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 Hot-wire and acoustic measurements were taken for a round convergent 
nozzle and a round convergent-divergent (C-D) nozzle at a jet Mach number of 0.61. 
The C-D nozzle had a design Mach number of 2.2. Compared to the convergent nozzle 
jet flow, the Mach 2.2 nozzle jet flow produced excess broadband noise (EBBN). It also 
produced a transonic resonance tone at 1200 Hz. Computational simulations were 
performed for both nozzle flows. A steady Reynolds-Averaged Navier-Stokes 
simulation was performed for the convergent nozzle jet flow. For the Mach 2.2 nozzle 
flow, a steady RANS simulation, an unsteady RANS (URANS) simulation, and an 
unsteady Detached Eddy Simulation (DES) were performed. The RANS simulation of 
the convergent nozzle showed good agreement with the hot-wire velocity and 
turbulence measurements, though the decay of the potential core was over-predicted. 
The RANS simulation of the Mach 2.2 nozzle showed poor agreement with the 
experimental data, and more closely resembled an ideally-expanded jet. The URANS 
simulation also showed qualitative agreement with the hot-wire data, but predicted a 
transonic resonance at 1145 Hz. The DES showed good agreement with the hot-wire 
velocity and turbulence data. The DES also produced a transonic tone at 1135 Hz. The 
DES solution showed that the destabilization of the shock-induced separation region 
inside the nozzle produced increased levels of turbulence intensity. This is likely the 
source of the EBBN. 

Nomenclature 
Djet = Nozzle exit diameter 
i = Index of data sample 
k = Turbulent kinetic energy 
Mjet = Mach number for ideally-expanded jet 
n = Total number of data samples 
p = Static pressure 
r = Radial coordinate;  
u, v, w = Components of velocity in the x-, y-, and z-directions 
u’/Ujet = Turbulence intensity in streamwise (x-) direction, computed from uRMS 
Ujet = Velocity for ideally-expanded jet 
x, y, z = Orthogonal coordinate system 
θ = Polar observation angle, measured from downstream axis 

Subscripts 
avg = Time-average value 
RMS = Root mean square value 
∞ = Freestream value 
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I. Introduction 
Convergent-divergent (C-D) nozzles, when operated at over-expanded nozzle pressure ratios, are 

known to produce significantly more noise than a convergent nozzle operating at the same conditions. 
This phenomenon is known as excess broadband noise (EBBN)1. Furthermore, at certain over-expanded 
nozzle pressure ratios C-D nozzles can produce resonances involving loud tones, referred to as transonic 
tones. Although these transonic resonances have been studied before1-3, they are not well understood. 
 A shortcoming of many experimental procedures for jet flows is that they do not allow the flow 
inside the nozzle to be investigated with great detail. Numerical simulations, though they have 
shortcomings of their own (e.g., cost, time, turbulence prediction and modeling), can easily show the flow 
inside the nozzle, in great detail. 
 Single-component velocity and turbulence data were collected for a round Mach 2.2 C-D nozzle 
at a pressure ratio that produced a transonic resonance, corresponding to an ideally-expanded jet Mach 
number, Mjet, of 0.61. These data were compared to similar data collected for a baseline nozzle (a round 
convergent nozzle) which involved no resonance or tones. Steady and unsteady numerical simulations 
were conducted for the Mach 2.2 nozzle using the Wind-US computational fluid dynamics code using 
Reynolds-Averaged Navier-Stokes (RANS) mode, Unsteady Reynolds-Averaged Navier-Stokes (URANS) 
mode, and Detached Eddy Simulation (DES) mode. Since the baseline convergent nozzle did not exhibit 
unsteady qualities, only RANS simulations were conducted for it. The results for the three computational 
fluid dynamics (CFD) simulations were compared to the experimental results. An objective of this paper 
is to shed light on the mechanisms that cause transonic tones using experimental measurements coupled 
with computational simulations. 

II. Experimental Methods 
 All experimental measurements were made in an open jet facility (CW-17) at NASA Glenn 
Research Center. The facility consists of a 30-inch diameter plenum with flow conditioning units, through 
which compressed air flows before exhausting through an attached nozzle into the quiescent ambient air 
in the test chamber. The Mach 1.0 convergent nozzle and Mach 2.2 convergent-divergent (C-D) nozzle are 
two of a series of six round nozzles used in earlier studies1,4. Throughout this report, these nozzles will be 
referred to as the “M10T” and “M22” nozzles, respectively. Both nozzles have an exit diameter, Djet, of 2.0 
inches and a total length of 7.5 inches. The M10T nozzle included a trip ring to ensure that the boundary 
layer at the exit was turbulent. The trip ring was located 1.689 inches upstream of the nozzle exit and was 
0.125 inches wide. The upstream edge of the trip ring was mounted flush with the nozzle surface; the 
downstream edge consisted of a backstep that was 0.017 inches high. The divergent portion of the M22 
C-D nozzle was designed using the method of characteristics. For the measurements taken for this study, 
the M22 nozzle did not include any boundary layer trips. 

Single-component hot-wire measurements were performed using a TSI 1260-A10 probe. Data 
were sampled as the hot-wire probe was traversed through the jet plume along the following paths: 

 axially along the jet plume centerline; 
 radially through the plume at ten axial locations. 

At each probe location, 20,000 data samples were collected, at a sampling rate ranging from 5000 Hz near 
the nozzle to 1250 Hz downstream from the nozzle. The hot-wire data were processed, such that average 
velocity, uavg, and turbulence intensity, u’/Ujet, were obtained. Acoustic measurements were also made for 
the jet flow. As the CW-17 open jet facility is semi-anechoic, limited acoustic measurements were 
performed using a single microphone located at 90° with respect to the jet axis. 

III. Hot-wire and Acoustic Measurements 
Velocity and turbulence data were collected for the M10T and M22 nozzles for jet Mach number, 

Mjet, equal to 0.61. The average velocity, uavg, and the turbulence intensity, u’/Ujet, were calculated from the 
time-history of velocity, involving n samples: 
  Eq. 1 
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  Eq. 2 

Ujet is ideally-expanded jet velocity, computed from the nozzle pressure ratio. For the conditions during 
testing, Ujet was nominally 663.9 ft/s. The average velocity and turbulence intensity are plotted along the 
centerline for the M22 and M10T nozzles in Figure 1. There is a significant difference in the behaviors of 
the plume for these two jets. The average velocity of the M10T nozzle shows that its potential core has a 
constant velocity nearly equal to the ideal jet velocity, Ujet, for five to six jet diameters downstream of the 
nozzle. The turbulence intensity along the centerline is relatively low, but increases to a maximum value 
of 11.7% in the region where the jet potential core breaks down, 5*Djet to 6*Djet downstream of the nozzle 
exit. This is expected for a convergent nozzle jet flow. The average velocity of the M22 nozzle shows that 
the over-expanded jet exits the nozzle with a velocity of only about 85% of Ujet and continues to decrease 
through the jet plume. The turbulence intensity of the M22 nozzle jet is 17.5% just downstream of the 
nozzle exit – much larger than that of the M10T nozzle jet flow – and decreases as the flow progresses 
downstream. 
 Acoustic measurements were also taken for the M10T and M22 nozzle flows; the noise spectra for 
each nozzle are plotted in Figure 2. It is observed that the M22 nozzle flow has broadband noise levels 
that are 10 to 20 dB larger than those for the M10T nozzle flow. This is what is referred to as excess 
broadband noise (EBBN). It has been observed to be a problem with convergent-divergent nozzles 
operating at over-expanded conditions1. A second observation made from the noise spectra plot is that 
the M22 nozzle flow has peaks, beginning at about 1200 Hz, and repeating at harmonics (e.g., 2400 Hz, 
3600 Hz, etc.). These peaks represent the transonic tone. The transonic tone overshadows the EBBN by 
roughly 30 dB. Therefore, for the same flow conditions, the M22 nozzle flow is much louder than the 
M10T nozzle flow. 

IV. Numerical Methods 

A. Wind-US Flow Solver 
Wind-US, version 35,6, was used to run computational fluid dynamics (CFD) simulations of the 

M10T and M22 nozzle flows. The Wind-US code is a general-purpose, Reynolds-Averaged Navier-Stokes 
(RANS) CFD solver for both structured and unstructured grids. The code is developed and managed by 
the NPARC Alliance, a partnership between NASA Glenn Research Center, USAF Arnold Engineering 
Development Complex, and The Boeing Company. The Wind-US code offers several numerical schemes, 
as well as several zero-, one-, and two-Equation turbulence models. A second-order Roe numerical 
scheme was used for all current simulations. The Menter Shear Stress Transport (SST) turbulence model7 
was used for the RANS and unsteady RANS (URANS) simulations. The Spalart Detached Eddy 
Simulation (DES) model8 – a hybrid scheme combining the Spalart-Allmaras single-Equation turbulence 
model and Large Eddy Simulation (LES) – was also used for one M22 nozzle simulation. 

The trip ring installed in the M10T nozzle forced the boundary layer to transition from laminar to 
turbulent. It is typical to run numerical simulations of nozzle flows fully turbulent. To model the effect of 
the trip ring – forcing the boundary layer to transition from laminar to turbulent – the simulation was run 
laminar in a region near the wall upstream of the trip location. Everywhere else – including the region 
near the wall downstream of the trip ring location – the simulation was run using the Menter SST 
turbulence model. 

For all simulations, the jet exhausted into a quiescent freestream, with a static temperature of 
530° R and static pressure of 14.4 psi. The freestream Mach number was 0.01. It has been found that 
compressible flow solvers, including Wind-US, struggle with convergence for nozzle flows when the 
freestream velocity is set to zero; even a small freestream velocity helps the solver converge the solution 
more quickly. At the nozzle inflow, the total temperature was set to 530° R; the total pressure was set to 
18.51 psi, corresponding to a jet Mach number, Mjet, of 0.61. 
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B. Grid Strategy 
Structured grids were created using the commercially-available Pointwise® grid generation 

software9. The M10T nozzle simulation used a 2-D, axisymmetric grid with 350,300 grid cells. The M10T 
nozzle grid is shown in Figure 3. The M22 nozzle RANS and URANS simulation used a 2-D, 
axisymmetric grid with 428,800 grid cells; the M22 nozzle DES used a 3-D grid with 91 million grid cells. 
(The decision to use only a 2-D, axisymmetric grid for the URANS simulation made the assumption that a 
URANS simulation using a 3-D grid solution would yield an axisymmetric solution. A future study into 
the validity of this assumption is highly recommended.) For all grids, the grid domain extended 10*Djet in 
the radial direction and 30*Djet in the axial direction. Grid points were clustered radially towards the 
walls to ensure that the boundary layer was adequately resolved. The 3-D grid used an “H-grid” 
topology along the centerline (rather than an “O-grid” topology) in order to eliminate the singularity that 
would otherwise reduce the maximum global time step. The 3-D grid is pictured in Figure 4. 

C. Convergence 
The M22 nozzle RANS simulation used a Courant-Friedrichs-Levy (CFL) number of 0.5. The 

M10T nozzle RANS simulation was also initially set to use a CFL number of 0.5. However, the solution 
exhibited unsteadiness and it had to be converged using a constant time-step of 1.0e-7 seconds. The 
URANS simulation used a global time step of 1.0e-7 seconds; the DES used a global time step of 5.0e-8 
seconds. To speed up solution convergence, each simulation was sequenced through three levels of grids: 
first, the solution was solved using every fourth grid point (coarse), then using every second grid point 
(medium), and finally using every grid point (fine). Running the simulation on a sequence of grid 
resolutions allowed the overall flowfield to set up rather quickly on the coarser grids, before solving the 
turbulence details in the finest grid. This grid sequencing approach is standard practice for structured 
CFD calculations. Furthermore, grid sequencing allows an easy method of performing a grid convergence 
study. Figure 5 shows the velocity and turbulence intensity along the jet centerline of the M10T nozzle 
RANS simulation for three levels grid refinement (coarse, medium, and fine). While there are small 
differences between the solutions for the three grid levels, the solutions on the coarse and medium grid 
levels are monotonically converging upon the fine grid solution. Therefore, it can be concluded that the 
solution is essentially grid converged. 

The convergence of each solution was tracked in several ways. The mass flow and thrust at the 
nozzle exit were monitored. While these quantities were not of primary interest to this study, nozzle mass 
flow and thrust quickly indicate if the jet flow is steady or unsteady, even indicating if resonant behaviors 
exist. The streamwise velocity and turbulent kinetic energy along the jet plume centerline were also 
monitored for solution convergence, as these were directly comparable to the data collected 
experimentally. Pressure and velocity were probed at several locations across the jet plume at x/Djet=0.0, 
0.5, and 1.0. These probed data were used to determine if resonant behavior existed in the jet flow. As 
mentioned earlier, the M10T nozzle RANS simulation exhibited some unsteady behavior when run using 
a constant CFL number, even though the experimental data showed the flow to be steady. This sort of 
behavior has been observed in previous studies10. The decision was made to run the simulation using a 
constant time-step of 1.0e-7 seconds. The solution converged within 50,000 constant time-step iterations 
(though, 200,000 constant time-step iterations were run) and showed no signs of unsteadiness. The M22 
nozzle RANS simulation required 100,000 iterations to converge, using a constant CFL number of 0.5. The 
M22 nozzle URANS simulation and DES required substantial iterations for the solutions to move through 
transients in the flowfield. After the solutions worked through the transients, statistical data were 
collected for one million constant time-step iterations for the URANS simulation and 1.58 million 
constant time-step iterations for the DES. All simulations were performed on the multi-node, multi-core 
NASA Advanced Supercomputing (NAS) Pleiades supercomputer11. 
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V. Numerical Results 
 The results of the M10T nozzle and M22 nozzle simulations will be presented and compared to 
the experimental hot-wire data. Additionally, the M22 unsteady Reynolds-Averaged Navier-Stokes 
(URANS) and Detached Eddy Simulation (DES) results will be compared to acoustic measurements. 

The average velocity, uavg, and turbulence intensity, u’/Ujet, were calculated for the unsteady 
numerical solutions (i.e., M22 nozzle URANS simulation and DES) using the time-history of velocity as in 
Equations 1 and 2. The steady solutions – M10T nozzle and M22 nozzle Reynolds-Averaged Navier-
Stokes (RANS) simulations – already assume that the solution is an average solution in time. Therefore, 
the average velocity, uavg, is simply the u-component of velocity. When computing the turbulence 
intensity, u’/Ujet, from the RANS solutions, special considerations must be made. The turbulent kinetic 
energy, k, is one turbulent flow quantity computed by the RANS solution. In terms of the Reynolds 
stresses, the turbulent kinetic energy is defined as: 
  Eq. 3 
If it is assumed that the turbulence is isotropic (i.e., ), turbulence intensity can be expressed 
as: 

  Eq. 4 

However, it has been shown that turbulence is anisotropic for free shear layer flows, including jets12-15. 
Considering the data presented by DeBonis13 and Nallasamy15, the ratio of  is about 2:1:1 for a 
compressible round jet flow. Therefore, the turbulence intensity can be expressed as: 
  Eq. 5 
The average velocity and turbulence intensity were compared along the jet centerline and along radial 
profiles through the jet plume. For the M10T nozzle flow, both expressions of turbulence intensity 
(Equations 4 and 5) were computed and compared. 

The URANS simulation offers a unique opportunity, as it provides the ability to compare 
multiple methods of computing the turbulence intensity, u’/Ujet. Since the URANS was an unsteady 
simulation, it was natural to compute turbulence intensity according to Equation 2 using uRMS. But, since 
the URANS used a turbulence model, it was also appropriate to compute turbulence intensity according 
to Equation 4 using kavg. For this discussion, the former method will be referred to as the “unsteady” 
method (Equation 2), as the value of uRMS comes from the unsteady statistics; the latter method 
(Equation 4) will be referred to as the “model” method, as the value of k comes from the turbulence 
model. The consideration of these two methods begs to ask, which method of computing turbulence 
intensity is correct? The “model” method includes the turbulence information computed by the SST 
turbulence model; the “unsteady” method includes the actual turbulence statistics. Furthermore, could 
these methods be blended? One could sum together the respective portions of turbulent kinetic energy 
represented by the “model” and “unsteady” methods: 

  Eq. 6 

Unfortunately, this subject does not seem to have been addressed in great detail in literature. For the 
formal presentation of the numerical M22 nozzle solutions, the summed method in Equation 6 will be 
used to compute the turbulence intensity of the URANS simulation. There will be a separate discussion 
comparing the “model” and “unsteady” methods of computing turbulence intensity with experimental 
data and other numerical solutions. 

A. Mach 1.0 Nozzle 
 A RANS simulation was completed for the baseline M10T nozzle. Figure 6 shows contour plots of 
the velocity and turbulence intensity. The average velocity and turbulence intensity along the centerline 
are compared for the RANS simulation and the experimental hot-wire data in Figure 7. The potential core 
of the RANS simulation is about 3.5*Djet longer than what was observed experimentally. Over-predicting 
the length of the jet potential core is a deficiency of RANS-based simulations and has been observed in 
other studies16. The delayed breakdown of the jet potential core by the RANS solution results in the peak 



6 
American Institute of Aeronautics and Astronautics 

turbulence intensity occurring 1.3*Djet downstream of the location of the hot-wire peak turbulence 
intensity. The value of the peak turbulence intensity is dependent on the assumption used to compute it. 
Using the assumption that turbulence is isotropic (Equation 4), the peak turbulence intensity is within 1% 
of the hot-wire data. The assumption used for anisotropic turbulence (Equation 5) simply scales the 
turbulence intensity by 22.5% (relative), showing that the RANS solution over-predicts the value of peak 
turbulence intensity. In Figure 8, radial profiles of the average velocity and turbulence intensity are 
compared through the jet plume. The RANS solution of the M10T nozzle jet shows good agreement with 
the hot-wire velocity data. The only disagreement is where the RANS solution over-predicts the length of 
the potential core, at x/Djet=6 and x/Djet=8. Again, the turbulence intensity is plotted using two different 
assumptions: isotropic turbulence (Equation 4) and anisotropic turbulence (Equation 5). The isotropic 
computation shows good agreement with the experimental data, only over-predicting the peak 
turbulence intensity from x/Djet=0 to x/Djet=1. Since the difference in the two computations of turbulence 
intensity is simply a scaling factor, the anisotropic computation of turbulence intensity consistently over-
predicts the hot-wire data. Overall, the M10T RANS simulation showed good agreement with the 
experimental velocity data. The isotropic computation of turbulence – although it is based on less 
physical assumptions – allowed the RANS solution to show good agreement with the experimental 
turbulence intensity data. This may be a case in which a less physical assumption is right for the wrong 
reasons. The isotropic assumption (Equation 4) will be used for the remainder of this paper. 

B. Mach 2.2 Nozzle 
 Three simulations were completed for the M22 nozzle: RANS, URANS, and DES. The RANS 
simulation used a constant Courant-Friedrichs-Levy (CFL) number, resulting in a steady-state solution. 
The RANS solution yielded average values of flow quantities (e.g., velocity, turbulent kinetic energy, and 
pressure), which could be compared to the average quantities of the unsteady solutions (i.e., URANS, 
DES). The URANS simulation completed 100 milliseconds of simulation time using a time step of 1.0e-7 
seconds. The DES completed 79 milliseconds of simulation time using a time step of 5.0e-8 seconds. For 
the URANS simulation and the DES, the average data were calculated at a sampling rate of 100 kHz. 

1. Computational expenses 
 Before progressing further, it is wise to pause and consider the computational expenses 
associated with these analyses. The RANS and URANS simulations used 10 computing cores on the 
NASA Advanced Supercomputing (NAS) Pleiades cluster. The DES used 300 computing cores on the 
NAS Pleiades cluster. The RANS simulation of the M22 nozzle required about 100 computational hours. 
The URANS simulation required about 1160 computational hours – greater than 11 times as much as the 
RANS simulation. The DES required about 485,500 computational hours – greater than 400 times as much 
as the URANS simulation. Because the DES used 300 computational cores, the simulation took on the 
order of two months of actual (or, wall clock) time to complete. The storage resources required were also 
significant: on the order of 400 MB for the RANS simulation, 20 GB for the URANS simulation and 200 
GB for the DES. For this study, as the fidelity of the simulation increased, the computational expenses 
increased even more so. 

2. Initial comparisons of jet plume with RANS, URANS, and DES solutions 
Figure 9 shows contours of the average velocity, uavg, along the x-r (or, x-y) planes for all three 

M22 nozzle solutions. As expected from quasi-1-D nozzle flow theory, a shock is present just downstream 
of the nozzle throat. In all three M22 nozzle solutions, there is a small region of shock-induced separated 
flow just downstream of the shock. The flow does reattach in all three solutions, though the boundary 
layer is fairly thick as the flow exits the nozzle. The contour plots of average velocity also show that the 
RANS solution of the M22 nozzle sustains the jet potential core much longer than the two unsteady 
solutions. Figure 10 shows contours of the turbulence intensity, u’/Ujet, in the x-r (or, x-y) planes. For the 
RANS solution, turbulence intensity is computed from turbulent kinetic energy, k, assuming isotropic 
turbulence (Equation 4); for the URANS solution, turbulence intensity is computed according to 
Equation 6. Qualitatively, the URANS and DES solutions look somewhat similar to each other; the RANS 
solution looks significantly different. The average velocity and turbulence intensity from the RANS 
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solution for the M22 nozzle flow appear qualitatively similar to the solution of an ideally-expanded 
nozzle, like the M10T nozzle flow (refer to Figure 6a). While all three numerical solutions predict that the 
region of peak turbulence for this over-expanded jet flow occurs inside the nozzle at the shock-induced 
separation region, the amount of the turbulence intensity varies greatly. The unsteady solutions predict a 
larger amount of turbulence intensity, peaking at 34% and encompassing a region that nearly fills the 
divergent section of the nozzle and propagating 2*Djet downstream of the nozzle exit. The RANS 
simulation predicts only a small region of turbulence intensity in the vicinity of the shock-induced 
separated flow, inside the nozzle. Though it may be difficult to see in Figure 10a, the turbulence intensity 
peaks at about 20% inside the nozzle. Downstream of the nozzle exit, the turbulence intensity is found in 
the jet plume shear layer. As will be shown later, the large region of turbulence intensity in the URANS 
simulation and DES is a result of the periodic destabilization of the separated flow inside the nozzle. 
 In Figure 11, the average velocity and turbulence intensity along the centerline of the M22 nozzle 
flow are plotted for the experiment and the three numerical solutions. The RANS solution shows no 
agreement with the experimental hot-wire data or the unsteady numerical solutions. Instead, the RANS 
solution does resemble an ideally-expanded jet solution (refer to the results of the M10T nozzle jet in 
Section V.A): the average velocity is equal to Ujet from the nozzle exit to x/Djet=4.6, beyond which the jet 
potential core breaks down and the jet velocity sharply decreases. This is further observed as the 
turbulence intensity sharply increases at x/Djet =4.6, from u’/Ujet=0% to u’/Ujet=12%. The URANS solution 
agrees with the experimental data at the nozzle exit, with an average velocity of 86% of Ujet. However, 
downstream of the nozzle exit, the URANS solution shows little agreement with the hot-wire data. 
Instead of decreasing downstream of the nozzle exit, the jet velocity increases some, to an average 
velocity of 90% of Ujet at x/Djet=2.8, before steadily decreasing. The centerline turbulence intensity is at 
least 25% larger (relative) than what was observed experimentally, until about x/Djet=3.5. Downstream of  
x/Djet=3.5, the URANS solution shows reasonable agreement with the hot-wire data, though still over-
predicts the hot-wire data (relative). The average velocity predicted by the DES shows the best agreement 
with the data, though not without its own deficiencies. The DES under-predicts the average velocity 
along the centerline by approximately 10-12% immediately downstream of the nozzle exit, to about 
x/Djet=2. Beyond x/Djet=2, the DES average velocity shows excellent agreement with the hot-wire data. The 
DES greatly over-predicts the turbulence intensity along the centerline for x/Djet=0 to x/Djet=2. There is 
again improved agreement downstream of x/Djet=2: the DES over-predicts turbulence intensity by no 
more than 20%. Considering the over-prediction of turbulence intensity by the URANS simulation and 
DES in Figure 11, it may be inferred that the levels of turbulence intensity observed inside the nozzle in 
Figures 10b and 10c may also be over-predicted. 

3. Comparison of methods for computing URANS turbulence intensity 
As discussed earlier, several methods were used to compute turbulence intensity for the URANS 

simulation of the M22 nozzle flow. The summed method (Equation 6) for computing turbulence intensity 
was presented in Figures 10 and 11. Contour plots of turbulence intensity for the “model” method 
(Equation 4) and “unsteady” method (Equation 2) are presented in Figure 12. Comparing these plots with 
those presented in Figure 10, the “model” method more closely resembles the RANS solution. The 
“unsteady” method resembles the turbulence field of the DES solution, but only near the nozzle (x/Djet<2). 
The centerline turbulence intensity for the “unsteady” and “model” methods is compared in Figure 13. 
The turbulence intensity computed from the URANS “model” method resembles that of the RANS 
solution, shifted 2*Djet upstream and with peak u’ about 8% smaller (relative). This agrees with the 
shorter potential core length in the URANS solution (refer to Figure 9b). The URANS “unsteady” method 
over-predicts the turbulence intensity for x/Djet≤3, but it drops to zero downstream of that. The summed 
method of computing the URANS turbulence intensity tracks those of the “model” and “unsteady” 
methods and smoothly transitions between them from x/Djet=3 to x/Djet=5. This is because the summed 
method incorporates both the portion of turbulence intensity from the unsteady velocity field and the 
portion of turbulence intensity from the RANS turbulence model. The summed turbulence intensity 
shows much better qualitative agreement with the DES solution and the experimental data than either the 
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“model” or “unsteady” methods, alone. This topic could be the subject of its own study. For this effort, it 
has been shown that it is necessary to consider both portions of turbulence for an URANS simulation. 

4. Further analysis of the jet plume with RANS, URANS, and DES solutions 
Returning to the comparison of the RANS, URANS, and DES solutions for the M22 nozzles, 

Figure 14 shows the average velocity and turbulence intensity plotted for the three numerical solutions 
and hot-wire data along lines extending radially from the jet centerline at various axial locations in the jet 
plume. Recalling the large differences between the RANS solution and the hot-wire data along the 
centerline, it is no surprise that there is very little agreement between the RANS solution and the hot-wire 
data through the plume at any locations. The RANS solution shows qualitative agreement with the hot-
wire data only at the outer fringes of the jet plume (r/Djet≥1) at the downstream locations (x/Djet≥10), and 
only for the average velocity. At the nozzle exit, the average velocity of the URANS solution shows good 
agreement with the hot-wire data for r/Djet≤0.4. Downstream of the nozzle exit, the URANS solution over-
predicts the average velocity in the jet plume. The URANS turbulence intensity shows only qualitative 
agreement with the hot-wire data: it captures some of the trends observed in the hot-wire turbulence 
intensity data, but the values are over-predicted. The URANS turbulence intensity does show good 
agreement with the DES-predicted turbulence intensity at x/Djet=0.5. At x/Djet≥4, the URANS turbulence 
intensity is influenced by the RANS turbulence model rather than the unsteady velocity, as the URANS 
turbulence intensity more-closely resembles that of the RANS simulation. Compared to the hot-wire data, 
the DES consistently under-predicts the average velocity by no more than 10% in some regions (x/Djet≤1 
and x/Djet≥8). However in other regions (2≤x/Djet≤6), the DES average velocity shows excellent agreement 
with the hot-wire data. These observations are consistent with the centerline average velocity plotted in 
Figure 11. The DES turbulence intensity shows good agreement with the hot-wire data for x/Djet>2.0. 
Closer to the nozzle exit, the DES turbulence intensity is much larger than the experimental data, again 
consistent with Figure 11. Four lines are shown for the DES in Figure 11, showing the solution plotted 
along 90° azimuthal intervals. The differences in average velocity and turbulence intensity at the different 
angles show that the flow is not symmetric. The instantaneous flow is highly 3-D, but over time the 
differences in uavg and u’/Ujet at these four angles decreased. It can be inferred that if the DES is run for 
enough cycles, the statistics (i.e, uavg and u’/Ujet) will show that the flow is axisymmetric. 

It is curious why the numerical simulations did a poor job predicting the flow – especially the 
turbulence intensity – a short distance downstream of the nozzle (i.e., x/Djet<2). One possible cause could 
be that the inflow conditions are not being modeled sufficiently. Unfortunately, there were limited means 
to interrogate the nozzle inflow in the open jet facility. Without knowing the experimental nozzle inflow 
conditions – such as radial velocity and turbulence intensity – attempts to model the flow with greater 
accuracy will not necessarily help in reducing the uncertainty. Resolving these discrepancies could be the 
focus of a future study. 

5. Acoustic predictions using unsteady simulations 
The average and root mean square (RMS) value of pressure along the centerline are shown for the 

flow inside the nozzle in Figure 15 for the numerical solutions. There is modest agreement between the 
unsteady solutions, which predict the shock (represented by the sharp increase in pavg following the 
minimum pavg) at x/Djet=-1.45. The RANS solution predicts the shock to be upstream of the location 
predicted by the unsteady solutions, at x/Djet=-1.56. From the unsteady simulations, it was possible to 
compute the RMS pressure, pRMS. The single peaks along the URANS and DES plots of pRMS indicate that 
resonance is present in each of these simulations. The transonic resonance (spectral data shown later) is 
inferred to be in the fundamental mode involving a one quarter standing wave within the divergent 
section2. 
 Unsteady data were collected for a dozen points from the URANS simulation and the DES. The 
time history of the unsteady pressure for several of these probe points is plotted in Figure 16 for 100 ms of 
URANS simulation time and 79 ms of DES simulation time. Power spectral density (PSD) calculations 
were performed on the unsteady static pressure for each of these unsteady numerical solutions; the 
results are plotted in Figure 17. Recall that the experimental sound pressure level (SPL) spectrum for the 
M22 nozzle at Mjet=0.61 was presented earlier, in Figure 2. The peak at 1200 Hz in Figure 2 represents the 
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transonic resonance tone; the subsequent peaks represent harmonics. In a similar manner, the sharp 
spikes in the PSD plot in Figure 17 indicate frequencies of the resonant tones and harmonics. The URANS 
simulation has a resonance tone of 1145 Hz, with harmonics at 2288 Hz, 3434 Hz, 4578 Hz, etc. The DES 
has a resonant tone of 1135 Hz, with harmonics at 2270 Hz, 3415 Hz, 5689 Hz, etc. The URANS simulation 
and DES both predicted the resonant frequency within about 5.5% of the experimentally measured 
transonic resonance tone. 

6. Investigating the resonant behavior with DES 
 An advantage offered by CFD simulations is that they can be used to investigate regions of flow 
obscured during experimental testing. Figure 18 is an attempt to deconstruct the M22 nozzle’s internal 
flow during the transonic resonance using the DES. Figure 18 attempts to show six stages observed in 
resonant jet flow. At each stage, three contour plots from the DES are pictured: instantaneous numerical 
shadowgraph (computed using the gradient of density); instantaneous axial velocity, u/Ujet; and 
instantaneous static pressure, p/p∞. The following stages describe the flow: 

1. Inside the nozzle, a shock wave is located just downstream of the throat. There is a small region 
of shock-induced separated flow, but the flow quickly reattaches to the nozzle wall (indicated by 
arrow).  

2. The shock wave moves upstream and a series of oblique shock and expansion waves form 
(indicated by arrow). The separation point inside the nozzle moves upstream and the separation 
region grows. 

3. The shock train has moved upstream of the nozzle throat. The separation region destabilizes 
(indicated by arrow). 

4. A plug of high-speed flow moves through the nozzle. A pressure wave moves through the plume 
ahead of the high speed flow (indicated by arrow). 

5. As the plug of high speed flow exits the nozzle, the nozzle exit begins to re-pressurize (indicated 
by arrow). A shock wave reforms downstream of the throat. 

6. A pressure wave propagates from the nozzle exit, both downstream through the plume and 
upstream into freestream (indicated by arrow). The shock wave near the nozzle throat changes 
structure and the shock-induced separation region grows. 

It appears that the destabilization of the separated region on the nozzle internal surface triggers the 
resonant behavior. Returning to the contour plot of turbulence intensity in Figure 10c, it is observed that 
the region of flow near the separation region has the greatest level of turbulent intensity. Because noise is 
directly related to turbulence intensity, it can be inferred that this region of increased turbulence intensity 
leads to the excess broadband noise (EBBN) produced by the over-expanded nozzle. 

VI. Conclusions 
 Hot-wire and acoustic measurements were carried out for a round, convergent nozzle and a 
round, convergent-divergent (C-D) nozzle with a design Mach number of 2.2. Both nozzles were run with 
a jet Mach number of 0.61 in a semi-anechoic test cell. The over-expanded flow through the Mach 2.2 
nozzle produced excess broadband noise (EBBN) and a transonic tone.  
 The steady Reynolds-Averaged Navier-Stokes (RANS) simulation of the round, convergent 
nozzle showed good agreement with the experimental hot-wire data, though the breakdown of the jet 
potential core was prolonged by approximately four jet diameters. This result is attributed to limitations 
in RANS turbulence models and is consistent with previous studies. Three numerical simulations were 
performed for the C-D nozzle: a steady RANS simulation, an unsteady RANS (URANS) simulation, and 
an unsteady Detached Eddy Simulation (DES). All three numerical solutions predicted a shock inside the 
nozzle, just downstream of the nozzle throat, and a region of shock-induced separated flow. In the time-
averaged solutions, the shock-induced separated flow reattached before the flow exited the nozzle. The 
RANS showed the least agreement with the experimental hot-wire data; it more closely resembled an 
ideally-expanded jet flow. The URANS simulation and DES both predicted resonant tones within 5.5% of 
the 1200 Hz tone observed in the acoustic measurements, at 1145 Hz and 1135 Hz, respectively. The 
URANS solution showed only qualitative agreement with the hot-wire measurements. The DES solution 
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showed good agreement. The latter solution under-predicted the average velocity by 10-12% immediately 
downstream of the nozzle, but the agreement was good beyond x/Djet=2. Downstream of x/Djet=2, the DES 
solution over-predicted the turbulence intensity in the jet plume, within 20% of the hot-wire 
measurement. Of the three numerical methods used to simulate the over-expanded Mach 2.2 C-D nozzle, 
the DES most closely matched the experimental measurements. Furthermore, the DES solution 
permitted an investigation of the flow structure inside the nozzle of a jet flow undergoing a resonant 
cycle. This has not been possible with experimental techniques, but it is a clear advantage of numerical 
simulations. The DES solution showed that the destabilization of the shock-induced separation region 
lead to increased levels of turbulence intensity, producing EBBN. 
 As the level of fidelity was increased with each simulation method (i.e., RANS, URANS, DES), 
the computational costs also increased. For the Mach 2.2 C-D nozzle, the RANS simulation failed to 
capture any unsteady effects and the solution resembled a very different nozzle jet flow. The URANS 
simulation performed better, as it captured – at least qualitatively – some of the velocity and turbulence 
structure inside the nozzle and in the first several nozzle diameters downstream and predicted a 
transonic resonance tone within 5.5% of the acoustic measurements. It was imperative to consider both 
the unsteady and modeled portions of the URANS turbulence intensity, as considering only one or the 
other produced poor predictions of the turbulence. The cost the URANS solution was about 11 times that 
of the RANS solution, but it was still relatively inexpensive. The DES produced the best results, capturing 
much of the velocity and turbulence structure through the jet plume and also predicting the transonic 
resonance tone within 5.5% of the acoustic measurements. However, the DES cost upwards of 400 times 
as much as the URANS simulation. 

VII. Recommendations 
 When conducting numerical simulations of most flows, the selection of method (e.g., RANS, 
URANS, DES) depends on the level of fidelity required for the solution. While a RANS simulation is 
appropriate for an axisymmetric, ideally-expanded, round, convergent nozzle, a RANS simulation is not 
appropriate for unsteady jet flows. If the jet flow is unknown, a strategy of increasing-fidelity simulations 
is recommended. Begin with an inexpensive RANS simulation. If the flow solution does not converge 
easily, that is a sign that the flow might be unsteady. Proceed to run a URANS simulation, which is still 
relatively inexpensive (at least for an axisymmetric jet flow). If the URANS simulation converges to a 
steady solution, then the flow is most likely steady. If the URANS simulation does not converge, shows 
signs of resonance, or converges to a different solution than the RANS simulation, then the flow is 
probably unsteady. If the solution is unsteady and greater fidelity is required, then a DES should be 
completed. For design purposes or for jet flows in which the structure of the jet is unknown, a series of 
increasing-fidelity, unsteady numerical simulations will likely be necessary to ascertain the level of EBBN 
and transonic tones that are produced in new nozzles. 

There are still areas to explore. A future study could confirm these predictions for nozzle flows 
that produce EBBN, yet do not produce transonic tones. Additionally, investigations could be conducted 
into more realistic nozzles – including dual-stream, C-D nozzles – operated in over-expanded conditions. 
Finally, one could investigate whether it is possible to design C-D nozzles in such a way as to reduce 
EBBN, perhaps by trying to re-stabilize the shock-induced separation region. 
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X. Figures 

 
Figure 1: Experimental average velocity (blue) and turbulence intensity (red) along jet centerline for 

Mach 1.0T and Mach 2.2 nozzles flows at Mjet=0.61. 
 

 
Figure 2: Experimental sound pressure level spectra at θ=90° for the Mach 1.0T and Mach 2.2 nozzles at 

Mjet=0.61. 
 

 
Figure 3: Mach 1.0T nozzle grid. Red indicates laminar regions, upstream of boundary layer trip. 
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a) Grid along x-y plane. 

b) Grid at nozzle exit. c) “H-grid” topology along centerline. 
Figure 4: Mach 2.2 nozzle 3-D grid. The red lines in sub-figures b and c indicate zonal boundaries. 

 

a) Average velocity. b) Turbulence intensity. 
Figure 5: Grid convergence of M10T nozzle RANS simulation. Plots show average velocity (blue) and 

turbulence intensity (red) along jet centerline for three levels of grid refinement. Plots also include 
hot-wire data. 
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a) Average velocity. 

 
b) Turbulence intensity. 

Figure 6: Contours of average velocity and turbulence intensity for the M10T nozzle at Mjet=0.61. 
Results from RANS simulation are shown. Turbulence intensity computed assuming isotropic 

turbulence (Equation 4). 
 

 
Figure 7: Average velocity (blue) and turbulence intensity (red) along the jet centerline for Mach 1.0T 

nozzle at Mjet=0.61. Results from experimental hot-wire data and RANS simulation are shown. 
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a) x/Djet=0.0 

 
b) x/Djet=0.5 

 
c) x/Djet=1.0 

 
d) x/Djet=2.0 

(Figure 8 continues onto the following page.) 
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e) x/Djet=4.0 

 
f) x/Djet=6.0 

 
g) x/Djet=8.0 

 
h) x/Djet=10.0 

Figure 8: Jet plume profiles of average velocity (blue) and turbulence intensity (red) for M10T nozzle 
at Mjet=0.61. Results from experimental hot-wire data and RANS simulation are shown. 
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a) Wind-US RANS. 

 
b) Wind-US URANS. 

 
c) Wind-US DES. 

Figure 9: Contours of average velocity of Mach 2.2 nozzle at Mjet=0.61. 
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a) Wind-US RANS. 

 
b) Wind-US URANS (Equation 6). 

 
c) Wind-US DES. 

Figure 10: Contours of turbulence intensity of Mach 2.2 nozzle at Mjet=0.61. 
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a) Average velocity. b) Turbulence intensity. 
Figure 11: Average velocity (blue) and turbulence intensity (red) along jet centerline for Mach 2.2 

nozzle at Mjet=0.61. Results from experimental hot-wire data, RANS simulation, URANS simulation, 
and DES are shown. 

 

 
a) URANS “model” method (Equation 4). 

 
b) URANS “unsteady” method (Equation 2). 

Figure 12: Contours of turbulence intensity of Mach 2.2 nozzle at Mjet=0.61 for URANS simulation. 
Compare with Figure 9b. 
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Figure 13: Turbulence intensity along jet centerline for Mach 2.2 nozzle at Mjet=0.61. “Model” and 

“unsteady” methods of computing URANS turbulence intensity (purple lines) are compared with hot-
wire data and other numerical solutions. 
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a) x/Djet=0.0 

 
b) x/Djet=0.5 

 
c) x/Djet=1.0 

 
d) x/Djet=2.0 

(Figure 14 continues onto the following page.) 
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e) x/Djet=4.0 

 
f) x/Djet=6.0 

 
g) x/Djet=8.0 

 
h) x/Djet=10.0 

Figure 14: Jet plume profiles of average velocity (blue) and turbulence intensity (red) for Mach 2.2 
nozzle at Mjet=0.61. Results from experimental hot-wire data, RANS simulation, URANS simulation 

(Equation 6), and DES are shown. 
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Figure 15: Average pressure (blue) and RMS pressure (red) along centerline inside Mach 2.2 nozzle at 

Mjet=0.61. Results from RANS simulation, URANS simulation, and DES are shown. 
 

a) URANS b) DES 
Figure 16: Time history of pressure at various probe locations in jet plume of Mach 2.2 nozzle at 

Mjet=0.61. 
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a) URANS b) DES 
Figure 17: Power Spectral Density of pressure at various probed jet plume locations for Mach 2.2 

nozzle at Mjet=0.61. 
 

a) Stage 1 b) Stage 2 
(Figure 18 continues onto the following page.) 
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c) Stage 3 d) Stage 4 

e) Stage 5 f) Stage 6 
Figure 18: Resonance phenomenon deconstructed for DES of Mach 2.2 nozzle at Mjet=0.61. For each 

time step, contours are shown for instantaneous density gradient (numerical shadowgraph), velocity, 
and pressure. 

 
 


