Development of Flow Boiling and Condensation Experiment on the International Space Station: Normal and Low Gravity Flow Boiling Experiment Development and Test Results

Issam Mudawar**, Chris Konichi**, Hyounsoon Lee**
*NASA-GRC; **Purdue University

29th American Society for Gravitational and Space Research
November 3 – 8, 2013
Orlando, Florida, USA
AGENDA

• ISS Flight Experiment Objective
• Fluid System-ISS
• Test Modules
 – Flow Boiling Module
 – Condensation Module - Flow Visualization
 – Condensation Module - Heat Transfer
• Ground Testing
 – Breadboard Development
 – Pre-Heater Characterization
 – Proposed On-Orbit Degassing System Testing
• Flow Boiling Module Performance Assessment-Zero-G Testing
 – Fluid system
 – Diagnostics and Data Acquisition
 – FBM Heater control
• Sample of Testing Results
 – FBM Two Heaters
• Future Work
The proposed research aims to develop an **integrated two-phase flow boiling/condensation facility for the International Space Station (ISS)** to serve as primary platform for obtaining two-phase flow and heat transfer data in microgravity.

Key objectives are:
1. Obtain **flow boiling database** in long-duration microgravity environment
2. Obtain **flow condensation database** in long-duration microgravity environment
3. Develop experimentally validated, **mechanistic model** for microgravity flow boiling **critical heat flux (CHF)** and **dimensionless criteria** to predict minimum flow velocity required to ensure **gravity-independent CHF**
4. Develop experimentally validated, **mechanistic model** for microgravity annular condensation and **dimensionless criteria** to predict minimum flow velocity required to ensure **gravity-independent annular condensation**; also develop correlations for other condensation regimes in microgravity

Applications include:
1. Rankine Cycle Power Conversion System for Space
2. Two Phase Flow Thermal Control Systems and Advanced Life Support Systems
4. Cryogenic Liquid Storage and Transfer

ISS Flight Experiment

- **Science Objectives**
 - Develop an integrated two-phase flow boiling/condensation facility for the International Space Station (ISS) to serve as primary platform for obtaining two-phase flow and heat transfer data in microgravity.
 - Key objectives:
 1. Obtain flow boiling database in long-duration microgravity environment
 2. Obtain flow condensation database in long-duration microgravity environment
 3. Develop experimentally validated, mechanistic model for microgravity flow boiling critical heat flux (CHF) and dimensionless criteria to predict minimum flow velocity required to ensure gravity-independent CHF
 4. Develop experimentally validated, mechanistic model for microgravity annular condensation and dimensionless criteria to predict minimum flow velocity required to ensure gravity-independent annular condensation; also develop correlations for other condensation regimes in microgravity
 - Applications include:
 1. Rankine Cycle Power Conversion System for Space
 2. Two Phase Flow Thermal Control Systems and Advanced Life Support Systems
 4. Cryogenic Liquid Storage and Transfer

Science Requirements Document for FBCE, March, 2013

Science Concept Review Presentation, December 2011
Preliminary Engineering Fluid System Design (ISS)
Test Modules

- **Flow Boiling Module**
 - Subcooled, saturated and 2-phase Inlet condition at:
 - $2.5 < \text{Mass Flow Rate} < 40$ g/s
 - Heat Flux < 60 W/cm2

- **Condensation Module - Flow Visualization**
 - Saturated vapor Inlet condition
 - $2 < \text{Mass Flow Rate} < 14$ g/s

- **Condensation Module - Heat Transfer**
 - Saturated vapor Inlet condition
 - $2 < \text{Mass Flow Rate} < 14$ g/s

*Science Requirements Document for FBCE, March, 2013
*Science Concept Review Presentation, December 2011
Flow Boiling Module Design

- FBM/Heater Design
 - Flow Channel 2.5x5x100 mm
 - Both surfaces are heated with resistive heaters
 - Max heating of 300 W from both sides
 - Visualization with high speed camera 2000-4000 fps
CM-FV Design and Challenges

- Science requirements called for TCs on the inner surface of water tube and middle of tube
- Sectional tube design
- Three observation areas coincident with data collection areas
- Easy Access to inner tube

Counterflow of water loop (blue) and FC-72 (red, nPFH for flight) along with thermocouples (T) and pressure transducers (P) location
CM-HT Design and Challenges

• CM-HT Short Design
 – Easy access to inner tube
 – TCs are fixed firmly to outer surface of inner tube
 – Eng. Model CM-HT is a longer version of CM-HT Short
Ground Testing

- Breadboard Development
- Pre-heater Characterization
 - Operation
 - Control
- Testing of potential design for On-Orbit degassing
Ground Testing - Breadboard Development

Fluid System components Integrated with instrumentations for heater evaluation

FIR layout on optical bench with pump, CM-FV vapor and collinear flow tube
Ground Testing-Pre-Heater Characterization

- Pre-heater studies of time constant to achieve steady state
- Steady state achieved within 6 minutes

3 heater surface TCs spaced 120 degrees circumferentially apart
Ground Testing of Proposed On-Orbit Degassing System

- Developed a fluid loop for degassing testing
- Use of membrane contactor
- Testing showed after 50 minutes, partial pressure of non-condensable gases is below 2 kPa
Zero-G Aircraft Testing/FBM Engineering Assessment

Aircraft Rack Features:
• Fluid System
• Diagnostics:
 – Lumenera and Sentech video cameras
• FBM Heater Power Input and Temperature Control
• Data acquisition
Fluid System

- FBM
- Accumulator Pressure Control
- Heater
- Condenser
- Accumulator
- Pump
- Drain
Zero-G Aircraft Rack

Pre-Heater Control

Air Cooled Condenser

Pump

Filter

Data Acquisition

FBM Observation

Instrumentation panel-FBM

Instrumentation panel-Flow rate, pressure, Temperatures

Accumulator

Flow Boiling Module
Data Acquisition - $m = 2.5 \text{ g/s}$
Testing Results - High Speed Visualization - $m = 2.5 \text{ g/s}$

% of CHF achieved in each of the 5 low gravity paraboli performed at 2.5 g/s
Testing Results - $m = 2.5 \text{ g/s}$, 2 Heaters
Testing Results- $\dot{m} = 40 \text{ g/s}, \ 2 \text{ Heaters}$

- **$\Delta T_{\text{Inlet/Subcooling}}$**
 - Units: °C
 - Time: 0 to 250 s

- **Heat Flux (W/cm²)**
 - Units: W/cm²
 - Time: 0 to 50 s

- **$\Delta T_{\text{Wall Max}} - T_{\text{Sat in}}$ (°C)**
 - Blue $\rightarrow P_{\text{FBM In}}$
 - Red $\rightarrow P_{\text{FBM Out}}$
 - Time: 0 to 250 s

- **FBM Inlet/Outlet Pressure (psia)**
 - Time: 0 to 250 s
Future Plans

- Ground and Low gravity testing of condensation modules
- Development of engineering model prior to or by PDR planned for January 2015

- Thank you
- Questions?