ASSESSMENT OF SHAPE MEMORY ALLOYS – FROM ATOMS TO ACTUATORS – VIA IN SITU NEUTRON DIFFRACTION

Othmane Benafan

Structures and Materials Division
NASA Glenn Research Center
Cleveland, OH 44135

The ASME 2014 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, September 8-10, 2014 – Newport, Rhode Island
It Takes a Team…

S.A. Padula II, R.D. Noebe, A. Garg, D.J. Gaydosh, G.S. Bigelow and T.J. Halsmer
Structures and Materials Division
NASA Glenn Research Center

R. Vaidyanathan and D. E. Nicholson
Advanced Materials Processing and Analysis Center
Materials Science and Engineering Department
University of Central Florida

B. Clausen and D. Brown
Los Alamos Neutron Science Center
Los Alamos National Laboratory

K. An and H.D. Skorpenske
Spallation Neutron Source
Oak Ridge National Laboratory

Acknowledgment

• NASA Fundamental Aeronautics Program, Fixed-Wing and Aeronautical Sciences Projects
• Basic Energy Sciences (DOE)
Motivation and Objectives

• We examine microstructures of:
 • Conventional structural materials by quenching in the high temperature structure and examining at room temperature.
 • This cannot be done for SMA’s because of the diffusionless phase transformation (austenite/martensite) cannot be suppressed by quenching

• Neutrons are non-destructive: complete, intact specimens/components can be studied in small samples (~mm) or in bigger engineering components (~m)

WE MUST EXAMINE IN SITU AT STRESS AND TEMPERATURE
Length Scale in Engineering Materials
Where Does Neutron Diffraction Fit?

ATOMIC SCALE
(NANOMATERIALS)

10^{-10} Å

10^{-9} nm

10^{-8}

10^{-7} μm

10^{-6} mm

10^{-5}

10^{-4}

10^{-3}

10^{-2}

10^{-1}

10^0 m

MICRO-SCALE
(MICROSTRUCTURES)

TEM

SEM / FIB

OM

HRTEM / STEM

ATOM PROBE / FIM

STRUCTURAL SCALE
(COMPLEX COMPONENTS)

LOAD FRAMES

NEUTRON / X-RAY DIFFRACTION

0%

5%

10%

15%

20%

stress (MPa)

strain (%)
Applications of Neutron Diffraction

- Chemistry
- Physics
- Engineering
- Life sciences
- Biosciences
- Materials science
- Geological sciences
- Archeology

Courtesy: Mario Bieringer
Neutrons at the Experimental Area

• Now we have neutrons, what next?

| Neutron beam: E_0, \vec{k}_0 | Detector: E, \vec{k} |

- Neutron beam with a known wavevector (k_0) and energy (E_0)
- Detect number of scattered neutrons with a wavevector (k) as a function of the scattering function $S(Q, \omega)$

$|Q| = \left| \vec{k}_0 - \vec{k} \right| = \frac{4\pi \sin \theta}{\lambda}$

$\Delta E = E_0 - E = \hbar \omega = \hbar^2 \left(\frac{k_0^2 - k^2}{2m} \right)$

Nomenclature

- k: wavevector
- E: energy
- Q: scattering vector
- \hbar: reduced Planck constant
- m: mass (1.67×10^{-24}g)
- λ: wavelength
- 2θ: scattering angle

$n\lambda = 2d \sin \theta$
Neutron Diffraction Data

- **Peak position**
 - Elastic lattice strain
 - Intergranular strains

- **Peak intensity**
 - Texture changes
 - Phase fraction

- **Peak width**
 - Qualitative information

Neutron Diffraction Data

- **Peak position**
 - Elastic lattice strain
 - Intergranular strains

- **Peak intensity**
 - Texture changes
 - Phase fraction

- **Peak width**
 - Qualitative information
Neutron/Synchrotron Sources in the USA
Neutron and Synchrotron Sources Around the World
Oak Ridge National Laboratories-SNS

Spallation Neutron Source at Oak Ridge National Laboratory

The world’s most intense pulsed, accelerator-based neutron source

Backscattering Spectrometer (BASIS) - BL-2
Dynamics of macromolecules, constrained molecular systems, polymers, biology, chemistry, materials science
Eugene Marenco - 865.241.1089 - marenco@ornl.gov

Nanoscale-Ordered Materials Diffractometer (NOMAD) - BL-1B
Liquids, solutions, glasses, polymers, nanocrystalline and partially ordered complex materials
Jaeck Neuhofer - 865.241.1465 - neuhoferj@ornl.gov

Wide Angular-Range Chopper Spectrometer (WARRCS) - BL-18
Atomic-level dynamics in materials science, chemistry, condensed matter sciences
Doug Almenrath - 865.576.9105 - almenrathd@ornl.gov

Fine-Resolution Fermi Chopper Spectrometer (SEQUOIA) - BL-17
Dynamics of complex fluids, quantum fluids, magnetism, condensed matter, materials science
Garret Grasonoth - 865.576.0900 - grasonothg@ornl.gov

Life sciences, polymers, materials science, earth and environmental sciences
Michael Ayers - 865.576.0905 - mayerms@ornl.gov

Vibrational Spectrometer (VISION) - BL-16B (2012)
Vibrational dynamics in molecular systems, chemistry
Christian Wettig-Draht - 865.576.8476 - wettigdrahtc@ornl.gov

Neutron Spin Echo Spectrometer (NSE) - BL-15
High-resolution dynamics of slow processes, polymers, biological macromolecules
Michael Gant - 865.576.8460 - gantm@ornl.gov

Hybrid Polarized Beam Spectrometer (HYPENS) - BL-14B
Atomic-level dynamics in single crystals, magnetism, condensed matter sciences
Gary Wies - 865.241.6018 - wiesga@ornl.gov

Magnetism Reflectometer (MAGICS) - BL-4A
Chemistry, magnetism of layered systems and interfaces
Valera Leazer - 865.576.5390 - leazerv@ornl.gov

Liquids Reflectometer - BL-4B
Interfaces in complex fluids, polymers, chemistry
John Ainger - 865.576.6102 - aingerj@ornl.gov

Cold Neutron Chopper Spectrometer (CNCS) - BL-5
Condensed matter physics, materials science, chemistry, biology, environmental science
Georg Chenes - 865.576.3311 - chenesg@ornl.gov

Extended Q-Range Small-Angle Neutron Scattering Diffractometer (EQ-SANS) - BL-6
Life science, polymer and colloidal systems, materials science, earth and environmental sciences
William Heber - 865.241.0695 - heberw@ornl.gov

Elastic Diffuse Scattering Spectrometer (CORELLI) - BL-9 (2014)
Detailed studies of disorder in crystalline materials
Tae-Soo - 865.576.5901 - yifei@ornl.gov

Macromolecular Neutron Diffractometer (MANDI) - BL-11 (2013)
Atomic-level structures of membrane proteins, drug complexes, DNA
Logan Coates - 865.933.0180 - coatesl@ornl.gov

Powder Diffractometer (PDQGEN) - BL-11A
Atomic-level structures in chemistry, materials science, and condensed matter physics including magnetic spin structures
Kash Hug - 865.241.7521 - hugka@ornl.gov

Engineering Materials Diffractometer (VULCAN) - BL-7
Mechanical behaviors, materials science, materials processing
Ko An - 865.815.3236 - keen@ornl.gov

Spallation Neutrons and Pressure Diffractometer (SNAP) - BL-3
Materials science, geology, earth and environmental sciences
Chris Tuls - 865.576.7168 - tulscc@ornl.gov

LEGEND
- **Installed, commissioning, or operating**
- **In design or construction**
- **Under consideration**
Isothermal Deformation - Loading Actuators

Binary 55NiTi

Graph showing stress (MPa) vs. strain (%) with two curves:
- Red curve: martensite (30 °C)
- Blue curve: austenite (320 °C)
Isothermal Deformation - Loading Actuators

The diagram shows the behavior of material planes under load and unload conditions. The graphs represent strain (%), load, and d-spacing (Å) with intensity (a.u.) on the y-axis. The material planes are marked with (011)_M, (100)_M, (110)_M, (020)_M, (111)_M, (111)_M, (120)_M, (121)_M, (120)_M, (030)_M, (031)_M, (013)_M, (230)_M, and (150)_M. The different colors indicate varying intensity levels, with red and blue colors being prominent. The graph also highlights the phase transitions between martensite (30 °C) and austenite (320 °C) phases.
Deformation mechanisms revealed - complexity and multiplicity of mechanisms can’t be resolved another way
- e.g., reorientation planes/limits, stress-induced-martensite region, martensite desist...
Isothermal Deformation – Where to Load Actuators? Does it Matter?

- No major differences in transformation strains
- Large strain evolution (ratcheting) difference

SMA Properties – Can they be Optimized for Actuators?

1. Material and Geometry
 - Binary 55NiTi $\rightarrow \phi = 5.08\text{mm (0.2in)}$
 - Stress free transformation temperatures
 - $A_s = 92 \, ^\circ\text{C}$
 - $A_f = 105 \, ^\circ\text{C}$
 - $M_s = 71 \, ^\circ\text{C}$
 - $M_f = 55 \, ^\circ\text{C}$
 - Effective coefficient of thermal expansion
 - $\alpha_A^* = 13.0 \times 10^{-6} / ^\circ\text{C}$
 - $\alpha_M^* = 6.4 \times 10^{-6} / ^\circ\text{C}$
 - Effective elastic moduli
 - $E_A^* = 74 \, \text{GPa}$
 - $E_M^* = 50 \, \text{GPa}$
 - Effective Poisson’s ratios
 - $\nu_A^* = 0.33$
 - $\nu_M^* = 0.387$
• Transformation temperatures during the reverse transformation measured from strain-temperature and DSC data were found to differ from the actual onset of transformation as revealed from neutron spectra.

• The austenite phase starting to form at ~75 °C,

O. Benafan et al., *Scripta Materialia*, 2013 68(18), p. 571–574
Dynamic Young’s Modulus for Ni\textsubscript{49.9}Ti\textsubscript{50.1}

- Dynamic Young’s modulus data obtained from the impulse excitation of vibration tests.
- The average dynamic modulus of martensite at room temperature was about 70 GPa, but decreased with increasing temperature with an average minimum value of 60 GPa at ~80 ºC.

O. Benafan et al., *Scripta Materialia*, 2013 68(18), p. 571–574
0.2% Offset “Yield” Stress Behavior of Ni\textsubscript{49.9}Ti\textsubscript{50.1}

- The onset of inelastic deformation (generally referred to as ‘yield’) in the martensite phase is dominated by reorientation and detwinning mechanisms.
- Decrease with increasing temperature, reaching an averaged minimum value of 140 MPa between 65 and 80 °C.
- The onset stress then sharply increased in the two-phase region and reached near saturation (with a still slightly positive slope) at 350 MPa near 130 °C.
- Inelastic deformation over this temperature range (~90 – 130 °C), which includes the B19'→B2 phase transition, is attributed to the nearly concurrent operation of stress-induced martensite and plastic deformation.
Transformation Temperatures: DSC vs. Strain-Temperature vs. Neutrons

- Transformation temperatures during the reverse transformation measured from strain-temperature and DSC data were found to differ from the actual onset of transformation as revealed from neutron spectra.
- The austenite phase starting to form at ~75 °C,

Thermomechanical Cycling of Actuators

Electron diffraction

In situ diffraction

Outcome

Outcome:
- In situ diffraction
- Electron diffraction

55NiTi

0.0 3.0 5.0 7.0 0.0 1.5 3.0

Temperature (°C)

20 cycles 50 cycles 0 cycles
SMA Properties – Can they be Optimized for Actuators?

1. Material and Geometry

- Binary 55NiTi → $\phi = 5.08$ mm (0.2in)
- Stress free transformation temperatures
 - $A_s = 92 \ ^\circ C$
 - $A_f = 105 \ ^\circ C$
 - $M_s = 71 \ ^\circ C$
 - $M_f = 55 \ ^\circ C$
- Effective coefficient of thermal expansion
 - $\alpha_A^* = 13.0 \times 10^{-6} \ / \ ^\circ C$
 - $\alpha_M^* = 6.4 \times 10^{-6} \ / \ ^\circ C$
- Effective elastic moduli
 - $E_A^* = 74 \ \text{GPa}$
 - $E_M^* = 50 \ \text{GPa}$
- Effective Poisson’s ratios
 - $\nu_A^* = 0.33$
 - $\nu_M^* = 0.387$
Coefficient of Thermal Expansion: Large Anisotropy

- Atomic scale measurements of thermal strains

Outcome
- First report on NiTi CTE tensor (monoclinic martensite) including negative expansion in certain crystal orientations
- Parametric input for most SMA models

Table:

<table>
<thead>
<tr>
<th></th>
<th>Heating ($10^{-6}/°C$)</th>
<th>Cooling ($10^{-6}/°C$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B19'$ NiTi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal</td>
<td>α_{11}</td>
<td>α_{11}</td>
</tr>
<tr>
<td>expansion</td>
<td>-47.2</td>
<td>-30.8</td>
</tr>
<tr>
<td>tensor</td>
<td>α_{22}</td>
<td>α_{22}</td>
</tr>
<tr>
<td>components</td>
<td>43.8</td>
<td>32.1</td>
</tr>
<tr>
<td>α_{33}</td>
<td>22.7</td>
<td>27.3</td>
</tr>
<tr>
<td>α_{31}</td>
<td>29.0</td>
<td>32.4</td>
</tr>
<tr>
<td>CTE*</td>
<td>6.4</td>
<td>9.5</td>
</tr>
<tr>
<td>CTE†</td>
<td>8.1</td>
<td>10.9</td>
</tr>
<tr>
<td>CTE (extensometry)</td>
<td>10.3</td>
<td>9.0</td>
</tr>
<tr>
<td>$B2$ NiTi</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CTE*</td>
<td>13.0</td>
<td>13.1</td>
</tr>
<tr>
<td>CTE (extensometry)</td>
<td>12.4</td>
<td>12.3</td>
</tr>
</tbody>
</table>

*isotropic average †self-consistent model

Coefficient of Thermal Expansion: Large Anisotropy

- Similar observation in HTSMAs (e.g., NiTiPt – B19)

O. Benafan et al., unpublished work
SMA Properties – Can they be Optimized for Actuators?

1. Material and Geometry

- Binary 55NiTi → \(\phi = 5.08 \text{mm (0.2in)} \)
- Stress free transformation temperatures
 - \(A_s = 92 \ ^\circ C \)
 - \(A_f = 105 \ ^\circ C \)
 - \(M_s = 71 \ ^\circ C \)
 - \(M_f = 55 \ ^\circ C \)
- Effective coefficient of thermal expansion
 - \(\alpha^*_A = 13.0 \times 10^{-6} / ^\circ C \)
 - \(\alpha^*_M = 6.4 \times 10^{-6} / ^\circ C \)
- Effective elastic moduli
 - \(E^*_A = 74 \ GPa \)
 - \(E^*_M = 50 \ GPa \)
- Effective Poisson’s ratios
 - \(\nu^*_A = 0.33 \)
 - \(\nu^*_M = 0.387 \)
Elastic Moduli: Hard and Soft Orientations

- Strain anisotropy and texture measurements

- Outcome
 - First validation of *ab initio* calculation
 - Entire compliance matrix, not just a Young's modulus
 - Revealed mechanisms responsible for deflated modulus values obtained from conventional macroscopic tests

Elastic Moduli: Hard and Soft Orientations

NiTiPt

O. Benafan et al., unpublished work
Elastic Moduli: Hard and Soft Orientations

NiTiPt

\[\begin{align*}
E_{011} &= 257.8 \text{ GPa} & R &= 0.985 \\
E_{002} &= 138.7 \text{ GPa} & R &= 0.994 \\
E_{111} &= 99.2 \text{ GPa} & R &= 0.997 \\
E_{120} &= 55.1 \text{ GPa} & R &= 0.988 \\
E_{102} &= 138.3 \text{ GPa} & R &= 0.993 \\
E_{121} &= 75.3 \text{ GPa} & R &= 0.995 \\
E_{030} &= 173.0 \text{ GPa} & R &= 0.998 \\
E_{013} &= 132.3 \text{ GPa} & R &= 0.988 \\
E_{122} &= 88.3 \text{ GPa} & R &= 0.996 \\
E_{032} &= 218.6 \text{ GPa} & R &= 0.886 \\
\end{align*} \]
Optimization of Two-Way Shape Memory Effect

- Uniaxial deformation at room temperature followed by free recovery

Outcome

- Established a quick and efficient method for creating a strong and stable TWSME
- Texture maps were used to determine deformation modes – correlated with TWSME stability and magnitude (not possible another way)
Shape Setting of SMA Actuators

- In situ neutron diffraction during shape setting of bulk polycrystalline NiTi

- Outcome
 - Guidelines for shape setting any actuator: stress and temperature limits for shape setting
 - Neutrons revealed mechanisms responsible for the stress generation and relaxation during shape setting.

Torsional Characteristics of 55NiTi
Torsional Characteristics of 55NiTi

(a) angle of twist vs. temperature for $T = 5.17$ N-m

(b) angle of twist vs. temperature for $T = 0$ N-m (TWSME)

(c) angle of twist vs. temperature for $T = 5.17$ N-m

(d) angle of twist vs. temperature for $T = 0$ N-m (TWSME)

(e) Solid and tube structures with d-spacing and normalized intensity data.
Extension of Neutrons to Novel High Temperature SMAs

- Microstructural evolution during isothermal and isobaric deformation of NiTiHf

- **Outcome**
 - High work output and dimensional stability
 - Texture measurements were correlated to the lack of evolution in this alloy
 - Confirmed relationship of microstructure and load-biased tests: From Neutron spectra
 - Neutrons showed why training of Hf alloy is not necessary

The role of retained martensite during thermal-mechanical cycling in NiTiPd high temperature shape memory alloy was revealed.

- **Outcome**
 - Direct correlations were made between macroscopic changes in actuator performance parameters, and atomic-scale evolution from neutron spectra.
 - The rate of evolution of texture and volume fraction of the retained martensite plays a key role in the stability of the actuator.
Neutrons can be used to study most actuator forms.
Thank You