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Background 

  Changes in design paradigm have made possible contra-
rotating open rotor (CROR) propulsion systems that can retain 
their inherent fuel-efficiency advantage over turbofans while 
also be acoustically acceptable. 

Lower tip speeds, increased rotor diameters & 
rotor-rotor spacing, unequal blade counts 

Shift in Design Philosophy 

GE Un-Ducted Fan (UDF) Engine (1980s) Snecma CROR Engine Concept (Present) 
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Motivation 

 Designing low-noise contra-rotating open rotor (CROR) 
propulsion systems that can meet both community noise 
regulations and cabin noise limits requires reliable aero/
acoustic prediction tools. 

 Since CROR noise spectra 
exhibit a preponderance of 
tones, predicting their tone 
content has been the focus 
of many past and current 
studies. 

  In this study, a NASA open rotor tone noise model was assessed 
for its ability to predict CROR nearfield tone noise at cruise. 

 The testbed is a benchmark GE model scale CROR blade set 
called F31/A31 for which extensive aero/acoustic data exist. 

Measured CROR Acoustic Spectrum 
(Model Scale, Cruise Condition) 
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CROR Acoustic Modeling 
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 Acoustic Analogy         Ffowcs Williams Hawkings Eq. 
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Owing to the linearity of the acoustic field, the acoustic contribution 
of each rotor can be calculated separately and the two contributions 
combined to estimate CROR noise field. 
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         mB1Ω1 + kB2Ω2 = mBPF1 + kBPF2

CROR Tone Noise Model 
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Thickness noise is produced at the harmonics of the blade passing frequency of each 
rotor. Loading noise and quadrupole noise are produced at the harmonics of the 
blade passing frequency of each rotor as well as at the sum and difference 
combinations of the front and aft rotor blade passing frequencies. 

 Tonal acoustic field for front rotor  

Acoustic Harmonic Index 

Unsteady aerodynamic 
Harmonic Index 

    mB1BBΩ1 + kBkk 2B Ω2 = mBPF1FF + kBPF2FF

Acoustic Harmonic Index 

Unsteady aerodynamic 
Harmonic Index 
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CROR Tone Noise Model (Cont’d) 
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Asymptotic approximations to integrals over source time τ yield efficient formulas of 
computing CROR tone amplitudes. Replace (B1 & Ω1) w. (B2 & Ω2) for aft rotor tones. 

 Tone amplitudes of various sources 
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LINPROP Code 

QPROP Code 
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Aerodynamic Input 

 Aerodynamic input for use in the acoustic model (i.e., blade 
loading and Lighthill tensor distributions) can be extracted or 
reconstructed from unsteady aerodynamic simulations. 

  In this work commercial CFD software package FINE/TurboTM 
was used to generate the required unsteady aerodynamic 
inputs. 

 The nonlinear harmonic (NLH) approximation was used to 
significantly reduce unsteady aerodynamic simulation times. 

 Means plus three harmonics of the unsteady flow were 
considered in this study. For the dense grid used: 

•  NLH CPU time ~ 5-6 x steady state solution time 
•  Full unsteady CPU time ~100 x steady state solution time 
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Aerodynamic Input (Cont’d) 

 The NLH grid is comprised of 73 blocks and 27.1x106 mesh 
points. One passage each of the front and aft rotors plus 
ancillary regions like spinner, hub and farfield are included.  

Sketch of GE Model Scale F31/A31 CROR 

FINE/TurboTM Computational Block 
(farfield blocks shown in gray) 

Front Rotor Blade Count 12 

Aft Rotor Blade Count 10 

Front Rotor Diameter 0.66m 

Aft Rotor Diameter 0.63m 

Rotor-Rotor Spacing 0.20m 
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Wind Tunnel Data 

 Aerodynamic/Acoustic data used for comparisons in this study 
were acquired in the NASA 8’ x 6’ high speed wind tunnel. 
Aerodynamic data include thrust and torque measurements, 
and acoustic data include nearfield sideline measurements. 

Retractable “Acoustic Plate” 

17 Kulites Flush-Mounted 
Along the Plate Centerline  

Model Scale GE F31/A31 
Installed in NASA 8’ x 6’ WT 

Vertical Positions of the Plate 
Relative to Open Rotor Axis 
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Mean Pressure Distribution 
at Highest Speed 

Aerodynamic Predictions 

Predicted & Measured Propulsor Thrust 
as a Function of Rotor Corrected Speed 

  In total eight tip speed conditions were simulated. The front and 
aft rotor speeds were equal for all cases though neither the 
aero nor the acoustic model is restricted to equal RPM cases. 
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 Tone spectral comparisons at the highest tip speed broadside 
to the aft rotor for farthest plate position. 
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Acoustic Predictions 
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Typically, rotor tones are well-predicted using thickness & loading sources only, but 
interaction tones require the inclusion of quadrupole source for better agreement. 
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Acoustic Predictions (Cont’d) 

 Select tone SPLs at the highest tip speed broadside to the aft 
rotor for all plate positions. 
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Absolute level of rotor tones are generally well-predicted (avg. Error = 1dB). 
The agreement for the interaction tones is fair (avg. Error ≤ 3dB). 
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Acoustic Predictions (Cont’d) 

 Tone OASPL at the highest tip speed broadside to the aft 
rotor for all plate positions. 
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Tone OASPL is extremely well-predicted in all but one plate position. The 
predicted trend with plate distance is less erratic than the measured trend. 
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Acoustic Predictions (Cont’d) 

 Tone OASPL as a function of tip speed broadside to the aft 
rotor for two plate positions. 
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For nearest plate position tone OASPL is extremely well-predicted at all 
but the lowest speed. For the farthest plate position the agreement is fair. 

Measurements 
indicate aft rotor 
is near windmill 
at this speed.  
Predicted aft 
rotor thrust more 
than twice the 
measured thrust. 
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Acoustic Predictions (Cont’d) 

 Tone OASPL directivity for highest tip speed for nearest plate 
position. 
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The data-theory agreement for the basic features and trends of tone OASPL directivity 
is good. In the neighborhood of the broadside location the levels are well-predicted. 
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Acoustic Predictions (Cont’d) 

 Tone OASPL directivity for highest tip speed for farthest plate 
position. 
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The data-theory agreement for the basic features and trends of tone OASPL directivity 
is fair. In the neighborhood of the broadside location the levels are well-predicted. 
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Summary 
 Assessment of a NASA acoustic analogy based open rotor noise 
prediction model has been carried out using nearfield acoustic 
data acquired for a model scale open rotor at cruise condition. 

 Comparisons indicate that the strongest tones as well as tone 
OASPL are well predicted for the broadside locations for which 
plate boundary layer and end-effect corrections are relatively 
small. 

  The quadrupole source does not influence the levels of rotor 
tones, but is crucial in determining the interaction tone levels. 

 Not unexpectedly, the aft rotor contribution is more significant 
than the front rotor’s. 

  Thickness and loading source levels contribute roughly equally for 
the front rotor tones, but for the aft rotor tones the loading noise is 
entirely dominant.  
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Questions? 


