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a b s t r a c t

We present a numerical testbed for remote sensing of aerosols, together with a demonstra-
tion for evaluating retrieval synergy from a geostationary satellite constellation. The testbed
combines inverse (optimal-estimation) software with a forward model containing linear-
ized code for computing particle scattering (for both spherical and non-spherical particles),
a kernel-based (land and ocean) surface bi-directional reflectance facility, and a linearized
radiative transfer model for polarized radiance. Calculation of gas absorption spectra uses
the HITRAN (HIgh-resolution TRANsmission molecular absorption) database of spectro-
scopic line parameters and other trace species cross-sections. The outputs of the testbed
include not only the Stokes 4-vector elements and their sensitivities (Jacobians) with
respect to the aerosol single scattering and physical parameters (such as size and shape
parameters, refractive index, and plume height), but also DFS (Degree of Freedom for Signal)
values for retrieval of these parameters. This testbed can be used as a tool to provide an
objective assessment of aerosol information content that can be retrieved for any
constellation of (planned or real) satellite sensors and for any combination of algorithm
design factors (in terms of wavelengths, viewing angles, radiance and/or polarization to be
measured or used). We summarize the components of the testbed, including the derivation
and validation of analytical formulae for Jacobian calculations. Benchmark calculations from
the forward model are documented. In the context of NASA's Decadal Survey Mission GEO-
CAPE (GEOstationary Coastal and Air Pollution Events), we demonstrate the use of the
testbed to conduct a feasibility study of using polarization measurements in and around the
O2 A band for the retrieval of aerosol height information from space, as well as an to assess
potential improvement in the retrieval of aerosol fine and coarse mode aerosol optical
depth (AOD) through the synergic use of two future geostationary satellites, GOES-R
(Geostationary Operational Environmental Satellite R-series) and TEMPO (Tropospheric
Emissions: Monitoring of Pollution). Strong synergy between GEOS-R and TEMPO are found
especially in their characterization of surface bi-directional reflectance, and thereby, can
potentially improve the AOD retrieval to the accuracy required by GEO-CAPE.
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1. Introduction

Remote sensing of aerosols from satellite and ground-
based platforms provides key datasets for understanding the
role of aerosols in physical processes governing changes of air
quality, visibility, surface temperature, clouds, and precipita-
tion [1]. However, global data records of aerosol parameters
have only emerged on a routine basis in the last decade, with
the advent of dedicated satellite sensors placed in sun-
synchronous low-earth orbits (LEOs). As seen in Table 1, these
sensors include twin MODIS instruments launched in 1999
and in 2002, MISR launched in 1999, OMI and POLDER in
2004, and CALIOP in 2006. Except for CALIOP, which is an
active remote sensing instrument probing the vertical dis-
tribution of aerosol backscattering, the others are all passive
remote sensing instruments and are complementary to each
other in their ability to characterize aerosol parameters that
are commonly retrieved. Aside from the usual retrieval of
aerosol optical depth (AOD), examples include the additional
inversion of fine- and coarse-mode AOD ratios from MODIS'
multi-spectral radiance data [2,3], derivation of non-spherical
AODs and up to three size-mode AODs from MISR's multi-
spectral and multi-angle radiance data [4–6], high-elevation
absorbing AODs from OMI's ultraviolet (UV) radiance data [7],
aerosol refractive index or single scattering albedo from
POLDER's angular polarization data [8], and aerosol plume
height retrieval over ocean fromMERIS' reflectance data in the
O2 A band [9]. These examples suggest that for a full
characterization of aerosol optical properties, future satellite
missions should rely on a combination of multispectral and
multi-angle measurements of radiance and polarization [10].

Several aerosol-related satellite missions are planned in
different countries, including, for example, the Geosta-
tionary Coastal and Air Pollution Events (GEO-CAPE)
and the Aerosol-Cloud-Ecosystem (ACE) missions in the
USA [11], the Geostationary Environment Monitoring

Spectrometer (GEMS) mission in Korea [12], and the
Sentinel-4 mission (with Ocean Land Color Instrument)
mission in Europe [13]. A vital question arises: how can a
given sensor be optimally configured (in terms of choices
of spectral wavelengths and view angles, and measured
quantities such as radiances and polarization) to fulfill the
mission scientific requirements, given constraints asso-
ciated with the mission's budget? To address this kind of
question in a cost-effective manner, a numerical testbed
tool for aerosol remote sensing is highly desirable. Such a
tool can provide an objective assessment of the aerosol
information content resulting from any set of (planned or
real) instrument configurations [14,15].

In this study, we construct such a testbed through the
integrated combination of forward models for particle
scattering and radiative transfer with software for inver-
sion theory. Traditionally, two steps are required for
evaluating instrument performance regarding the scienti-
fic requirements [14,15] for aerosol parameter retrieval.
First, it is necessary to generate a data set of forward
radiative transfer calculations for a wide-range of atmo-
spheric and surface conditions and aerosol scattering
properties, in order to simulate sensor measurements for
any given configuration of solar and viewing geometry,
spectral channels and desired measurement output (here-
after these simulations are called synthetic data). Second,
aerosol parameters are derived from the synthetic data,
potentially “degraded” by including synthetic noise, with
the proposed retrieval technique, and then compared with
the “true” aerosol parameters as used in synthetic data
forward calculations in order to determine whether the
retrieval results meet expected accuracy.

Although separate tools for both steps are currently
available, efforts to integrate them in a single numerical
testbed are often hindered by different aspects in retrieval
algorithms developed by various research groups. These

Table 1
List of current satellite sensors with measurement specifications relevant for operational retrieval of aerosol properties.

Acronyms Full names Wavelengths (nm) Measurements characteristics References

MERIS Medium Resolution Imaging
Spectrometer

15a bands in 390 nm to 1040 nm including
one O2 A band

Radiance at single view angle [9]

MISR Multi-angle Imaging
SpectroRadiometer

446, 558, 672, and 867 for both land and
ocean algorithm

Radiance at view angles726.1°b, 745.6°,
760.0°, and 770.5°, and 0°

[59]

MODIS Moderate Resolution Imaging
Spectroradiometer

470, 678, 2130 for land 550, 678, 870, 1240,
1640, and 2130 for ocean

Radiance at single view anglec [2,3]

OMI Ozone Monitoring Instrument 354, 388 for Aerosol index 19 channelsd in
332–500 for multi-channel algorithm

Radiance at single view angle [7]

POLDER POLarization and Directionality
of the Earth's Reflectances

670, 865 Radiance and polarization at 14–16 viewing
anglese

[8]

VIIRS Visible Infrared Imaging
Radiometer Suite

410, 440, 488, 672, 2250 nm for land 672,
746, 865, 1610, 1240, 2250 nm for ocean

Radiance at single view anglef [60]

CALIOP Cloud-Aerosol Lidar with
Orthogonal Polarization

532, 1064 Layer backscattering radiance
and depolarization ratiog

[61]

a 412, 442, 490, 510, 560, 620, 665, 681, 705, 753, 760, 775, 865, 890, 900 nm.
b Positive and negative signs respectively denote the view angles in the forward and backward plane of the local vertical (e.g., nadir view).
c Radiances are measured at 36 channels from 405 nm to 14395 nm.
d 332, 340, 343, 354, 367, 377, 388, 340, 406, 416, 426, 437, 442, 452, 463, 477, 484, 495, and 500 nm.
e The exact number of view angles depends on the geographical location. Radiances and linear polarization at 490 nm, 670 nm and 870 nm, and

radiance-only at 440 nm, 565 nm, and 1020 nm.
f 22 channels with centers from 412 nm to 1201 nm.
g Depolarizaiton ratio is only measured at 532 nm.
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aspects are hereafter called the “algorithm definition
factors”; they include the pre-described aerosol single
scattering properties, the wavelengths and view angles
selected for the retrieval, and other assumptions regarding
the properties of the Earth's surface, the aerosol vertical
distribution, and the approach used for cloud-screening.

Furthermore, for the same set of real or synthetic data,
some retrieval techniques may only use parts but not the
entirety of the data for the retrieval. For example, POLDER
measures multi-angle radiances and linear polarization at
490 nm, 670 nm and 870 nm, plus radiances at 440 nm,
565 nm, and 1020 nm, but only data at 670 nm and
870 nm are used in the operational algorithm for aerosol
retrievals [8]. Consequently, the retrieved aerosol informa-
tion content will depend on the sub-set of observations
used in the retrieval; this makes it difficult to objectively
assess the full capability of a sensor for remote sensing of
aerosol properties.

To avoid the divergence of retrieval results caused by
differences in algorithm definition factors other than the
characteristics of measurements, a testbed for remote sensing
of aerosols has to be built upon the combination of forward
models with formal inversion theory that uses a standard set
of variables (such as Degree of Freedom for Signal, or DFS) to
quantify the retrievable information [16,17]. Since aerosol
retrieval is in essence an inversion process, formal inversion
theory is well suited for the full investigation of aerosol
information content for any given set of synthetic or real
observation data, and the comprehensive assessment of
retrieval accuracy and its dependence on sources of uncer-
tainty in model parameterizations, intrinsic model assump-
tions and instrument error.

However, mainly due to limitations in computational
power, formal optimization theory has not been used in
the satellite remote sensing of aerosols until recently
[17–19]. Indeed, nearly all current operational algorithms
pre-compute the radiance (and/or polarization) as a func-
tion of AOD and other aerosol properties for a wide range
of Sun-satellite viewing geometries and surface reflectance
values, and this synthetic data is then saved as a look-up
table (LUT) [20]. The retrieval is then executed through a
search procedure on the LUT, to find a set of aerosol
parameters for which the corresponding pre-computed
radiances (and/or polarization) best match their observed
counterparts. While the LUT approach is computationally
efficient, it lacks the ability to quantify the retrieval errors
and to attribute error sources, and it does not offer the
flexibility for a quick diagnosis of the change of retrieval
performance in response to the change of algorithm
definition factors. To date, errors in LUT-based retrievals
are quantified merely in terms of an envelope of uncer-
tainties, for example 0.0570.15τ for Aerosol Optical Depth
(AOD or τ) retrieved from MODIS and 0.0570.2τ for MISR
retrievals over land [21]. Detailed pixel-to-pixel quantifi-
cation of retrieval errors has not been made – such error
estimates are urgently required for assimilating these
retrieved data into chemistry transport models [22–24].

To explore the variation of aerosol information content
for any set of remote sensing data as a function of a priori
constraints (or assumptions), instrument error, and algo-
rithm definition factors, we have constructed a numerical

testbed tool that combines linearized forward model
calculations with optimization theory. This tool addresses
several challenges that remain unanswered with the LUT
approach, namely: (a) the tool will allow users to incorpo-
rate instrument errors and prior constraints in the retrie-
val; (b) the tool will allow users to readily change
algorithm definition factors (such as selection of wave-
lengths and angles); (c) the tool will compute in a direct
manner the sensitivity of the measured quantities (such as
radiance and polarization) with respect to retrieved aero-
sol parameters (such as coarse/fine-mode AOD, aerosol
size parameters, aerosol refractive indices, and aerosol
shape factor); (d) the tool should treat the absorption
spectra of trace gases in a rigorous manner; and (e) it will
allow analysis of information content, degree of freedom
for signal and sources of retrieval error for all desired
aerosol parameters to be retrieved. While analyses using
similar methods to those in feature (e) have been made in
related recent work [17,18], it is feature (c) that distin-
guishes our tool from these two studies. This feature relies
on the combination of a linearized vector radiative transfer
model (VLIDORT) [30], a linearized Mie scattering code,
and a linearized T-matrix code [36]. In addition, given that
remote sensing of aerosols with spectroscopic data is still a
largely unexplored research field [25,26], feature (d) also
makes it feasible to study the effect of aerosols on the
retrieval of trace gases and vice versa [27].

Components of our testbed tool are described in
Section 2, and we present the model validation in
Section 3. In Section 4, we demonstrate the use of this
tool for the conceptual design of a retrieval algorithm to
meet the requirement of GEO-CAPE for aerosols. Conclu-
sions and discussion are in Section 5.

2. Description of the testbed

As shown in Fig. 1, the numerical testbed comprises 7
modules; they are (1) a vector linearized radiative transfer
model (VLIDORT), (2) a linearized Mie scattering code, (3)
a linearized T-matrix electromagnetic scattering code, (4) a
surface bi-directional reflectance (BRDF) module, (5) a
module that computes Rayleigh scattering and gas absorp-
tion, (6–7) two modules for the analysis, including an
optimal inversion code and a visualization tool for diag-
nosis. Modules (1)–(5) are integrated for the forward cal-
culation of aerosol single scattering, gas absorption and
radiative transfer hereafter, and thus they together con-
stitute the UNified Linearized Radiative Transfer Model,
UNL-VRTM. Inputs for the UNL-VRTM (the forward part of
the testbed) are profiles of atmospheric properties and
constituents (temperature, pressure, aerosol mass concen-
tration or layer AOD, water vapor amount and other trace
gas volume mixing ratio profiles), as well as the aerosol
parameters (such as size distribution and refractive index)
themselves. Bearing in mind the lack of sensitivity in
passive remote sensing for the retrieval of vertical profiles
of aerosol properties, the UNL-VRTM as it stands now is
only designed to deliver radiative calculations for a max-
imum of two sets of aerosol single scattering properties
(e.g., aerosol size distribution, refractive index, and particle
shape), typically with one fine-mode and one coarse-mode
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aerosol. Outputs of the testbed include synthetic data (of
radiance and polarization) at user-defined wavelengths,
the sensitivity of this synthetic data with respect to all
aerosol particle parameters, and the information content
of the synthetic data (expressed as DFS values for these
physical parameters).

2.1. Rayleigh scattering and gas absorption

Calculation of the optical thickness ðτRÞ and anisotropy
factor for Rayleigh scattering follows Bodhaine et al. [28]
in which the wavelength-dependent Rayleigh cross-
section sR (cm2 molecule�1) is computed as a function of
mixing ratios for N2, O2, H2O, and CO2. The phase matrix
for Rayleigh scattering follows Hansen and Travis [29]; we
use the set of spherical-function expansion coefficients for
the phase matrix as supplied for VLIDORT [30].

Calculation of the optical thickness for gas absorption is
based upon cross sections and spectroscopic line para-
meters in the HITRAN database [31,32] and from the
literature (for O3) [33–35]. Reference cross-sections are
re-sampled to 0.01 nm resolution by spline interpolation.
HITRAN provides five (in addition to the pressure shift)
parameters per line that are essential to quantify the gas
absorption as a function of wavelength: the line position
(υ0) in units of cm�1, the intensity per absorbing molecule
S (cm�1 cm�2/molecule), the Lorentz line width para-
meter (α0) in units of (cm�1 atm�1) and its temperature
dependence, and the energy of the lower state Eη (cm�1).
In the HITRAN database, values for α0 and S are given for
reference conditions (pressure of 1013.25 hPa and tem-
perature of 296 K). Additional calculations are needed for
temperature correction of the line intensity, and pressure-
shift correction of the line position. Doppler broadening is
calculated from the molecular mass and the temperature.
Doppler and Lorentz broadening are included in the Voigt
calculation.

2.2. Linearized Mie/T-matrix calculation

The calculation of aerosol single scattering parameters is
made with a Linearized Mie (LMIE) scattering electromag-
netic code for spherical particles and a Linearized T-matrix
(LTMATRIX) scattering code for non-spherical convex and
axially symmetric particles [36]. The linearized T-matrix
code is based upon the T-matrix code developed by [37],
but includes a linearization [36]. Common inputs for both

these codes are the complex refractive index ðnrþ iniÞ and
the particle size distribution (PSD) parameters for polydis-
perse scattering. The codes have several options to specify
the PSD function: two-parameter gamma, two-parameter
lognormal, three-parameter modified gamma, and four-
parameter bi-lognormal. In addition, the linearized T-
matrix code offers options to characterize the shape of
non-spherical aerosols (spheroids, cylinders, or Chebyshev
particles) [36]. For non-spherical particles, the specified size
distribution is interpreted as the equivalent surface-area
sphere in the linearized T-matrix calculation, regardless of
the shape. Details can be found in [36].

These scattering codes compute the extinction and
scattering efficiencies (Qext and Q sca), the single scattering
albedo ωAð Þ and asymmetry parameter gA

� �
, and the

scattering phase matrix (PAðΘÞ and for expansions of
PAðΘÞ) in terms of generalized spherical functions, the
corresponding sets of expansion coefficients. The codes are
linearized, in that they also generate analytic Jacobians of
all these single scattering parameters with respect to input
aerosol physical parameters such as nr, ni, PSD parameters,
and the non-spherical shape factor.

2.3. Vector linearized discrete ordinate radiative transfer
(VLIDORT) model

VLIDORT is a linearized pseudo-spherical vector discrete
ordinate radiative transfer code for multiple scattering of
diffuse radiation in a stratified multi-layer atmosphere.
VLIDORT computes simultaneously the Stokes 4-vector para-
meters ½I; Q ; U; V � and their partial derivatives with respect
to any atmospheric or surface property [30]. VLIDORT is a
pure scattering model – the basic optical property inputs are
the layer extinction optical depths, total single scattering
albedos and scattering-matrix expansion coefficients, plus
the surface reflectance.

For upwelling and downwelling radiation fields at any
atmospheric level and for any viewing geometry, atmospheric
-layer Jacobians are available with respect to the layer optical
depths (τL), single scattering albedos ðωLÞ, and the scattering-
matrix expansion coefficients. In addition, Jacobians are also
available for column-integrated values of optical depth and
other bulk-atmospheric properties. Jacobians can be obtained
for surface properties that describe the bidirectional reflec-
tance distribution function. The pseudo-spherical approxima-
tion is a correction for the Earth's curvature effect on solar

Fig. 1. Flow chart of the testbed. See text for details.
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beam attenuation; VLIDORT also has the delta-M approxima-
tion for dealing with sharply-peaked forward scattering.

Computation of the Stokes vector in VLIDORT requires
input of an optical property set ½τL; ωL; 〈Bj

L〉j ¼ 0; J � for each
atmospheric layer where 〈 〉j¼0, j denotes the vector that
consists of elements having the similar expression as that
inside 〈 〉 but for j¼0, J. For each atmospheric layer L, the
optical property inputs are assumed constant and are given
by

τL ¼ τGþτRþτA ð1Þ

ωL ¼
ωAτAþτR

τL
ð2Þ

Bj
L ¼

ωAτAB
j
AþτRB

j
R

ωAτAþτR
ð3Þ

where τG, τR, and τA are the optical depths for gas absorp-
tion, Rayleigh scattering, and aerosol extinction, respec-
tively; ωA is the aerosol single scattering albedo; Bj

A and Bj
R

are 4�4 matrices of expansion coefficients for aerosol and
Rayleigh scattering. Note that, for Rayleigh scattering,
Bj
R ¼ 0 when jZ3.
Since VLIDORT generates Jacobians with respect to

layer-integrated single scattering properties in each atmo-
spheric layer as well as column-integrated single scatter-
ing property as a whole, and LMIE and LTMATRIX offer the
sensitivity of aerosol scattering properties to microphysical
aerosol physical parameters, an integrated use of VLIDORT
and LTMATRIX/LMIE can, in principle, provide the Jaco-
bians of Stokes parameters with respect to both aerosol
single scattering properties as well as aerosol microphysi-
cal parameters (e.g., refractive index, size, and shape).
Practically, the VLIDORT calculation of Jacobians of any
Stokes parameter ξwith respect to any aerosol parameter x
proceeds according to

x
∂ξ
∂x

¼ x
∂ξ
∂τL

∂ξ
∂ωL

∂ξ
∂Bj

L

* +
j ¼ 0; J

2
4

3
5 ∂τL

∂x
∂ωL

∂x
∂Bj

L

∂x

* +
j ¼ 0;J

2
4

3
5
T

¼ τL
∂ξ
∂τL

ωL
∂ξ
∂ωL

Bj
L
∂ξ
∂Bj

L

* +
j ¼ 0;J

2
4

3
5½ϕx; φx; Ψj

x

D E
j ¼ 0;J

�T :

ð4Þ

The first square bracket on the right-hand side of
Eq. (4) contains quantities computed internally by VLI-
DORT, while the second so-called “transformation vector”
must be supplied by users and is defined as

ϕx ¼
x
τL

∂τL
∂x

; φx ¼
x
ωL

∂ωL

∂x
; Ψj

x ¼
x

Bj
L

∂Bj
L

∂x
: ð5Þ

This transformation vector can be further expanded as

½ϕx; φx; Ψj
x

D E
j ¼ 0;J

�T ¼Π½ϕ0
x; φ0

x; Ψ0j
x

D E
j ¼ 0;J

�T ð6Þ

Where ϕ0
x; φ0

x; Ψ0j
x

D E
j ¼ 0;J

� �
¼ x∂τA∂x ; x∂δA∂x ; x

∂Bj
A

∂x

� �
j ¼ 0;J

" #T
;

and Π is a matrix expressed by

Π¼

1
τL

0 0

� 1
τL

1
δA þ δR

0

0 Bj
A �Bj

R

Bj
LðδA þ δRÞ

� �
j ¼ 0;J

δA
Bj
LðδA þ δRÞ

� �
j ¼ 0;J

2
666664

3
777775: ð7Þ

Here, δA is the scattering optical depth of aerosols. The
detailed derivations of the matrix Π are presented in
Appendix A. Hence, the transformation vector for calculat-
ing Stokes profile Jacobians with respect to τA, ωA, and Bj

A
can be obtained by combining Eqs. (6) and (7), and the
components of this vector are listed in Table 2.

In an atmosphere where both fine (superscript “s”) and
coarse (superscript “c”) aerosol particles co-exist, the
ensemble aerosol optical properties may be derived by
assuming external mixing:

τA ¼ τsAþτcA
δA ¼ δsAþδcA

Bj
A ¼ δsAB

s j
A þ δcAB

c j
A

δsA þ δcA

8>>><
>>>:

ð8Þ

We can generate the transformation vectors (Table 3)
for any of the following parameters τsA, ω

s
A, m

s
A, n

s
i , n

s
r, s

s
g, r

s
g,

εs, Hs, and τcA, ω
c
A, m

c
A, n

c
i , n

c
r , s

c
g, r

c
g, ε

c, and Hc, where sg, rg,
and H denote respectively the median and geometric
standard deviation of particle radius (e.g., two parameters
in the log-normal aerosol number distribution), and the
scale height of aerosol extinction; mA is the aerosol mass
concentration and ε the shape factor of the non-spherical
particle. Details of the algebra for deriving the transforma-
tion vectors may be found in Appendix A. Note that the
shape of the aerosol extinction vertical profile in the
testbed is assumed to be constant or exponentially
decreasing with height or quasi-Gaussian (Appendix A);
in the main text, we use the exponential form. The
analytical formulas for ϕ0

x, φ0
x, and Ψ0j

x for coarse mode
aerosol parameters are the same as their counterparts for
fine-mode aerosols; we need only replace superscript “s”
with “c” in Table 3 entries. Jacobians with respect to the
fine mode fraction, either in terms of AOD (f τ) or in terms
of the mass concentration (fm), can be derived from the
corresponding Jacobians with respect to modal AOD and

Table 2
Elements of transformation vector for various aerosol single scattering
parameters (composite of fine and coarse mode).

x ϕx φx Ψj
x

τA τA
τL

τA
τL

ωA

ωL
�1

� 	
ωAτA
ωLτL

Bj
A

Bj
L

�1

 !
f or jo3

τR
ωLτL

f or jZ3

8>><
>>:

ωA 0 ωAτA
τLωAτAþτR

Same as above

Bj
A

0 0 ωAτAB
j
A

ωAτAB
j
AþτRB

j
R

f or m¼ jo3

1 f or m¼ jZ3
1 f or ma j

8>>>><
>>>>:
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mass, respectively:

f τ
∂ξ
∂f τ

¼ τsA
∂ξ
∂τsA

� f τ
1� f τ

τcA
∂ξ
∂τcA

ð9Þ

f m
∂ξ
∂f m

¼ms
A
∂ξ
∂ms

A
� f m
1� f m

mc
A
∂ξ
∂mc

A
ð10Þ

Details of these necessary VLIDORT inputs are pre-
sented in Appendix A.

2.4. Surface BRDF model

VLIDORT has a supplementary module for specification of
the surface BRDF as a linear combination of (up to) three
semi-empirical kernel functions; for details, see [30]. This
supplementary module can also provide partial derivatives of
the BRDF with respect to the kernel weighting factors or with
respect to kernel parameters such as the wind speed for
glitter reflectance. These kernel functions include Lambertian,
Ross-Thick, and Li-Sparse functions [38,39], a Bi-directional
Polarization Distribution Function [40], and an ocean surface
model based on the Cox-Munk model [65]. In addition,
VLIDORT has an option for using a surface-leaving radiation
field, either as a fluorescence term or as a water-leaving term
expressed as a function of chlorophyll absorption.

2.5. Optimization retrieval

Our approach is based upon non-linear optimal estima-
tion theory [16,41], and is similar to that of Waquet et al. [18]
as applied to the Aerosol Polarimetry Sensor (APS) aerosol
algorithm, and Hasekamp and Landgraf [42] for the GOME-2
aerosol retrieval algorithm. The principal aim is to retrieve an
optimal set of aerosol parameters from a combination of
satellite measurements of radiance/polarization, and a priori
knowledge of this set of aerosol parameters [43,44]. The
retrieval proceeds by simultaneously and iteratively mini-
mizing the cost function ϕ which is the sum of two L2-norm
functionals, the first expressing differences between obser-
vations and simulations constrained by the total measure-
ment error covariance matrix (ET) and the second expressing
differences between retrieved (x) and a priori (xa) state

vectors constrained through the a priori covariance matrix
(Ea). The cost function is

Φ¼ JE�ð1=2Þ
T fKiðxiþ1�xiÞ�½y�FðxiÞ�gJ2þ JE�ð1=2Þ

a ðxiþ1�xaÞJ2

ð11Þ

here, y is the measurement vector, F is the forward model
(UNL-VRTM) that combines components described in
Sections 2.1–2.4, ET is the total error covariance matrix, and
xiþ1 and xi are the retrieval state vectors for the current and
previous iterations, respectively. xa is the a priori state vector,
and Ea is the a priori error covariance matrix. Ki is the
Jacobian or weighting function matrix at iteration step i,
defined as ∂F=∂xi, which is essentially the matrix of sensi-
tivity functions of Stokes parameters (ξ) with respect to any
of the parameters to be retrieved (e.g., xð∂ξ=∂xÞ). Here, the
retrieval state vector (x) consists of the following 15 ele-
ments: τA, f τ , ns

i , n
s
i , n

s
r, s

s
g, r

s
g, ε

s, Hs and nc
i , n

c
r , s

c
g, r

c
g, ε

c, and
Hc. Note, here f τ and H denote the fraction of AOD in fine
mode and scale height respectively.

The first term on the right-hand side of Eq. (11) is the
weighted least square error functional that represents the
distance between the measured and modeled quantities.
For simplicity, the total error covariance matrix is assumed
zero-off-diagonal, which means that errors in each indivi-
dual measurement are independent. The diagonal values
are thus error variances for individual measurements,
comprising random Gaussian instrumental errors and
forward model errors. The instrumental error includes
the contributions from instrument noise and calibration
error. The forward model error includes errors in the
simulated radiances propagated from uncertainties in
assumed parameterizations of atmospheric and surface
properties (for example gas absorption cross-sections),
and errors due to mathematical and physical assumptions
in the forward model itself (for example truncation errors
in the phase matrix).

The optimal a posteriori solution is given by Rodgers [41]

xiþ1 ¼ xiþðKT
i E

�1
T KiþE�1

a Þ�1fKT
i E

�1
T ½y�FðxiÞ��E�1

a ðxiþ1�xaÞg
ð12Þ

The superscript T here means transpose of the matrix.
From optimal estimation theory, the solution (a posteriori)

Table 3
Elements of transformation vector for various microphysical parameters of fine and coarse mode aerosolsa.
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a Expressions are shown only for fine-mode parameters (xs); expressions for coarse mode parameters are the same but with superscript s replaced by c.
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error covariance matrix for the retrieved parameters is

Ê ¼ ðE�1
a þKT

i E
�1
T KiÞ�1 ð13Þ

Errors in derived variables (e.g., τsA) can be deter-
mined from the errors of the retrieved parameters and
the Jacobians of these derived variables with respect to
the retrieval elements. For the purpose of quantifying
information contained in the observation, only the error
covariance and Jacobian matrix, and not the retrieval,

are important. To obtain the link between the retrieval
to the true state, we differentiate Eq. (12) and assume a
linear forward model in the vicinity of the true state:

A¼ ∂xiþ1

∂x
¼ ðE�1

a þKT
i E

�1
T KiÞ�1KT

i E
�1
T Ki ð14Þ

A is called the averaging kernel matrix, which quantifies
the ability of the retrieval to infer a posteriori state
vector (x̂) given the relationship between y and x at
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Fig. 2. (a) Downward solar spectral irradiance at the TOA and the surface for solar zenith angle of 301. (b) Total-atmosphere gas absorption optical depth in
the range 0.2–0.8 μm. (c) Same as (b) but for 0.8–4 μm. (d) Optical depth of SO2 and NO2 in polluted cases. Also shown in (b) and (c) are the optical depth
computed from Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model [45]. The mid-latitude summer atmospheric profile is assumed
(McClatchey et al. [62]).
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the linearization point (i.e., K) for specified observation
noise and a priori characterization. Thus, a perfect
retrieval results in the identity matrix for A, while a null
matrix for A indicates that no information can be gained
from the observation. The trace of A is the Degree of
Freedom for Signal, DFS¼ TraceðAÞ, which is a measure
of the number of independent pieces of information that
can be gleaned from the retrieval. Note, in reality Ea and
Ki can be connected. For example, in the extreme case
when Ea is approaching infinite, it also means that Ki is
approaching zero, i.e., the instrument has no informa-
tion for the retrieval parameter; hence, in this case, DFS
is approaching zero.

3. Forward model examples and benchmarking

Fig. 2a shows the downward solar spectral irradiance at
the top-of-atmosphere and at the surface for a solar zenith

angle of 301. Spectral regions dominated by gas absorption
can be clearly identified, including the O3 Hartley-Huggins
bands in the UV, the O2 B band (0.69 μm) and O2 A band
(0.76 μm), as well as a number of water vapor bands. The
spectroscopic calculations shown in Fig. 2 were performed
at a resolution of 0.01 nm. In general this resolution is high
enough to pick up fine structure in gas absorptions. In the
UV below 300 nm, and in parts of the O2 A and O2 B bands,
whole-atmosphere gas absorption optical depths can
reach 50 or more, and the downward irradiance is nearly
zero at the ground (Fig. 2b). The inset in Fig. 2b shows a
close-up view of the fine structure in absorption optical
depth for the O2 A band, with dual peaks centered at
0.761 μm and 0.764 μm, and a deep, narrow valley around
0.762 μm. Similarly, the continuum of water vapor absorp-
tion from the near-infrared to �4 μm is also well simu-
lated (Fig. 2c). Also of note is the non-negligible absorption
of SO2 and NO2 in UV and blue wavelength regions
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respectively (Fig. 2d). In urban regions, high SO2 and NO2

can together contribute optical depths of around 0.03–0.07
(Fig. 2d). Hence, in order to take advantage of low surface
reflectance in the UV and the use of deep-blue wave-
lengths for the retrieval of AOD in urban regions, it is
critical to treat absorption by SO2 and NO2. In contrast,
calculations performed at moderate spectral resolution
(such as those from Santa Barbara Discrete-Ordinate
Atmospheric Radiative Transfer, or SBDART [45], shown
as the blue lines in Figs. 2b and c) do not resolve fine-
structure details, sometimes missing the absorption lines
for SO2 or NO2, and in general producing significant
underestimation of optical depths in the O2 A band.

Fig. 3 shows the calculation of the degree of linear
polarization (DOLP) of downward radiation in a pure
Rayleigh scattering atmosphere. The solid blue line in
Fig. 3a (dotted line in Fig. 3b) reproduces the theoretical
results shown in Figure 5.7 of Coulson's 1988 book [46],
which was used to interpret the DOLP measured at Mauna
Loa Observatory on February 19, 1977. Furthermore, Fig. 3a
shows that the anisotropy in Rayleigh scattering reduces
the peak DOLP by 5% (e.g., the difference between the
green and red lines) at 0.7 mm. Surface reflection and its
concomitant increase of atmosphere scattering will

decrease the DOLP of downward radiation. An increase of
surface reflectance from 0 to 0.25 decreases the peak DOLP
by 10%.

Quantitatively, the Stokes-vector I, Q, and U compo-
nents computed with UNL-VRTM differ from their counter-
parts found in the tables by Coulson et al. [47] by average
(relative) deviations of 1.9�10�4 (0.05%), 2�10�5 (0.14%),
and 4�10�5 (0.03%), respectively (Figs. 3c–e). These
differences are similar to the values 2.1�10–4, 9�10–5,
and 7�10–5 identified by Evans and Stephens [48]. More
recently, Rayleigh-atmosphere benchmark results have
been re-computed by Natraj and Hovenier [49] to a much
higher degree of accuracy; this work also included bench-
marking of the VLIDORT model.

Fig. 4 shows benchmark calculations of four Stokes
parameters for radiative transfer in an aerosol-only atmo-
sphere. Garcia and Siewert [50] documented their results for
unpolarized incident radiation at 951 nm and solar zenith
angle cosine 0.2, for an atmosphere with a Lambertian
reflectance of 0.1. The aerosols in that atmosphere were
assumed to satisfy a gamma-function size distribution with
ref f ¼ 0:2 μm and vef f ¼ 0:07 μm, and a refractive index
yielding an aerosol single scattering albedo of 0.99. Com-
pared to their results, the Stokes four parameters computed
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Fig. 4. Counterparts in Tables 3–10 of Garcia and Siewert [50] for upwelling radiation on the top of the same atmospheric conditions of aerosol scattering.
No gas absorption and Rayleigh scattering are considered. Note that compared here are I and Q values reported in Ref. [50] for 9 view angles (with cosine
values from 0.1 to 0.9 at equal spacing of 0.1) and 3 relative azimuth angles (0, π/2, and π), which yields a total of 27 data points. For U and V, their values are
reported for the same 9 viewing angles but for one relative azimuth angle (π/2) only. See details in the text. The calculation is performed at 951 nm for
AOD¼1.0, and aerosol size distribution parameters reff¼0.2, and veff¼0.07, refractive index¼1.44, and single scattering albedo 0.99 [50].
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by UNL-VRTM show relative differences of less than 0.6%,
with maximum relative differences (at certain viewing
geometries) of up to 2% for Q and 3.8% for V. The DOLP
computed from the UNL-VRTM (with 15 streams for the
hemisphere) and documented by Garcia and Siewert [50]
(with 3 streams) differ on average by 0.5%, with a maximum
relative difference of 0.65%.

The simultaneous calculation of analytic Jacobians of
the four Stokes parameters with respect to the aerosol
optical depth, size parameters, refractive indices, and
aerosol-loading peak height for both fine and coarse
model aerosols may be validated against Jacobians calcu-
lated using the finite difference method (Figs. 5 and 6).

Overall, results from the two methods are highly corre-
lated as seen in the scatter plots shown in Figs. 5 and 6.
Relative differences in all comparisons are less than 0.5%,
and in many cases the differences are less than 0.05%.

4. Case demonstration for GEO-CAPE

4.1. Polarization sensitivity in O2 A band to aerosol
vertical profile

One of the requirements in the GEO-CAPE science trace-
ability matrix is to retrieve the aerosol centroid height
(the altitude where maximum extinction occurs) from
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passive remote sensing [51]. This requirement is necessary
for improving the estimate of surface aerosol mass concen-
tration from the satellite-measured radiances or retrieved
AODs. Although the UV radiance at the top-of-atmosphere
(TOA) is known to be sensitive to centroid height of absorb-
ing aerosols [7], several methods were proposed recently to
retrieve centroid height of aerosols, in particular, the scatter-
ing aerosols, from O2 A band measurements [25,52]. The
physical principle underlying UV aerosol retrieval uses the
known profile of Rayleigh scattering to calibrate the profile of
aerosol absorption. In contrast, the reasoning behind the O2

A method is to use the profile of O2 absorption to calibrate
the profile of aerosol scattering. However, land surface
reflectance is often much higher in the O2 A band than in
the UV, and this can weaken the signal of aerosol scattering
in upwelling radiance at TOA (see discussion of Fig. 7 below).
Consequently, while Butz et al. [53] described the explora-
tory use of measurements in the O2 A band from Greenhouse
gases Observing SATellite (GOSAT [54,55]) to retrieve aerosol
plume height globally, promising results (with independent
validation) of aerosol centroid height retrieval from O2 A
band so far are found for ocean scenarios [9]. To overcome
this limitation, Zeng et al. [25] suggested the use of polariza-
tion measurements at TOA, since polarized reflectance at the
land surface is often low, and this effect would favor the use
of aerosol single scattering to derive aerosol properties.

While the physical principles can be readily understood
conceptually, several outstanding questions remain for this
use of O2 A band reflectances and DOLP. In this section, we
will use UNL-VRTM to conduct some exploratory work
related to two issues: (a) the optimal choice of wave-
lengths in the O2 A band, and (b) the sensitivity of the
retrieval as a function of viewing geometries for spherical
and non-spherical particles. Both questions are related to
sensor design: what are the optimal spectral resolution
and wavelength choices, and for which viewing scenarios
will the polarization in O2 A band have maximum
sensitivity to aerosol height? In this regard, the particle
shape needs to be considered, as this can affect the
scattering phase matrix and polarization as functions of
the scattering angle.

Figs. 7a and b show that as the surface reflectance
increases, the DOLP at TOA decreases, while the TOA
reflectance increases, both within and outside the O2 A
band. This is a consequence of the effect of surface
depolarization and increased multiple scattering in the
atmosphere due to stronger surface reflectance. Since
Rayleigh scattering often induces positive and strong DOLP
while spherical aerosols generate negative DOLP (see
Fig. 8a), increased scattering by aerosols generally results
in less positive DOLP. However, O2 absorption in the O2 A
band suppresses aerosol scattering. Hence, the lower the
aerosol peak height, the more aerosol scattering is sup-
pressed, and Rayleigh scattering above the aerosol layer
contributes more to the DOLP. This effect explains the drop
in DOLP inside the O2 A band as the aerosol peak height
increases (Fig. 7b). More interestingly, the rate of this
decrease with respect to the increase of aerosol peak
height appears insensitive to the surface reflectance,
although the absolute value of this decrease appears to
be larger as surface reflectance increases. The latter effect

can be understood as follows: multiple scattering between
the surface and atmosphere is always suppressed by the
O2 absorption, and hence, the larger the surface reflec-
tance, the greater are the differences or the changes of
DOLP from within the O2 A band to the continuum outside
the band. Furthermore, the contrast between Fig. 7b (for
O2 absorption depth of 70) and 7c (for O2 absorption depth
of 133) shows that DOLP at different O2 A absorptions has
different sensitivity to aerosol peak height. The larger
(smaller) the O2 absorption optical depth, the greater
(lower) the sensitivity of the DOLP to high-elevation
aerosols, and the lower (greater) the sensitivity to low-
altitude aerosols. At large O2 absorption optical depth,
radiation is prevented from reaching the surface and
interacting with aerosols in the lower troposphere
(Figs. 7d and 2a). Therefore, two or more measurements
of DOLP in the O2 A band that encompass a range of O2

absorption depth are recommended for retrieval of aerosol
peak heights at various altitudes.

Sensitivity patterns of DOLP for the O2 A band with
respect to the aerosol peak height (as shown in Figs. 7b
and c) are in contrast with reflectance sensitivity patterns
(Figs. 7e and f). In the latter, the ratios of O2 A band
reflectances to those in the continuum outside the band in
general increase as the aerosol peak height rises, reflecting
lower O2 absorption and more aerosol scattering. How-
ever, this sensitivity drops off as the surface reflectance
increases, because larger surface reflectance often smears
the aerosol contribution to the reflectance at the TOA.
However, this does show that differences between reflec-
tivity inside the O2 A band and outside the band have some
sensitivity to high-elevation aerosols, even when surface
reflectance is high.

To further evaluate the sensitivity of DOLP and intensity
to the aerosol plume height as a function of wavelength,
we present in Fig. 7g and h respectively the quantities
∂DOLP=∂ ln H and j∂ ln DOLP=∂ ln Hj�j∂ ln I=∂ ln Hj. Here,
calculation of ∂DOLP=∂ ln H is done through

∂DOLP
∂ ln H

¼ Q

I2
∂I

∂ ln H
�1

I
∂Q

∂ ln H
ð15Þ

Contributions on the right side of Eq. (15) are all
readily available after running UNL-VRMT once. Fig. 7g
indicates that the DOLP alone has larger sensitivity for
relative change of aerosol plume height at higher altitude
in the O2 A spectrum, and for the aerosols layers at the
same altitude, the DOLP at the edge of O2 A band appears
to have larger sensitivity to the change of height than
DOLP in the center of the band. However, regardless of
the altitude of the aerosol layer, the DOLP at a particular
wavelength in the O2 A band overall has relatively larger
sensitivity to the relative change of plume height than
that of intensity (Fig. 7h). This clearly indicates that the
measurement of polarization in O2 A band has much more
information content for aerosol plume height than does
the intensity measurement alone, especially when con-
sidering that the accuracy of polarization measurements
is also higher [10].

In Fig. 8, we consider the effect of scattering angle and
aerosol shape on the sensitivity of DOLP to aerosol peak
height. In general for the aerosol properties studied here,
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we find that outside of the O2 A band, the DOLP shows
nearly zero sensitivity to the aerosol peak height, and the
variation of DOLP with scattering angle can be explained
by the composite effect of Rayleigh and aerosol single
scattering properties. For scattering angles in the range
140–1701, DOLP is negative, since the effect of aerosol
multiple scattering (negative DOLP, Fig. 8b) outweighs that
for Rayleigh scattering (optical depth¼0.025). However, as

the scattering angle moves to lower values (and also
toward the backscatter region), the DOLP for spherical
particles decreases to near zero, while DOLP for Rayleigh
scattering becomes larger toward the scattering angle of
1201, and closer to zero as the scattering angle approaches
1801. Thus the DOLP overall becomes larger and more
positive as the scattering angle moves from 1401 to 1201,
and approaches zero as the scattering angle increases
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above 1701 to 1801. In general, patterns of DOLP within the
O2 A band (Fig. 8g) follow those observed outside the band
(in terms of positive and negative DOLP), except for
scattering directions where Rayleigh scattering is impor-
tant for DOLP (e.g., 120–1401). In this range, DOLP shows
high sensitivity to the aerosol peak height. When the
aerosols reside at high altitude, O2 absorption suppresses
both Rayleigh and aerosol scattering, and so the positive
DOLP found outside the band is diminished (Fig. 8j). As the
aerosol layer moves to a lower altitude, DOLP at TOA
depends more on Rayleigh scattering above the aerosol
layer (and less on aerosol scattering), and therefore, more
positive DOLP values become apparent (Fig. 8j). Hence,
except for the scattering angle range of 170–1801, DOLPs at
other scattering angles are sensitive to aerosol peak
height, especially below 10 km. As noted above, higher
sensitivity will be apparent for high-altitude aerosols at
wavelengths where O2 absorption is large.

The DOLP patterns with respect to scattering angle for
spheroidal particles are in general similar to those for
spherical particles, except that the positive DOLP contribu-
tion from Rayleigh scattering has a relatively larger con-
tribution, since DOLP for spheroids is small (either
positively or negatively). Because the DOLP for scattering
by spheroids is typically closer to that for the Rayleigh
DOLP as compared to the case for spherical particles [56],
the DOLP is only sensitive to high-elevation aerosols at
angles where DOLP differences are relatively larger.

Finally, aerosol shape has some impact on the DOLP,
especially at 120–1701, both within and outside the O2 A
band (Figs. 7f and i). In general, because spheroidal scatter
generates small negative and sometimes positive DOLP
compared with large negative DOLP values for spherical
particle scattering, there is less decrease of DOLP as
compared to the case for spheres (Figs. 7f and i). Hence,
it is important to account for aerosol non-sphericity when
using DOLP to retrieval aerosol peak height.

4.2. Information content analysis for GEO constellation
for aerosol retrievals

Although it has not been decided whether GEO-CAPE will
have the capability to measure the DOLP in and around the
O2 A band, Geostationary satellite (GEO) constellations for
remote sensing of aerosols have been proposed and sup-
ported by various studies [51]. The GEO satellites TEMPO [64]
and GOES-R [57] are expected to be launched in 5 years. Here,
we will use our testbed to study the potential of combining
measurements from two viewing angles, one from TEMPO
and one from GOES-R, with an objective of improving
retrieval of aerosol properties (Fig. 9). It has been shown that
the combination of measurements from two or more viewing
angles from the same sensor aboard a polar-orbiting satellite
(such as MISR or ATSR) can generate additional information
for characterizing the aerosol properties [4,58]. From geosta-
tionary orbit, TEMPO and GOES-R can view the same scene
from two different but constant viewing angles (Fig. 9). To
explore this synergy, we select 3 visible wavelengths from
GOES-R (470, 640, and 860 nm) and 4 wavelengths from
TEMPO (340, 380, 470, and 640 nm). Note that although
TEMPO is a spectrometer, the 4 wavelengths selected here are

atmospheric window channels that either overlap with
GOES-R or were used in the past for aerosol retrievals (by
OMI). In the information content and error analysis, we
assume 100% a priori uncertainty in the column AOD and
fine-modal fraction (FMF of AOD, or fτ). Observation error is
defined to include instrument error and forward modeling
error. We specify 3% uncertainty for instrumental error. For
forward modeling error, we account for errors in the TOA
radiances simulation propagated from the errors in the sur-
face BRDF parameters (20% uncertainty) and aerosol single
scattering albedos (uncertainty of 0.03 for both size modes).

Overall, the DFS values for the retrieval of AOD from
GOES-R (Fig. 10a) and TEMPO (Fig. 10b) are found to be
higher than 0.9, thus suggesting that both sensors can be
used to retrieve AOD, provided that aerosol single scatter-
ing properties for both fine and coarse-mode aerosols are
defined. However, at viewing directions close to the solar
beam (e.g., viewing zenith angle or VZA closer to 401 and
relative azimuth angle (RAZ) at 1801), the DFS is reduced
for both sensors, especially for GOES-R with DFS values are
less than 0.8 and a posterior uncertainty reach as larger as
30% (Fig. 10d). This decrease is due in part to the effect of
surface BRDF on retrieval; the surface reflectance is gen-
erally larger at directions close to that of the incoming
solar beam, and this smears the aerosol scattering signal at
TOA and results in the larger uncertainty (lower DFS) in
the retrieval. However, because surface reflectance in the
UV is generally much lower than that in the visible, the
BRDF effect on aerosol retrieval in the UV is smaller than
that in the visible. Consequently, for GOES-R that has the
shortest wavelength at 470 nm in the visible, the decrease
of DFS is large and distinct (Fig. 10a). In contrast, for
TEMPO with its UV channels, the decrease of DFS is less
significant although still discernable (Fig. 10b). Combining
TEMPO and GOES-R thus increases DFS for all geometries
and minimizes the effect of BRDF on the aerosol retrievals
(Fig. 10c), and a posterior uncertainty are reduced to be
less than 10% for any geometry (Fig. 10f).

Fig. 9. GEO constellation concept for aerosol retrievals. GOES-R is
planned to be located at 1351W over the equator, while TEMPO is
planned to be at 1001W above the equator. For the same surface location
in the western continental U.S., the viewing angles (θsat) for both GOES-R
and TEMPO will be constant, regardless of the solar zenith angle (θ).
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Fig. 10. Polar plots of Degree of Freedom for Signal (DFS) for the retrieval of the total aerosol optical depth at 470 nm (AOD470) from: (a) GOES-R,
(b) TEMPO, and (c) joint measurements of GOES-R and TEMPO. Plots (d)–(f) are retrieval uncertainties for AOD470 from these three sets of measurements,
respectively. Plots (g)–(l) are similar to (a)–(f) but apply to the retrieval of 470 nm AOD fine-modal fraction (FMF470). Note that the three atmospheric
window channels from TEMPO are the ones used by AERONET to measure AOD. In each polar plot, the VZA is shown as the radius, while the polar angle
represents the relative azimuth. The solar zenith angle is fixed at 401. Values for joint retrieval correspond to the VZA for GOES-R and averages for different
sets of VZA for TEMPO. The two modes are for sulfate- and dust-like aerosols with optical depths of 0.78 and 0.28 respectively at 470 nm. An underlying
grass surface is assumed, with MODIS-retrieved BRDF parameters.
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Although the retrieval of AOD is now the mainstay for
nearly all sensors that measure radiances in the UV and
visible, challenges still remain for retrieval of fine-mode
AOD. Both multispectral (such as MODIS) and multi-angle
(e.g., MISR) measurements can be used to retrieve fine-mode
AOD. However each has its limitation – MODIS lacks multi-
angle and UV capabilities, while MSIR lacks the wide spectral
coverage. From this perspective, TEMPO and GOES-R are
complementary in terms of spectral coverage, and their
combination can offer the two-angle observation capability.
Fig. 10g shows that for most of the expected geometrical
configurations, the DFS for GOES-R to retrieve fine-modal
fraction (FMF) of AOD is in the range 0.8–0.9. In contrast, for
TEMPO (Fig. 10h), the DFS for retrieving fine-mode AOD is
mostly larger than 0.9. This contrast is in part due to low
surface reflectance at the UV as well as use of
4 channels for TEMPO (as opposed to 3 channels with
GOES-R). However, DFS at the nadir appears to be lower
for both sensors, as the path length is small at nadir.
Interestingly, it appears that BRDF has no distinct effect on
the retrieval FMF, at least for the cases analyzed here; this
can be understood that the retrieval sensitivity for separating
fine- and coarse-mode aerosols depends strongly on the
range of the wavelengths selected for the retrieval as well as
the composition of their phase functions. Hence, combining
TEMPO and GOES-R increases DFS at all geometries (Fig. 10i),
reducing uncertainty for FMF from 40% for GOES-R (Fig. 10j)
and 30% for TEMPO (Fig. 10k) to 20% (Fig. 10l). It is thus clear
that the synergy between TEMPO and GOES-R can minimize
the surface BRDF effect on AOD retrieval and improve the
fine-mode AOD retrieval overall, especially for GOES-R.

5. Summary and discussions

The past few decades have seen rapid and advanced
developments in the linearized computer codes for radia-
tive transfer and particle scattering, hyperspectral data-
bases for molecular spectroscopy, and optimization theory
for inversion of geophysical parameters from remote
sensing measurements. Following and integrating these
developments, we have presented in this paper a numer-
ical testbed for remote sensing of aerosols. The testbed
consists of two parts. The first part is the UNL-VRTM
model that integrates the linearized codes for computing
vector radiative transfer (VLIDORT), and scattering of
spherical (LMIE) and non-spherical particles (LTMATRIX);
the second part is inverse-model codes that analyze the
information content for the retrieval parameters for any
given set of synthetic data generated from UNL-VRTM.
Benchmark calculations with UNL-VRTM were conducted
from the UV to the shortwave infrared (4000 nm). It was
shown that the UNL-VRTM is not only able to compute the
four Stokes parameters and degree of linear polarization
with high accuracy and at high spectral resolution, but also
to simultaneously and analytically generate sensitivities of
these four Stokes parameters with respect to aerosol
parameters of both the fine and coarse modes. The latter
capability, when combined with the inverse codes (second
part of the testbed), allows us to make an objective
analysis of the information content (retrieval uncertainty
and DFS) of different aerosol parameters in the synthetic

data computed from the forward model. By inclusion of
HITRAN and other molecular spectroscopy data for atmo-
spheric trace gases, the UNL-VRTM is also able to perform
line-by-line calculation of gas absorption, thus providing
another opportunity for the future study of the effect of
absorbing gases (such as SO2, NO2 and water vapor) on the
aerosol retrieval. For a pollution scenario, we have shown
that absorption of SO2 and NO2 make an important
contribution to the optical depth of the atmospheric
column and should be properly accounted for in order to
retrieve AOD accurately.

A demonstration of the testbed was presented for the
design of algorithms for aerosol retrievals to meet the
requirement of the NASA's GEO-CAPE mission. Two cases
were studied. The first case analyzed the sensitivity of
intensity and polarization in the O2 A band to the vertical
profile of aerosols. Although this sensitivity was shown to
vary with scattering angle, wavelength, aerosol shape, and
surface reflectance, we found that overall, the polarization
in the O2 A band has higher sensitivity to the vertical
profile of aerosols than that of intensity, especially over the
high reflective surface. In the second case, we studied the
synergy of TEMPO and GOES-R for a joint retrieval of AOD
and fine-mode AOD. It was found that the joint retrieval
improves the retrieval of both AOD and fine-mode AOD
accuracy; the corresponding AOD and fine-mode AOD
uncertainties are reduced respectively from 30% to 10%
and from 40% to 20%, thus meeting the requirement of
GEO-CAPE for aerosols. The improvement of AOD is
especially evident when TEMPO is located in the
(reflected) sunlight direct beam, the direction for which
the surface bi-directional reflectance (BRDF) is largest.

This study should be viewed as the starting point for
the development of a framework for objective assessment
of aerosol information content for any real or synthetic
measurements (see, e.g., Knobelspiesse et al. [14]). Further
development of particle scattering codes for non-spherical
particles is essential, especially for large particles that are
difficult to handle with current implementations of T-
matrix theory. Meanwhile, more evaluations of the testbed
(with in situ data) are also needed, including in-depth
analyses of the two cases presented here that demon-
strated the use of the testbed. Examples include the
analysis of the retrieval accuracy due to the uncertainty
in the a priori error, and due to the use of different
algorithm definition factors (such as a combined use of
two consecutive measurements from GEO within 1 hour
assuming aerosol single scattering properties remain con-
stant). Finally, the testbed is available upon request.

Appendix A. Derivations of transformation vector
for VLIDORT for various aerosol parameters

Let x be an aerosol microphysical parameter. The aerosol
extinction and scattering optical thickness (τA and δA),
single scattering albedo (ωA), and Greek coefficient matrix
(Bj

A) are functions of x. However, the gaseous absorption
and Rayleigh scattering parameters are independent of x.
This appendix outlines the derivations of Eqs. (6) and (7)
and the expressions in Tables 2 and 3. First, we transform
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Eq. (4) as below.
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These expressions are linear combinations of xð∂τA=∂xÞ,
xð∂δA=∂xÞ, and xð∂Bj

A=∂xÞ. We can then write them in vector
formalism by defining�
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where Π is a matrix comprising the relevant coefficients, as
noted in Eq. (7). Eq. (A.4) or (6) and (7) then acts as a universal
formulation for preparing linearized inputs of optical property

for VLIDORT. Computation of ½ϕx; φx; Ψj
x

D E
j ¼ 0;J

� can then be

achieved by the calculation of ½ϕ0
x; φ0

x; Ψ0j
x

D E
j ¼ 0;J

� for a given
parameter x.

Let us first consider the derivation of ½ϕ0
x; φ0

x; Ψ0j
x

D E
j ¼ 0;J

�
for certain aerosol optical properties in a given atmospheric
layer, i.e., τA, ωA, and βkA, where βkA indicates one of the

elements in the kth aerosol scattering Greek matrix Bk
A. For

x¼ τA, we have
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For x¼ βkA, we have
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Expressions in Table 2 are then derived by substituting
Eqs. (A.5)–(A.7) to Eq. (A.4).

Our testbed integrates the VLIDORT with linearized Mie/
T-matrix codes, and this combination allows us to generate
Stokes vectors and associated analytical Jacobians with
respect to aerosol microphysical parameters for two aerosol

modes. Thus, we must supply the ½ϕ0
x; φ0

x; Ψ0j
x

D E
j ¼ 0;J

�
quantities for all such parameters. We give an example here,
assuming that the aerosols are bimodal, with two lognormal
size distributions described by geometric standard deviations
(ssg and scg), geometric median radii (rsg and rcg), and non-
sphericity parameters (εs and εc) for the fine and coarse
modes. We note that ε is available only when non-spherical
particles are assumed (T-matrix code is applied). Complex
refractive indices are ns

r� i ns
i and nc

r� i nc
i . Given these

microphysical properties, the linearized Mie/T-matrix codes
will compute for each mode the scattering and extinction
efficiencies (Q sca and Qext), the set of expansion coefficients

(Bj
A) of scattering phase matrix, as well as the derivatives of

these quantities with respect to the microphysical properties.
For a wide size range of aerosol particles, which enable a
�100% accumulated value for the bi-lognormal probability
function, the optical thickness for aerosol extinction and
scattering and the associated Greek matrix coefficients
within for one atmospheric layer can be calculated through
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We can compute vector ½ϕ0
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parameter by differentiating Eq. (A.8). For x¼ms
A as an

example
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And similarly, for x¼ rsg, we have
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∂Q s
sca

∂rsg
� rsg
rseff

∂rseff
∂rsg

 !

Ψ0j
x ¼

φx'
δA

ðBs j
A �Bj

AÞþrsg
∂Bs j

A

∂rsg
ðA:10Þ

In a similar fashion, we can obtain the vector

½ϕ0
x; φ0

x; Ψ0j
x

D E
j ¼ 0;J

� for other fine-mode aerosol para-

meters including τsA, ω
s
A, m

s
A, n

s
i , n

s
r, s

s
g, r

s
g, and εs (as listed

in Table 3). For coarse-mode aerosol parameters, the
derivations are the same with superscript ‘s’ replaced by ‘c’.

We have implemented various aerosol-loading vertical
profiles into the testbed, including uniform, exponential-
decreasing, and quasi-Gaussian profile shapes. For the
uniform profile, aerosols are assumed evenly distributed
with height. The layer AOD for the exponential-decreasing
profile follows formZ z

þ1
τAðzÞdz¼ τA0exp � z

H


 �
ðA:11Þ

where τA0 is the columnar AOD, and H is a scale height
parameter. The quasi-Gaussian profile is derived from a
generalized distribution function

τAðzÞ ¼ K
expð�γj z�zpeakjÞ

½1þexpð�γ jz�zpeakjÞ�2
ðA:12Þ

where K is a constant related to τA0, γ is a half-width
constant, and zpeak is the height having peak loading.
Derivatives of layer aerosol optical thickness with respect
to the 3 profile parameters H, γ, and zpeak are also included
in order to calculate Jacobians of Stokes vector to these
parameters, and the vectors ½ϕ0

x; φ0
x; 〈Ψ0j

x 〉j ¼ 0;J � for these
derivatives are also shown in Table 3.
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