Development of Flow Boiling and Condensation Experiment on the International Space Station-
Normal and Low Gravity Flow Boiling Experiment Development and Test Results

Issam Mudawar**, Chris Konichi**, Hyounsoon Lee**
*NASA-GRC; ** Purdue University

29th American Society for Gravitational and Space Research
November 3 – 8, 2013
Orlando, Florida, USA
<table>
<thead>
<tr>
<th>AGENDA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISS Flight Experiment Objective</td>
</tr>
<tr>
<td>Fluid System-ISS</td>
</tr>
<tr>
<td>Test Modules</td>
</tr>
<tr>
<td>- Flow Boiling Module</td>
</tr>
<tr>
<td>- Condensation Module - Flow Visualization</td>
</tr>
<tr>
<td>- Condensation Module - Heat Transfer</td>
</tr>
<tr>
<td>Ground Testing</td>
</tr>
<tr>
<td>- Breadboard Development</td>
</tr>
<tr>
<td>- Pre-Heater Characterization</td>
</tr>
<tr>
<td>- Proposed On-Orbit Degassing System Testing</td>
</tr>
<tr>
<td>Flow Boiling Module Performance Assessment-Zero-G Testing</td>
</tr>
<tr>
<td>- Fluid system</td>
</tr>
<tr>
<td>- Diagnostics and Data Acquisition</td>
</tr>
<tr>
<td>- FBM Heater control</td>
</tr>
<tr>
<td>Sample of Testing Results</td>
</tr>
<tr>
<td>- FBM Two Heaters</td>
</tr>
<tr>
<td>Future Work</td>
</tr>
</tbody>
</table>
ISS Flight Experiment

FBCE Science Objectives

The proposed research aims to develop an integrated two-phase flow boiling/condensation facility for the International Space Station (ISS) to serve as primary platform for obtaining two-phase flow and heat transfer data in microgravity.

Key objectives are:
1. Obtain flow boiling database in long-duration microgravity environment
2. Obtain flow condensation database in long-duration microgravity environment
3. Develop experimentally validated, mechanistic model for microgravity flow boiling critical heat flux (CHF) and dimensionless criteria to predict minimum flow velocity required to ensure gravity-independent CHF
4. Develop experimentally validated, mechanistic model for microgravity annular condensation and dimensionless criteria to predict minimum flow velocity required to ensure gravity-independent annular condensation; also develop correlations for other condensation regimes in microgravity

Applications include:
1. Rankine Cycle Power Conversion System for Space
2. Two Phase Flow Thermal Control Systems and Advanced Life Support Systems
4. Cryogenic Liquid Storage and Transfer

• Science Requirements Document for FBCE, March, 2013
• Science Concept Review Presentation, December 2011
Test Modules

• Flow Boiling Module
 – Subcooled, saturated and 2-phase Inlet condition at:
 • 2.5 < Mass Flow Rate < 40 g/s
 • Heat Flux < 60 W/cm²

• Condensation Module – Flow Visualization
 – Saturated vapor Inlet condition
 • 2 < Mass Flow Rate < 14 g/s

• Condensation Module – Heat Transfer
 – Saturated vapor Inlet condition
 • 2 < Mass Flow Rate < 14 g/s

• Science Requirements Document for FBCE, March, 2013
• Science Concept Review Presentation, December 2011
Flow Boiling Module Design

- **FBM/Heater Design**
 - Flow Channel 2.5x5x100 mm
 - Both surfaces are heated with resistive heaters
 - Max heating of 300 W from both sides
 - Visualization with high speed camera 2000-4000 fps
CM-FV Design and Challenges

- Science requirements called for TCs on the inner surface of water tube and middle of tube
- Sectional tube design
- Three observation areas coincident with data collection areas
- Easy Access to inner tube

Counterflow of water loop (blue) and FC-72 (red, nPFH for flight) along with thermocouples (T) and pressure transducers (P) location
CM-HT Design and Challenges

- **CM-HT Short Design**
 - Easy access to inner tube
 - TCs are fixed firmly to outer surface of inner tube
 - Eng. Model CM-HT is a longer version of CM-HT Short

Counterflow of water loop (blue) and FC-72 (red, nPFH for flight) along with thermocouples (T) and pressure transducers (P) location
Ground Testing

• Breadboard Development
• Pre-heater Characterization
 – Operation
 – Control
• Testing of potential design for On-Orbit degassing
Ground Testing - Breadboard Development

Fluid System components Integrated

FIR layout on optical bench with pump, CM-FV vapor and collinear flow tube

Fluid System components Integrated with instrumentations for heater evaluation
Ground Testing - Pre-Heater Characterization

- Pre-heater studies of time constant to achieve steady state
- Steady state achieved within 6 minutes

3 heater surface TCs spaced 120 degrees circumferentially apart
Ground Testing of Proposed On-Orbit Degassing System

- Developed a fluid loop for degassing testing
- Use of membrane contactor
- Testing showed after 50 minutes, partial pressure of non-condensable gases is below 2 kPa
Zero-G Aircraft Testing/FBM Engineering Assessment

Aircraft Rack Features:
- Fluid System
- Diagnostics:
 - Lumenera and Sentech video cameras
- FBM Heater Power Input and Temperature Control
- Data acquisition
Zero-G Aircraft Rack

- Pre-Heater Control
- Air Cooled Condenser
- Pump
- Filter
- Data Acquisition
- FBM Observation
- Instrumentation panel-FBM
- Instrumentation panel-Flow rate, pressure, Temperatures
- Accumulator
- Flow Boiling Module
Data Acquisition: $m = 2.5 \text{ g/s}$
Testing Results-High Speed Visualization- $\dot{m} = 2.5 \, g/s$

% of CHF achieved in each of the 5 low gravity paraboli performed at 2.5 g/s

<table>
<thead>
<tr>
<th>36%</th>
<th>57%</th>
<th>79%</th>
<th>92%</th>
<th>100%</th>
</tr>
</thead>
</table>

- 36%
- 57%
- 79%
- 92%
- 100%
Testing Results - $m = 2.5 \text{ g/s}, 2$ Heaters
Testing Results - $\dot{m} = 40 \text{ g/s}, 2 \text{ Heaters}$
Future Plans

• Ground and Low gravity testing of condensation modules
• Development of engineering model prior to or by PDR planned for January 2015

• Thank you
• Questions?