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NASA Glenn 10x10 Supersonic Wind Tunnel

The 10x10 SWT was designed for Mach 4 test section
speeds, but limited to 3.5 due to concern of tunnel unstart.
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NASA Glenn 10x10 Second Throat Detall
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The second throat
consists of movable
converging and

- diverging ramps that
create a throat
downstream of the
test section.
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CFD simulations and wind tunnel tests were conducted to

CFD S| m u|ati0ns understand the flow field within the second throat and
explore tunnel operation at speeds greater than Mach 3.5.
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CFD simulation compares well to wall static
pressures collected during a calibration.
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Observations from the CFD Simulations
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Observations from the CFD Simulations

(Nominal Operation)

1) Mach 3.5. w,, = 98.57 inches. p,/ p, = 13.92. TPR = 6.621.

3) Mach 3.5. w,, = 72.20 inches. p,/ p, = 18.49. TPR = 5.004.

4) Mach 4.0. w, = 66.00 inches. p,/ p, = 27.76. TPR = 6.649.

l
X = 0.0 Inches X =1260.0 Inches |

| Reducing the width of the second throat improves efficiency, which reduces tunnel pressure ratio (TPR). I
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Observations from the CFD Simulations

1) Mach 3.5. w,, = 98.57 inches.
P,/ po=13.92. TPR =6.621.

2) Mach 3.5. wy,, = 98.57 inches.
P,/ po=17.86. TPR =5.176.

3) Mach 3.5. wy,, = 72.20 inches.
P,/ po=18.49. TPR =5.004.

Reducing the width of the second throat
improves stability of the shock system.

X =-23In.
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Comparison of Operational data to the CFD Simulations NA
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Test Section Mach Number

: Tunnel limits are at higher levels than CFD predictions. l
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Instrumentation provided data on steady and unsteady flow (max freq 2 kHz). Allow comparison to CFD results.
The wall pressure taps will provide operators better data to determine if tunnel is operating in a stable manner.
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Wind Tunnel Test Procedures

« Test Conducted over 1 night of testing.
» Testing stopped due to a hydraulic leak and rake failures.

 Test Procedure:

1. Set the test section Mach number by positioning the flex-wall. Start with Mach 3.5

and then sequence through Mach 3.6, 3.7, 3.8, 3.9, and 4.0. Only Mach 3.6 and
3.7 were reached.

2. Set the second throat width. Start with the standard schedule at Mach 3.5 (wy, =
98 inches) and then close second throat to its minimum width (w,,=72 inches) for
the remainder of testing.

3. Modulate the test section pressure ratio. Nominal < 7.11 due to losses in subsonic
tunnel loop. Watch and record static pressure distributions.

4. If the tunnel unstarts, trigger the Dewetron. Initiate restart of the second-throat
and continue to the next higher Mach number.

5. Repeatitems 1 through 6 for Reynolds Numbers of 2.0, 1.5, 0.5 x10°6/ ft.
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Test and CFD Results at Mach 3.5

Mach 3.5. wy, =72.20 inches. TPR,.: = 5.323. TPRerp = 5.004 (-6.0%).

Mach 3.5. w,, = 98.57 inches. TPR,, = 7.183. TPR,, = 8.821 (-7.8%).

Mach  Mach number contours at mid-height

0.20
4.0
3.0
0.18 E 2.0
1.0
0.16 0.0
0.1 4 . I‘:'.,,q.-|.ll.-||.-|.'l--nn'l-"H-'l-
& 0.12 » %GIQM-
e o’
o 0.10
0.08 #
e o0 Data. Rdg 177. Wth = 98.57 In.
0.08 ..' = === CFD. Full Grid. Wth = 98.57 In.
0.04 g -=-== CFD. Coarse Grld. Wth = 98.57 In.
. e Data. Rdg 194. Wth=72.20 In.
0.02 — CFD. Full Grld. Wth = 72.20 In.
— CFD. Coarse Qrld. Wth = 72.20 In.
0.00
0 200 400 600 80C 1000 1200 1400 1800 1800
X, inches

National Aeronautics and Space Administration JANNAF 34" APS December 2014, Slater & Saunders Paper 3685 11



Test and CFD Results at Mach 3.6 and 3.7

Mach 3.8. wy, = 72.54 inches. TPRtest = 5.541. TPRCFD = 5.436 (-1.9%).

Mach 3.7. wy, = 71.73 inches. TPRtest = 6.625. TPRCFD = 6.338 (-4.3%).
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Unsteady Data

Dynamic Pressures, [psia]

Mach 3.5. Nominal tunnel operation with the shock train |
downstream. Tunnel pressure ratio, TPR = 7.143. o
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Unsteady Data

Mach 3.5. Nominal tunnel operation
with the shock train upstream. Tunnel
pressure ratio, TPR = 6.410.
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RMS levels for started tunnel operation

M3.5 Dynamic static pressures, baseline width

RMS levels
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M3.6 Dynamic static pressures

RMS levels
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M3.5 Dynamic static pressures, min. 2" throat width
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Conclusions and Future Work

* Conclusions
0 Mach 3.6 and 3.7 tunnel operation was demonstrated.
0 CFD results for pressure distributions compared reasonably with tunnel data.

o CFD indicates tunnel operation up to Mach 4 is possible with the width of the second
throat reduced to its minimum position; however, wind tunnel data suggests Mach 3.8.

0 Unsteady data shows non-linear behavior of the shock train pressure rise when the
second throat width is reduced.

* Future Work:
o0 Continue RANS CFD simulations at higher Mach numbers.

0 Include unsteady detached eddy simulation (DES) CFD simulation to explore unsteady
aerodynamics.

Explore effects of tunnel blockage due to a model in the test section.

Couple CFD results to unsteady data to develop a control strategy for high Mach number
wind tunnel operation

o0 Explore a future tunnel entry to test up to Mach 4.
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Questions?
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