Increased Mach Number Capability for the NASA Glenn 10x10 Supersonic Wind Tunnel

John Slater and Dave Saunders

Inlet and Nozzle Branch (LTN)
NASA Glenn Research Center
The 10x10 SWT was designed for Mach 4 test section speeds, but limited to 3.5 due to concern of tunnel unstart.

Compressors capable of a tunnel pressure ratio, $TPR = p_{t0}/p_{t1} = 7.11$.

Most losses occur in the second throat as flow reduces from supersonic to subsonic.

A capability of testing above Mach 3.5 would enhance the 10x10 SWT and be of interest for hypersonic testing.
The second throat consists of movable converging and diverging ramps that create a throat downstream of the test section.

Very large hydraulic actuators are used to position the ramps.
CFD Simulations

CFD domain includes test section, second throat, and tunnel to turn 1. An outflow nozzle section creates back-pressure.

CFD simulation compares well to wall static pressures collected during a calibration.

CFD simulations and wind tunnel tests were conducted to understand the flow field within the second throat and explore tunnel operation at speeds greater than Mach 3.5.

CFD simulations allow visualization of the structure of the shocks and boundary layers.
Observations from the CFD Simulations
Observations from the CFD Simulations

1) Mach 3.5. \(w_{th} = 98.57 \) inches. \(\frac{p_1}{p_0} = 13.92 \). TPR = 6.621.

2) Mach 3.5. \(w_{th} = 98.57 \) inches. \(\frac{p_1}{p_0} = 17.86 \). TPR = 5.176.

3) Mach 3.5. \(w_{th} = 72.20 \) inches. \(\frac{p_1}{p_0} = 18.49 \). TPR = 5.004.

4) Mach 4.0. \(w_{th} = 66.00 \) inches. \(\frac{p_1}{p_0} = 27.76 \). TPR = 6.649.

Reducing the width of the second throat improves efficiency, which reduces tunnel pressure ratio (TPR).
Observations from the CFD Simulations

1) Mach 3.5. $w_{th} = 98.57$ inches. $p_1 / p_0 = 13.92$. TPR = 6.621.

2) Mach 3.5. $w_{th} = 98.57$ inches. $p_1 / p_0 = 17.86$. TPR = 5.176.

3) Mach 3.5. $w_{th} = 72.20$ inches. $p_1 / p_0 = 18.49$. TPR = 5.004.

Reducing the width of the second throat improves stability of the shock system.
Comparison of Operational data to the CFD Simulations

Tunnel limits are at higher levels than CFD predictions.
Instrumentation provided data on steady and unsteady flow (max freq 2 kHz). Allow comparison to CFD results. The wall pressure taps will provide operators better data to determine if tunnel is operating in a stable manner.
Wind Tunnel Test Procedures

• Test Conducted over 1 night of testing.
• Testing stopped due to a hydraulic leak and rake failures.
• Test Procedure:

1. Set the test section Mach number by positioning the flex-wall. Start with Mach 3.5 and then sequence through Mach 3.6, 3.7, 3.8, 3.9, and 4.0. Only Mach 3.6 and 3.7 were reached.

2. Set the second throat width. Start with the standard schedule at Mach 3.5 \((w_{th} = 98 \text{ inches}) \) and then close second throat to its minimum width \((w_{th} = 72 \text{ inches}) \) for the remainder of testing.

3. Modulate the test section pressure ratio. Nominal < 7.11 due to losses in subsonic tunnel loop. Watch and record static pressure distributions.

4. If the tunnel unstarts, trigger the Dewetron. Initiate restart of the second-throat and continue to the next higher Mach number.

5. Repeat items 1 through 6 for Reynolds Numbers of \(2.0, 1.5, 0.5 \times 10^6 / \text{ft} \).
Test and CFD Results at Mach 3.5

Mach 3.5, w_{th} = 72.20 inches. TPR_{test} = 5.323. TPR_{CFD} = 5.004 (-6.0%).

Mach 3.5, w_{th} = 98.57 inches. TPR_{test} = 7.163. TPR_{CFD} = 8.821 (-7.8%).

Mach number contours at mid-height

\[p/p_0 \]

\(x, \text{ inches} \)

Data. Rdg 177. Wth = 98.57 In.

CFD. Full Grid. Wth = 98.57 In.

CFD. Coarse Grid. Wth = 98.57 In.

Data. Rdg 194. Wth = 72.20 In.

CFD. Full Grid. Wth = 72.20 In.

CFD. Coarse Grid. Wth = 72.20 In.
Test and CFD Results at Mach 3.6 and 3.7

Mach 3.6, \(w_{th} = 72.54 \) inches. TPR\(_{test}\) = 5.541. TPR\(_{CFD}\) = 5.436 (-1.9%).

Mach 3.7, \(w_{th} = 71.73 \) inches. TPR\(_{test}\) = 6.625. TPR\(_{CFD}\) = 6.330 (-4.3%).

Mach number contours at mid-height

\[\frac{p}{p_0} \]

- CFD. Mach 3.6. \(p_1/p_0 = 20.08 \)
- CFD. Mach 3.7.
Unsteady Data

Mach 3.5. Nominal tunnel operation with the shock train downstream. Tunnel pressure ratio, TPR = 7.143.
Unsteady Data

Mach 3.5. Nominal tunnel operation with the shock train upstream. Tunnel pressure ratio, TPR = 6.410.
RMS levels for started tunnel operation

M3.5 Dynamic static pressures, baseline width

M3.5 Dynamic static pressures, min. 2nd throat width

M3.6 Dynamic static pressures

M3.7 Dynamic static pressures
Conclusions and Future Work

• Conclusions
 o Mach 3.6 and 3.7 tunnel operation was demonstrated.
 o CFD results for pressure distributions compared reasonably with tunnel data.
 o CFD indicates tunnel operation up to Mach 4 is possible with the width of the second throat reduced to its minimum position; however, wind tunnel data suggests Mach 3.8.
 o Unsteady data shows non-linear behavior of the shock train pressure rise when the second throat width is reduced.

• Future Work:
 o Continue RANS CFD simulations at higher Mach numbers.
 o Include unsteady detached eddy simulation (DES) CFD simulation to explore unsteady aerodynamics.
 o Explore effects of tunnel blockage due to a model in the test section.
 o Couple CFD results to unsteady data to develop a control strategy for high Mach number wind tunnel operation
 o Explore a future tunnel entry to test up to Mach 4.
Questions?