelligent Power Management Systems</td>
<td></td>
<td>Autonomous Vehicle Management with Ground Oversight</td>
</tr>
<tr>
<td>• Spacecraft power managed by ground controllers</td>
<td>• Long term autonomous operations</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Load and energy management under constrained capacity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Failure diagnostics and prognostics</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Integration with Mission Manager</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Electric Machines for Commercial Aircraft Propulsion

<table>
<thead>
<tr>
<th>Current State</th>
<th>Drivers</th>
<th>Future State</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Commercial aircraft use turbofans or turbo props. Electric aircraft propulsion only implemented on small experimental planes. • Motors, generators, power distribution, and energy storage to heavy and inefficient to exceed performance of baseline system</td>
<td>• High Specific Power Electric Machines (>8HP/lb) • High Efficiency Electric Machines • High reliability/redundancy • High Specific Energy batteries for some configurations</td>
<td>• 10-100MW aircraft propulsion electric system for regional, single isle and larger commercial aircraft. • Reduced aircraft fuel burn, NOx emissions, and noise • Electric propulsion power system able to meet or exceed current safety standards (engine out, redundancy, others).</td>
</tr>
</tbody>
</table>