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Content of Discussion

• Introduction
Compliant Thermal Barriers (CTB) What are they? Where are they used?
Treatment of CTB’s – How are they implemented?
Construction, requirements, and characteristics of thermal barriers

• Current Efforts to Improve Understanding
Thermal

o What we know
o Modeling efforts
o Case Study: Effect of core density on flow/leakage
Mechanical

o What we know
o Modeling efforts
o Case Study: Effect of core density on loads

• Still more to do
• Summary
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INTRODUCTION
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An Integral Part of the TPS

• Often referred to as “thermal seals” or “seals”
• One “class” of thermal barriers
• High temp. ceramic based fibrous materials
• Installed in TPS interface gaps
• Roles

Thermal – limit inboard temperatures
Structural – accommodate deflections

• Multitude of configurations…but share
common elements

Vehicle
Penetrations

Doors Control
Surfaces

Compliant Thermal Barriers
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Compliant Thermal Barrier Construction

Blanket Thermal Barrier (BTB)

Hybrid Thermal Barrier (HTB)

• Outer sheath
1+ layers of aluminosilicate
woven fabric (e.g., NextelTM)
Coatings: RTV, emissivity, etc.

• Core
Aluminosilicate blanket (e.g.,
Saffil)
Metallic spring tube

• Other
Stitching to control shape/size
and keep insulation in tact
End treatments/closeouts

5



Compliant Thermal Barrier
Requirements & Characteristics

• General Requirements
Survive in harsh environments (thermally, chemically, tribologically)
Mitigate heat transfer

o Good thermal insulators
o Minimize convective flow (in combination with inboard environmental

barriers)
o Mitigate radiation heat transfer
Exhibit flexibility/conformability
Remain resilient
Meet load requirements

• Characteristics
Made of high temperature ceramic fiber based materials
Utilize high performance insulation
Permeable
Compliant
Exhibit set/compaction (even at ambient temperatures)
Non linear hysteretic loading behavior
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General Perception vs. Reality

More Art than Science???

• Typically considered as “gap fillers” to fill a space – design it to fit
• Often an “after thought” in design of TPS
• Minimal effort to optimize design need guidance

Thermally: How much insulation is needed? Is there an optimal
orientation?
Mechanically: Are there load requirements for the interface? What level
of durability does the barrier need? What kind of gap change does it
need to accommodate?

• Strong reliance on heritage use

The Case for More Science
• Case studies

Door closure forces – Space Shuttle
Panel installation – MPCV
Potential tile debonding – MPCV
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THE SCIENCE: CURRENT EFFORTS TO
IMPROVEUNDERSTANDINGOF

THERMAL BEHAVIOR
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(Daryabeigi et al., 2010)
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Thermal Behavior:WhatWe Know
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• Heat transfer occurs via several
mechanisms

Conduction (solid and gas)
Convection (natural? and forced)
Radiation

• Insulation density/pore size affect degree
and modes of heat transfer

• Different modes are active/dominant
under different conditions

Temperature (e.g., radiation dominant at
high temperatures)
Pressure (e.g., gas conduction greater at
higher pressures)

!



Energy Equation for PorousMedia
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• Generalized heat transfer equation

• Heat transfer coefficients (Daryabeigi et al., 2010)

Darcy Velocity:



Case Study: Effect of Core Density on Flow
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(DeMange, unpublished) (Shuo et al., 2011)

(Stanek & Szekely, 1974)



THE SCIENCE: CURRENT EFFORTS TO
IMPROVEUNDERSTANDINGOF

MECHANICAL BEHAVIOR
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Mechanical Behavior:WhatWe Know
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• Similar behavior to low density
porous foam materials

Linear elasticity (cell wall bending)
fiber bending

Plateau (cell wall buckling) fiber
breakage?
Densification (cell collapse) pore
collapse

• Strong effect of core density on
mechanical performance (opposite to
effect on insulating properties)

• Exhibit hysteresis during loading,
unloading

• Display compaction/set (even at RT)
that decreases with number of cycles

(Gibson & Ashby, 1997)

(DeMange, 2012)



Modeling Efforts

• Van Wyk modeled compressibility of fibrous wool (1946)
Fiber as straight rod supported horizontally between 2 other rods
Many other studies based off Van Wyk’s model

o Komori, et al. (1977, 1992) – Orientation of fibers, fiber crimp
o Beil, et al. (2002) – Friction of fibers
o Barbier, et al. (2009) – Hysteresis and friction

• Pineda (2014) modeled Saffil insulation using energy method
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p = contact load
k = empirically determined constant (structure of fiber mass)
E = Young’s modulus of fibers
m = mass of fibers
= density of fiber

vi = instantaneous bulk volume
vo = initial bulk volume
SVFi = instantaneous solid vol. fraction (volume fibers/bulk volume)
SVFo = initial solid vol. fraction (volume fibers/bulk volume)



Case Study: Effect of As Fabricated Core
Density on Loads

• Load behavior is highly nonlinear
• Nonlinear increase in peak load vs. as fabricated density
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Case Study: InitialModeling Efforts

• Van Wyk provides a reasonable first approximation of behavior of CTB’s
• Pineda model matches Saffil performance well
• Models need expansion and refinement to incorporate effects from various sources
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Still somuch to do…

• Heat transfer modeling
Need more data

o Insulation – Effect of orientation (e.g., Saffil mat is transversely isotropic),
other types (e.g., OFI, MLI, aerogels), how to reliably measure density

o Effect of size/configuration – Hard to measure thermal properties on small
samples

o Variation between samples
Validation of models – How do we validate with combined conduction,
convection, and radiation?

• Mechanical modeling
Need more data

o Insulation – Basic mechanical material properties, effect of orientation (e.g.,
Saffil mat is transversely isotropic), other types (e.g., OFI, MLI, aerogels), how
to reliably measure density

o Effect of size/configuration (e.g., inclusion of spring tube, stitching, coatings)
o Variation in samples
o Effect of environment (temperature, pressure, space)
What’s the best model?
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Goal: Develop a thermal barrier thermo mechanical design/sizing tool



Summary

• Thermal barriers are integral to successful TPS performance
Considered more art, but need more science
Vehicle designers need guidance in designing, implementing, and
maintaining thermal barriers

• Behavior of thermal barriers
Thermal performance

o Heat transfer in porous soft goods is complex
o Good baseline understanding of heat transfer in porous TPS
o Challenges remain in characterization (e.g., lack of data, difficulty

in testing small samples)
Mechanical performance

o Less studied and understood
o Very few models exist
o Multitude of configurations and implementations creates modeling

challenges
• Still much to do
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Comparison to VanWykModel

569 (HS to BS) 570 (PtoP)

• Variability in compression performance of samples evident
• Suggest k varies from sample to sample (Van Wyk, 1946)
• Initial nonlinearity may be due to fiber slippage (Dunlop, 1974)

k
k
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Variation of k for Samples

• k is function of initial density of core fibers (Dunlop, 1974)
• k is complex function of fiber configuration (e.g., layer orientation) 24



Effect of Insulation Density on Effective
Thermal Conductivity
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(Daryabeigi et al., 2010)


