Extending Our Understanding of Compliant Thermal Barrier Performance

Jeffrey J. DeMange
The University of Toledo

Joshua R. Finkbeiner, Patrick H. Dunlap
NASA Glenn Research Center

Materials Science & Technology
Thermal Protection Materials and Systems
Pittsburgh, PA
October 12-16, 2014

This research was funded by the U.S. Government under NASA Contract NNC13BA10B. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the U.S. Government.
Content of Discussion

• Introduction
 ➢ Compliant Thermal Barriers (CTB) - What are they? Where are they used?
 ➢ Treatment of CTB’s – How are they implemented?
 ➢ Construction, requirements, and characteristics of thermal barriers

• Current Efforts to Improve Understanding
 ➢ Thermal
 o What we know
 o Modeling efforts
 o Case Study: Effect of core density on flow/leakage
 ➢ Mechanical
 o What we know
 o Modeling efforts
 o Case Study: Effect of core density on loads

• Still more to do
• Summary
INTRODUCTION
An Integral Part of the TPS

- Often referred to as “thermal seals” or “seals”
- One “class” of thermal barriers
- High-temp. ceramic-based fibrous materials
- Installed in TPS interface gaps
- Roles
 - Thermal – limit inboard temperatures
 - Structural – accommodate deflections
- Multitude of configurations…but share common elements
Compliant Thermal Barrier Construction

- **Outer sheath**
 - 1+ layers of aluminosilicate woven fabric (e.g., Nextel™)
 - Coatings: RTV, emissivity, etc.

- **Core**
 - Aluminosilicate blanket (e.g., Saffil)
 - Metallic spring tube

- **Other**
 - Stitching to control shape/size and keep insulation in tact
 - End treatments/closeouts
Compliant Thermal Barrier Requirements & Characteristics

• General Requirements
 - Survive in harsh environments (thermally, chemically, tribologically)
 - Mitigate heat transfer
 - Good thermal insulators
 - Minimize convective flow (in combination with inboard environmental barriers)
 - Mitigate radiation heat transfer
 - Exhibit flexibility/conformability
 - Remain resilient
 - Meet load requirements

• Characteristics
 - Made of high temperature ceramic fiber-based materials
 - Utilize high-performance insulation
 - Permeable
 - Compliant
 - Exhibit set/compaction (even at ambient temperatures)
 - Non-linear hysteretic loading behavior
General Perception vs. Reality

More Art than Science???

• Typically considered as “gap fillers” to fill a space – design it to fit
• Often an “after-thought” in design of TPS
• Minimal effort to optimize design → need guidance
 ➢ Thermally: How much insulation is needed? Is there an optimal orientation?
 ➢ Mechanically: Are there load requirements for the interface? What level of durability does the barrier need? What kind of gap change does it need to accommodate?
• Strong reliance on heritage use

The Case for More Science

• Case studies
 ➢ Door closure forces – Space Shuttle
 ➢ Panel installation – MPCV
 ➢ Potential tile debonding – MPCV
THE SCIENCE: CURRENT EFFORTS TO IMPROVE UNDERSTANDING OF THERMAL BEHAVIOR
Thermal Behavior: What We Know

• Heat transfer occurs via several mechanisms
 - Conduction (solid and gas)
 - Convection (natural? and forced)
 - Radiation

• Insulation density/pore size affect degree and modes of heat transfer

• Different modes are active/dominant under different conditions
 - Temperature (e.g., radiation dominant at high temperatures)
 - Pressure (e.g., gas conduction greater at higher pressures)

▷ Heat transfer in porous soft good TPS is a complex interplay of mechanisms affected by many variables!

(Daryabeigi et al., 2010)
Energy Equation for Porous Media

- Generalized heat transfer equation

\[
\left(\rho c_p \right) \frac{1}{g} \left[\frac{(\rho c)_s}{(\rho c_p)} \frac{\partial T}{\partial t} + \vec{u} \cdot \nabla T \right] = \nabla \cdot (k_e \nabla T) + q'' + \frac{\mu}{K} \vec{u}^2
\]

- Convection
- Conduction + Radiation
- Heat Generation
- Viscous dissipation

Darcy Velocity: \(\vec{u} = \frac{m}{\rho_g} = \phi u_p \)

- Heat transfer coefficients (Daryabeigi et al., 2010)

\[
k_e = k_s + k_g + k_r
\]

Conduction \ Radiation

\[
k_s(T) = F_S f_v b \kappa_s^* (T) \quad k_g(T, P) = \frac{k_{g_0}(T)}{\Phi + 2\Psi \beta \Pr K n}
\]

\[
k_r = \frac{16\sigma n^2 T^3}{3\rho e}
\]
Case Study: Effect of Core Density on Flow

![Diagram showing the relation between porosity and permeability](DeMange_unpublished)

![Graph showing flow perpendicular to 2D fibrous media with different in-plane fiber orientations](Shuo_et_al_2011)

\[-\nabla P = \frac{\mu}{K} \bar{u} + \rho C |\bar{u}| \bar{u}\]

(Stanek & Szekely, 1974)

\[
\frac{(P_1^2 - P_0^2)A}{2\dot{m} \mu RT} = \frac{1}{K} + C \frac{\dot{m}}{A \mu}
\]
THE SCIENCE: CURRENT EFFORTS TO IMPROVE UNDERSTANDING OF MECHANICAL BEHAVIOR
Mechanical Behavior: What We Know

- Similar behavior to low-density porous foam materials
 - Linear elasticity (cell wall bending) → fiber bending
 - Plateau (cell wall buckling) → fiber breakage?
 - Densification (cell collapse) → pore collapse
- Strong effect of core density on mechanical performance (opposite to effect on insulating properties)
 \[\sigma \propto \left(\frac{\rho^*}{\rho_s} \right)^n \]
- Exhibit hysteresis during loading, unloading
- Display compaction/set (even at RT) that decreases with number of cycles
Modeling Efforts

• Van Wyk modeled compressibility of fibrous wool (1946)
 ➢ Fiber as straight rod supported horizontally between 2 other rods
 ➢ Many other studies based off Van Wyk’s model
 o Komori, et al. (1977, 1992) – Orientation of fibers, fiber crimp
 o Beil, et al. (2002) – Friction of fibers
 o Barbier, et al. (2009) – Hysteresis and friction

\[p = \frac{kEm^3}{\rho^3} \left(\frac{1}{v_i^3} - \frac{1}{v_o^3} \right) = kE \left(SVF_i^3 - SVF_o^3 \right) \]

 \(p = \) contact load
 \(k = \) empirically determined constant (structure of fiber mass)
 \(E = \) Young’s modulus of fibers
 \(m = \) mass of fibers
 \(\rho = \) density of fiber
 \(v_i = \) instantaneous bulk volume
 \(v_o = \) initial bulk volume
 \(SVF_i = \) instantaneous solid vol. fraction (volume fibers/bulk volume)
 \(SVF_o = \) initial solid vol. fraction (volume fibers/bulk volume)

• Pineda (2014) modeled Saffil insulation using energy method

\[U_{4P} = C_{10}(I_1 - 3) + C_{20}(I_1 - 3)^2 + C_{30}(I_1 - 3)^3 + C_{40}(I_1 - 3)^4 \frac{K}{2}(\ln J)^2 \]

\[T = \frac{2}{J} \left[\left(\frac{\partial U}{\partial I_1} + I_1 \frac{\partial U}{\partial I_2} \right) B' \right] \left[\frac{\partial U}{\partial I_1} B'^2 + \frac{\partial U}{\partial J} 1 \right] \]
Case Study: Effect of As-Fabricated Core Density on Loads

- Load behavior is highly nonlinear
- Nonlinear increase in peak load vs. as-fabricated density
Case Study: Initial Modeling Efforts

- Van Wyk provides a reasonable first approximation of behavior of CTB’s
- Pineda model matches Saffil performance well
- Models need expansion and refinement to incorporate effects from various sources
Still so much to do...

- Heat transfer modeling
 - Need more data
 - Insulation – Effect of orientation (e.g., Saffil mat is transversely isotropic), other types (e.g., OFI, MLI, aerogels), how to reliably measure density
 - Effect of size/configuration – Hard to measure thermal properties on small samples
 - Variation between samples
 - Validation of models – How do we validate with combined conduction, convection, and radiation?

- Mechanical modeling
 - Need more data
 - Insulation – Basic mechanical material properties, effect of orientation (e.g., Saffil mat is transversely isotropic), other types (e.g., OFI, MLI, aerogels), how to reliably measure density
 - Effect of size/configuration (e.g., inclusion of spring tube, stitching, coatings)
 - Variation in samples
 - Effect of environment (temperature, pressure, space)
 - What’s the best model?

Goal: Develop a thermal barrier thermo-mechanical design/sizing tool
Summary

• Thermal barriers are integral to successful TPS performance
 ➢ Considered more art, but need more science
 ➢ Vehicle designers need guidance in designing, implementing, and maintaining thermal barriers

• Behavior of thermal barriers
 ➢ Thermal performance
 o Heat transfer in porous soft goods is complex
 o Good baseline understanding of heat transfer in porous TPS
 o Challenges remain in characterization (e.g., lack of data, difficulty in testing small samples)
 ➢ Mechanical performance
 o Less studied and understood
 o Very few models exist
 o Multitude of configurations and implementations creates modeling challenges

• Still much to do
Points of Contact

Jeff DeMange jeffrey.j.demange@nasa.gov
Pat Dunlap patrick.h.dunlap@nasa.gov
Josh Finkbeiner joshua.r.finkbeiner@nasa.gov
Acknowledgements

• Evan Pineda – NASA GRC
References

Appendix
Comparison to Van Wyk Model

- Variability in compression performance of samples evident
- Suggest k varies from sample to sample (Van Wyk, 1946)
- Initial nonlinearity may be due to fiber slippage (Dunlop, 1974)
Variation of k for Samples

- k is function of initial density of core fibers (Dunlop, 1974)
- k is complex function of fiber configuration (e.g., layer orientation)
Effect of Insulation Density on Effective Thermal Conductivity

(Daryabeigi et al., 2010)