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The Rotating Rake mode measurement system was designed to measure acoustic duct
modes generated by a fan stage. Initially, the mode amplitudes and phases were quantified
from a single rake measurement at one axial location. To directly measure the modes
propagating in both directions within a duct, a second rake was mounted to the rotating
system with an offset in both the axial and the azimuthal directions. The rotating rake
data analysis technique was then extended to include the data measured by the second
rake. The analysis resulted in a set of circumferential mode levels at each of the two rake
microphone locations. Radial basis functions were then least-squares fit to this data to
obtain the radial mode amplitudes for the modes propagating in both directions within the
duct. Validation experiments have been conducted using artificial acoustic sources. Results
are shown for the measurement of the standing waves in the duct from sound generated by
one and two acoustic sources that are separated into the component modes propagating in
both directions within the duct. Measured reflection coefficients from the open end of the
duct are compared to analytical predictions.

I. Introduction

A rotating rake microphone system developed by the NASA Glenn Research Center has been an aid
to advancing the understanding of acoustic modes generated in turbofan engine ducts.1 Turbofan noise,
in part caused by rotor-stator and other interactions, may couple to rotating duct modes that propagate
through and radiate outward from the duct to the far field. The rotating rake system is used to measure
and identify these rotating duct modes. Various applications of the rotating rake system are described in
Sutliff1 including model-scale ducted fans, full-scale turbofan engines, and the NASA Glenn Advanced Noise
Control Fan (ANCF) facility.

The ANCF enables the development of fan noise reduction concepts and computational aeroacoustic
codes through data provided by unique measurement tools, such as the rotating rake system, giving improved
physical understanding and code validation data. Much of this was based on the results measured by one
rotating rake. Recently, Dahl et al.2 extended the analysis for rotating rake measured data to include a co-
rotating second rake that allows for the separation of modes propagating in both directions within the duct.
This paper provides an analysis of measured data take by Sutliff3 in the ANCF with one and two rotating
rakes to help validate the measurement methodology and data processing. The experiments used two sets of
artificial acoustic sources to generate propagating rotating modes. Results of data analysis are shown for the
standing wave generated in the duct when one acoustic source is operating and the propagating modes reflect
back into the duct from the open end. Reflection coefficients were determined and those results are compared
to analytical predictions for open end duct reflection coefficients. Finally, results for the two-rake system
measuring the acoustic field between two artificial sources are given where one source varies in amplitude.
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II. Rotating Rake Data Analysis

The goal of analyzing rotating rake data is to obtain the amplitude for each of the measured modes. When
data from one rotating rake is analyzed, the modal amplitudes are a result of the superposition of modes
propagating in both directions within the duct. The amplitudes of the measured modes that propagate in
both directions in the duct are obtained separately when data from two rotating rakes are analyzed. Once
the mode amplitudes are found, the acoustic power in each mode can be computed. For that to occur, two
basic processes are followed: 1) determine the radial basis functions by numerically solving the eigenvalue
problem presented by the governing equation and 2) determine the mode amplitudes by a least-squares fit
using a system of equations representing modes propagating in one or both directions in the duct for data
collected from one or two rotating rakes, respectively. The presence of decaying or evanescent modes are
also accommodated in the fit for the case using the data from two rotating rakes.

The numerical analysis of the eigenvalue problem is based on a discretization of the third order equation
for the acoustic pressure derived from combining the linearized momentum and energy equations. The flow
is compressible and the mean flow variables are a function of the radius. Using separation of variables,
the partial differential equation is reduced to an ordinary second order differential equation for the radial
basis function. Along with the appropriate equations for the boundary conditions, discretization is applied
resulting in a matrix equation that is solved for a set of complex eigenvalues and their associated radial basis
functions. The complex eigenvalue is identified as the axial wave number kmn that determines the axial
variation with distance of the acoustic pressure and whether the particular acoustic mode with circumferential
mode number m and radial mode number n propagates and/or decays with axial distance. The associated
basis function Emn(r) for each kmn is only a function of the duct radius. The details for a finite difference
approach are given in Dahl & Sutliff4 and in Dahl et al.2 For a constant mean flow, Sutliff5 gives the exact,
closed-form solution.

II.A. Single Rake Analysis

The measured rotating rake microphone data are analyzed to obtain the total circumferential mode amplitude
Cs

m(ri) at each radial measurement location ri prior to further decomposition using the radial basis functions.
Consider the signal

p(x, θ, r, t) = �
{∑

s

M∑
m=−M

Cs
m(x, r)e−j2πsBΩtejmθ

}
(1)

where the frequency sBΩ is related to a rotating fan with Ω, the shaft speed in revolutions per second, B,
the number of blades, and, s, the harmonic number s = 1, 2, . . .. The signal is sampled synchronously with
the shaft speed and ensemble averaged over a period T = KΔt. This reduces the uncorrelated broadband
noise in favor of the tonal content of the signal. The circumferential mode index m ranges over a finite
number of modes denoted by the general value M .

Each microphone in a rake is generating a signal that is described by equation (1). The rake is located
at

x = x1 = axial location

θ = θ1 + ψ offset azimuthally from some reference

and the microphones are distributed along the rake

r = ri = microphones at different radii ri, i = 1, 2, . . . , N1

The rake rotates according to θ1 = 2πΓt where Γ is the rake rotational speed. Equation (1) becomes

p(x1, θ, ri, t) = �
{∑

s

M∑
m=−M

Cs
m(x1, ri)e

−j2πsBΩtejmθ

}

= �
{∑

s

M∑
m=−M

Cs
m(x1, ri)e

−j2πsBΩtejm(θ1+ψ)

}

= �
{∑

s

M∑
m=−M

Cs
m(x1, ri)e

jmψe−j2π(sBΩ−mΓ)t

}
(2)
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Taking the discrete Fourier transform for all the rake microphone signals represented by equation (2), we
obtain for any spectral component of the signals:

P̂ s
m(x1, ψ, ri, �) =

1

2
Cs

m(x1, ri)e
jmψh(n− �) +

1

2
Cs∗

m (x1, ri)e
−jmψh(K − n− �)

� = 0, 1, 2, . . . ,K − 1

where h is a function representing spectral leakage if the tones are not centered in the frequency bins. That
is, if

� = n = nr

(
sBΩ

Γ
−m

)
(3)

where nr is the number of rake revolutions in the time history T and the right side is an integer, then h → 1
and there is no spectral leakage. Equation (3) shows that the spectrum contains families of spikes about
each harmonic s having the amplitudes of the ±m circumferential modes. These amplitudes can be simply
extracted using

Cs
m(x1, ri) = 2P̂ s

m(x1, ψ, ri, �)e
−jmψ (4)

In current practice, the signals are processed such that Cs
m = 2P̂ s

m and the rotation by e−jmψ is applied
during the solution for the radial modes as shown in equation (7).

For a single rake, the Fourier analysis of a rotating rake microphone signal has provided the complex
total circumferential mode amplitude Cs

m(ri) at each radial location, ri. These values are expected to be
functions of the radial mode content in the duct following

Cs
m(x1, ri) =

Nmax−1∑
n=0

PsmnEsmn(ri;x1) i = 1, 2, . . . , N1 (5)

Equation (5) represents the attempt to further decompose the measured circumferential mode data into an
approximate series of weighted radial basis functions Esmn(ri;x1) computed using the numerical method to
solve the eigenvalue problem. The radial basis function was computed for a frequency with harmonic number
s for the duct condition at the rake axial location x1. To solve equation (5) for the complex radial mode
amplitudes, we use the least-squares method. The solution is to minimize the residual sum of squares

e = ‖c−BP‖22 (6)

where

c =
[
Cs

m(x1, r1) . . . Cs
m(x1, rN1

)
]T

is a vector comprised of the measured complex circumferential mode data of length np = N1,

B =

⎡
⎢⎢⎣
Esm0(r1;x1) . . . Esm(Nmax−1)(r1;x1)

... . . .
...

Esm0(rN1 ;x1) . . . Esm(Nmax−1)(rN1 ;x1)

⎤
⎥⎥⎦

is a matrix of complex coefficients from the radial basis functions of size np × nc, nc = Nmax, and

P =
[
Psm0 . . . Psm(Nmax−1)

]T
is the complex solution vector for the radial mode amplitudes of length nc. By ensuring that the num-
ber of measurement points N1 is greater than the number of radial basis functions Nmax, the problem is
overdetermined, np > nc, and a solution to this linear problem is easily computed using the singular value
decomposition method. This method provides the best approximation to solving the linear least-squares
problem for over-determined systems and it is robust, handling problems where B is close to being singular.
(See Lawson & Hanson6 for details.)
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II.B. Dual Rake Analysis

It has been assumed in solving equation (5) for the mode amplitudes Psmn, using Nmax radial mode shapes,
that the mode propagates in only one direction. This is not, in general, the case. Modes may propagate
in both the +x direction and the −x direction. To measure these modes, a second rake is required, offset
axially and co-rotating with the first rake. The signals from the second rake microphones are acquired
simultaneously with the microphone signals from the first rake and Fourier analyzed in the same manner to
obtain the total complex circumferential mode amplitudes. The signals at each rake location are the sums
of +x direction and −x direction propagating and perhaps evanescent modes. To extract the radial mode
amplitudes, the measured circumferential mode amplitudes are written as the sum of radial basis functions
as follows:

Cs
m(x1, ri) =

Nmax−1∑
n=0

[{
P+
smne

jk+
1 x1

}
E+

smn(ri;x1) +
{
P−
smne

jk−
2 x2

}
E−

smn(ri;x1)e
j(k−

1 x1−k−
2 x2)

]

Cs
m(x2, r

′
i′)e

−jmψ =

Nmax−1∑
n=0

[{
P+
smne

jk+
1 x1

}
E+

smn(r
′
i′ ;x2)e

j(k+
2 x2−k+

1 x1) +
{
P−
smne

jk−
2 x2

}
E−

smn(r
′
i′ ;x2)

]
(7)

i = 1, 2, . . . , N1 i′ = 1, 2, . . . , N2

where ψ is the azimuthal offset between the rake at x1 and the rake at x2. The axial wave numbers are
functions of the mode numbers m and n. The sign superscript on k indicates the direction of propagation
or decay and the subscripts ‘1’ and ‘2’ apply for the solution of the eigenvalue problem at the rake locations
x1 and x2. Also, ri and r′i′ denote that radial locations of microphones on the two rakes may differ in
location and number. This formulation rescales the amplitudes and radial basis functions to properly handle
evanescent modes and allows for small changes in flow and duct area with axial distance.7

To solve equation (7) for the complex radial mode amplitudes, we again use the least-squares method.
The solution is to minimize the residual sum of squares, equation (6), where in the dual rake analysis

c =
[
Cs

m(x1, r1) . . . Cs
m(x1, rN1) Cs

m(x2, r
′
1)e

−jmψ . . . Cs
m(x2, r

′
N2

)e−jmψ
]T

is a vector of length np = N1 +N2 comprised of the measured complex circumferential mode data,

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

E+
sm0(r1;x1) E−

sm0(r1;x1)e
j(k−

1 x1−k−
2 x2) . . .

...
... . . .

E+
sm0(rN1

;x1) E−
sm0(rN1

;x1)e
j(k−

1 x1−k−
2 x2) . . .

E+
sm0(r

′
1;x2)e

j(k+
2 x2−k+

1 x1) E−
sm0(r

′
1;x2) . . .

...
... . . .

E+
sm0(r

′
N2

;x2)e
j(k+

2 x2−k+
1 x1) E−

sm0(r
′
N2

;x2) . . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

is a matrix of size np × nc, nc = 2Nmax, containing complex coefficients derived from the radial basis
functions, and

P =
[{

P+
sm0e

jk+
1 x1

} {
P−
sm0e

jk−
2 x2

} {
P+
sm1e

jk+
1 x1

} {
P−
sm1e

jk−
2 x2

}
. . .

]T
is the solution vector of length nc for the complex radial mode amplitudes. By ensuring that the number of
measurement points N1 +N2 is greater than twice the number of radial basis functions Nmax, the problem
is overdetermined, np > nc, and a solution to this linear problem is again easily computed using the singular
value decomposition method. More details are given in Dahl et al.2

Duct conditions and axial rake locations that would produce a singularity or near singularity in the
inverse matrix calculation using B in equation (6) are to be avoided. Using previous work on errors in
two-microphone, in-duct measurements, Åbom8 provides practical limits that for the no-flow case are given
by

0.1π < kmn |x2 − x1| < 0.8π (8)
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For a hardwall duct, the wave number can be written in terms of the cutoff ratio ξ.

kmn =
ω

c

√
1− 1

ξ2

These limits are also followed in the in-duct, two-microphone, higher order mode measurements in Akoum
& Ville.9

III. Rotating Rake Experiments

The Advanced Noise Control Fan10 (ANCF) is a highly configurable 4-foot diameter ducted fan located
in the Aero-Acoustic Propulsion Laboratory (AAPL) at the NASA Glenn Research Center. The AAPL is
a hemispherical, anechoic (above 125Hz) test facility used for noise measurements. In order to provide a
clean, cylindrical duct, for these experiments, the ANCF spool pieces were stacked up in a vertical orientation
providing a constant area cylindrical duct. The entire stack rested on the floor with approximately 6 inches
of foam material placed in the bottom of the stack to minimize reflections from the floor. A flow lip was
attached to the duct exit as shown schematically in Figure 1.

The Configurable Fan Artificial Noise System (CFANS), described by Sutliff,3 was utilized to generate and
control circumferential modes. The system consists of four axially distributed source rows, each containing
16 electromagnetic drivers distributed around the circumference. There are two spool pieces, each having two
source rows of flush mounted drivers on the wall. A computer controlled signal generator was used to send
the signals to each driver independently, in the proper relationship, to generate the desired circumferential
mode. The signals to each row can be adjusted globally to affect the radial distribution, if desired. The
practical limits of the system are circumferential mode orders up to ±7 and a maximum frequency of 1500Hz.

The modes were measured by the Rotating Rake mode measurement system.5 Typically, a single rake,
extending from the outer-wall to the duct center-line, has been mounted to measure the modes. Since
measurements at a single axial location will not be able to account for reflections in the duct, an additional
rake was mounted for the experiment on the same rotating ring as the original as shown in the left side
of Figure 2. This second rake was adjustable in the axial direction over the range of 2.5 to 10.5 inches, in
fixed, one-inch increments, and was mounted 180 degrees in the circumferential direction from the original
rake, which remains fixed in the axial direction at a location designated as the origin of the x-axis pointing
outward from the duct. Figure 2 also shows a close up picture of the separation between the rakes.

Data were obtained from the dual rakes in order to provide the two-point axial variation required to
compute the reflection. Reflections were created using two methods. The first method relies on the natural
reflections due to an open-ended exit termination. The ring containing the dual rotating rake system was
mounted at the open exit of the ANCF duct as shown in Figure 3. The single source row (labelled C)
farthest from the exit termination was used to generate the modes that propagate towards the exit. This
configuration was used during testing with the flow lip attached and was assumed to minimize reflections. It
was also used with the flow lip removed creating a sharp 90 degree flanged exit. This should result in higher
levels of reflections compared to when the flow lip was present. A second configuration was used to generate
artificial reflections, see Figure 4. This was accomplished by locating the dual rake ring in the center of the
duct. Source row C was used to generate the “primary” wave and source row B was used to generate the
“reflected” wave. Each source row was actuated independently and the modes were measured by the dual
rakes. Then both sets were activated simultaneously and the resulting superposition was measured.

IV. Results with One Source

Using the configuration shown in Figure 3, the CFANS drivers in source row C were set to generate a
circumferential mode at m = 2 with a frequency of 480Hz. Under these conditions only one mode propagates
in the ANCF duct, the (2,0) mode. Initially, the flow lip was attached to the duct exit. The lip tends to
minimize the reflection of sound within the duct and allows most of the sound generated in the duct to
propagate out of the duct. The results for mode amplitudes from one-rake analysis using data from both
the fixed rake (Rake 1 shown in Figure 1) and the movable rake (Rake 2) are shown in Figure 5a. The
mode amplitudes from the fixed rake data with the lip exit in place are plotted as a function of the movable
rake location and give an indication of the repeatability of the measurement. The average fixed rake mode
amplitude, 19.24 ± 0.09, is plotted at x = 0. At each of the six movable rake locations, the data for
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the two rakes are collected simultaneously and used to perform the two-rake analysis. The results show a
fairly constant mode amplitude in both propagation directions with average values |P+

20| = 18.77± 0.46 and
|P−

20| = 2.82± 0.21.
The other set of mode amplitude results shown in Figure 5b are for the same sound conditions and set of

measurements but with the lip removed from the duct leaving just the mounting flange at the duct exit. It was
expected that the sound would more readily reflect back into the duct with this exit condition. The average
fixed rake mode amplitude plotted at x = 0 is 23.84 ± 0.15. The results show from the two-rake analysis
that, on average, the incident mode amplitude is |P+

20| = 19.66±0.46, similar to the incident mode amplitude
with the lip in place. However, the average reflected mode amplitude has doubled, |P−

20| = 5.89± 0.29.
The remaining results in Figure 5 show the computed standing wave amplitudes compared to the one-rake

analysis results of the movable rake data for both the lip and the flange conditions at the duct exit. The
standing wave amplitude is computed from the equation

A(x) =
∣∣P+

mne
jkx + P−

mne
−jkx

∣∣
=

∣∣P+
mn

∣∣ [1 + 2|R| cos(2kx− θR + φ) + |R|2]1/2 (9)

where R = P−
mn/P

+
mn is the complex reflection coefficient at x = 0 with phase θR. The phase φ is used

to account for any additional phase shift. The plot of equation (9) with φ = 0 for both the lip and flange
exit conditions is shown using the broken black lines. The movable rake mode amplitudes determined from
one-rake analysis are near the computed standing wave amplitudes. A fit of equation (9), using φ as the
fit parameter, was also performed. This resulted in a shift of the standing wave amplitude curves toward
the source as shown by the broken green lines. For the lip exit condition, φ = 0.22, and for the flange
exit condition, φ = 0.16. These translate to distances of 1.57 cm and 1.08 cm, respectively, for the two exit
conditions. These distances represent the combined uncertainties in knowing the locations of the source, the
point of reflection, and the measurement microphones.

V. Open End Reflection Coefficients

The reflection coefficients for the open end of the duct were determined from measurements using the
configuration, shown in Figure 3, with the two rakes near the exit of the duct. Source row C was used to
generate acoustic modes at 480Hz and 960Hz as listed in Table 1. The (4,0) mode at 480Hz was found
to be near the cutoff condition making reliable measurements difficult according to the limits given by
equation (8). Hence, no reflection coefficients were determined for this condition. For the remaining seven
modes, multiple rake separation measurements were made within the limits specified by equation (8) allowing
multiple measurements of the same exit conditions for each mode.

Table 1: Comparison of open end duct reflection coefficient magnitudes from measurements and
analytical predictions.

f (Hz) (m,n) ξa Unflangedb ∞ Flangec Flanged Lipd Lipe

480 2,0 1.743 0.240, 0.260 0.186 0.30± 0.02 0.15± 0.01 0.19± 0.01

480 4,0 1.001 0.970, 0.836 0.953 — — —

960 2,0 3.487 0.099, 0.116 0.076 0.51± 0.04 0.19± 0.05 0.20± 0.03

960 2,1 1.588 0.088, 0.100 0.069 0.35± 0.03 0.23± 0.10 0.09± 0.02

960 2,2 1.068 0.341, 0.372 0.291 0.33± 0.06 0.05± 0.03 0.05± 0.03

960 4,0 2.003 0.152, 0.171 0.116 0.24± 0.08 0.10± 0.03 0.04± 0.02

960 4,1 1.147 0.223, 0.244 0.182 0.23± 0.09 0.17± 0.09 0.07± 0.05

960 6,0 1.420 0.192, 0.223 0.152 0.23± 0.04 0.11± 0.02 0.13± 0.03

a cutoff ratio
bComputed from equations in Rienstra11 and Lansing,12 left number and Cho,13 right number.
c Computed from equations in Zorumski14 using 10 modes.
dTwo-rake measurements near the exit, Figure 3.
e Two-rake measurements mid duct, Figure 4.
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Measured reflection coefficients with the no-lip or flange exit condition are compared to predicted un-
flanged and infinite flanged duct reflection coefficients in Table 1. Rienstra11 and Lansing et al.12 derived
analytical solutions for an unflanged duct with negligibly thin walls. Computed results for their formulations
were identical. Cho13 applied statistical theory to the same configuration. Reflection coefficients were similar
in magnitude to the analytical approaches. These results are shown separately in the table. The infinite
flange reflection coefficients were computed using the analytical equations given by Zorumski.14 These are
all less than the unflanged duct reflection coefficients. This is in agreement with expectations inferred from
the results shown in Cho15 for the limits on the general condition of a hyperboloid shape at the duct exit.
The physical duct in this experiment has a finite width flange for which there is no complete analytic theory
for arbitrary incident modes. Ando16 has completed an analysis for an incident plane wave. Those results
indicate that the magnitude of the reflection coefficient increases from the unflanged case as the exit flange
or duct wall width increases. From the analysis and results shown in Ando16 and in Cho,15 it is inferred that
the reflection coefficient for an open end duct with a finite flange should be between the limiting values for
the reflection coefficients of the unflanged and the infinite flanged ducts. The measured reflection coefficients
for the flanged duct shown in Table 1 are closer to the analytical unflanged duct predictions. The largest
discrepancies are for the (2,0) and (2,1) modes at 960Hz.

The differences between measured reflection coefficients and predictions can be high. Ville & Silcox17 have
differences from 25% to 100% between measured and predicted reflection coefficients using modes (2,0), (4,0),
and (6,0) in an unflanged duct. Typically higher differences were found closer to mode cutoff with decreasing
differences as the frequency increased. Their measurements were made with microphones mounted in the
duct wall at multiple axial locations. Akoum & Ville9 found similar levels of differences for measurements
in a flanged duct compared to predictions. In this case, a two-microphone method was used with the axially
separated pair traversed around inside of the duct. The amount of data presented here is insufficient to
be any more accurate than these previous experimental measurements. However, the discrepancies for the
(2,0) and (2,1) modes at 960Hz appear excessive compared to what was presented in Ville & Silcox17 and
in Akoum & Ville9 and warrant further investigation.

Table 1 also shows the measured reflection coefficient magnitudes for the duct with the lip exit condition
using the rake configuration in Figure 3. Though not clearly shown, the inner surface of the lip angles away
from the duct axis at about 60 degrees. From the results in Cho,15 it is inferred that the magnitude of
the reflection coefficient for an infinite 60 degree hyperboloid surface should be less than that of the infinite
flange reflection coefficient, which is less than the unflanged case. The measured reflection coefficients with
the lip in place are less, as expected, than the measured reflection coefficients for the flange condition for
all modes. Ville & Silcox17 found similar reductions in the magnitudes of the reflection coefficients for all
modes measured when the end of the unflanged duct was replaced with a 57 degree bellmouth. Similar low
reflection coefficients for the lip exit condition were also measured during testing with the rake configuration
shown in Figure 4.

VI. Results with Two Sources

Tests were conducted with a variety of frequencies, mode numbers, and source levels using the configura-
tion shown in Figure 4. The data from the two rotating rakes were used to compute the mode amplitudes.
First, as a single rake analysis for both the fixed rake and the movable rake. Then, as a dual rake analysis to
determine the mode amplitudes for the +x direction propagating mode, which is the direction outward from
the duct, and the −x direction propagating mode. A first set of example results is shown in Figure 6 where
the frequency is nominally 480Hz and the (2,0) mode propagates. The amplitude gain Bg for the sources
in row B was varied over 1.0, 0.75, 0.5, and 0.25. The figure shows mode amplitudes for Bg = 0.75 in the
left column and Bg = 0.25 in the right column. The top row results are for both the B and C source rows
operating. The middle row results are for source row B only and the bottom row is for source row C only.
Since the row C sources were set the same for both the measurements with Bg = 0.25 and the measurements
with Bg = 0.75, the results in Figures 6e and 6f are basically the same and give an indication of measurement
repeatability. The changes in Bg are directly reflected in the mode amplitude results shown in Figures 6c
and 6d. The −x direction mode amplitude decreases as Bg decreases and the level of any reflection off the
treatment surface also decreases as seen in the level of the +x direction mode amplitudes. With both source
rows B and C operating, the −x direction mode amplitudes again decrease as Bg decreases while the +x
direction mode amplitudes are about constant since they are controlled by the constant source row C levels.
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The standing wave pattern measured by the movable rake is much larger when both source levels are nearly
the same as shown in Figure 6a compared to the much less prominent standing wave results in Figure 6b
when the source row B levels are low.

A second set of example mode amplitude results is shown in Figure 7 where the nominal frequency is
960Hz and the (4,1) mode propagates in the duct. These results show the same behavior as the B source
gain changes as seen in Figure 6.

The measured data from the two rotating rakes between two source rows was used to determine the +x
direction and the −x direction propagating mode amplitudes. In general, the +x direction mode amplitudes
were relatively constant as the source levels at row C were held constant. In contrast, the −x direction mode
amplitudes varied as the amplitude level gain of source row B varied. To show this, the −x direction mode
amplitude as the gain Bg changes was normalized by the −x direction mode amplitude determined when
Bg = 1. The results are plotted in Figure 8. The results for various modes when only source row B operates
is shown in black. Ideally, as the source gain changes, the mode amplitude changes by the same amount.
The black symbols tend to cluster near the ideal line given that there is some scatter in the results and that
the treatment is not a perfect absorber. The red symbols are the same normalized mode amplitude results
for the −x direction modes when sound was generated from both source rows B and C. The normalizing −x
direction mode amplitude with Bg = 1 was determined with source row C operating. These results deviate
more from the ideal results.

To better explain the measured results, a simple model was developed using the method of images. Given
the position of the microphones in the fixed rake between the two source rows B and C was designated as
the origin, x = 0, of the x-axis system pointing outward from the duct, the source row B is at the location
x = LB and source row C is at x = −LC . In the region −LC ≤ x ≤ LB , the sound from source row C and
from an image source of C on the opposite side of a reflection point at the duct exit, x = LE , is given by

P1(x) = PCe
jk(x+LC) +REPCe

−jk(x−2LE−LC) (10)

A similar equation for source row B and its image source opposite the treated surface at x = −LW is given
by

P2(x) = PBe
−jk(x−LB) +RWPBe

jk(x+2LW+LB) (11)

The complex factors RE and RW are reflection coefficients at the exit of the duct and at the treated surface
at the closed end of the duct, respectively. Using superposition

P (x) = P1(x) + P2(x) = P+ejkx + P−e−jkx (12)

where

P+ = PCe
jkLC +RWPBe

jk(2LW+LB) = PCe
jkLC +RWPBe

jkLB

P− = PBe
jkLB +REPCe

jk(2LE+LC) = PBe
jkLB +REPCe

jkLC (13)

The right side of equation (13) follows from the single source measurements of the reflection coefficients at
x = 0. Using only source row B, the reflection coefficient for the wall treatment translated back to x = 0
is RW = RW exp(jk2LW ). Similarly using only source row C, the reflection coefficient for the open end is
RE = RE exp(jk2LE). These equations model the wave in the +x direction as being the sum of a wave
directly generated by source row C plus the wave generated by source row B that reflects off the treated wall
and travels back up the duct in the +x direction. Similarly, the wave traveling in the −x direction consists of
the wave directly from source row B plus that portion of the wave from source row C that reflects at the exit
and returns down the duct in the −x direction. The model can be made more complicated by adding more
image sources. For instance, an image source can be added for the wave reflected by the treated wall from
source row C. Also, this analysis neglects the effects of the source impedance, which Munjal & Eriksson18

consider to be inappropriate, and assumes the source region to not reflect, but allow transmission of waves
not initially generated by the source. However, when normalized as is done below, equations derived based
on the work of Munjal & Eriksson, including source impedance, reduce to a similar set of equations.

We now take P+ and P− and multiply by their conjugate to get

|P+|2 = |PC |2 + 2|RW ||PB ||PC | cos[k(LB − LC) + θRW + θB − θC ] + |RW |2|PB |2 (14)

and
|P−|2 = |PB |2 + 2|RE ||PC ||PB | cos[k(LC − LB) + θRE + θC − θB ] + |RE |2|PC |2 (15)
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where the θ’s are the phases of their associated complex values. Normalizing equations (14) and (15) by the
value of |P−| determined when the C source is set to zero and the amplitude gain Bg = 1, that is |P−

B0|, we
get equations that are normalized mode power

|P+|2
|P−

B0|2
= B2

g |RW |2C2
0 +Bg2C1C0|RW | cos[k(LB − LC) + θRW + φ] + C2

1 (16)

|P−|2
|P−

B0|2
= B2

gC
2
0 +Bg2C1C0|RE | cos[k(LC − LB) + θRE − φ] + |RE |2C2

1 (17)

where |PB |
|P−

B0|
∝ Bg = C0Bg

indicates that the source row B levels decrease as the gain setting is reduced, C1 is a constant

C1 =
|PC |
|P−

B0|
since the source row C level is held constant and φ represents an unknown phase shift due to a phase
difference between sources B and C and any distance uncertainties. Results from measured data for different
gain settings Bg were used in a least-squares fit to equations (16) and (17) to determine the fit parameters
C0, C1 and φ. The results of the fit are given in Table 2 for the seven modes. The values for the magnitude
of the reflection coefficient RW for the treated wall were determined from measurements using only source
row B and are included in the table. The reflection coefficient magnitudes for RE are shown in the last
column of Table 1.

Table 2: Parameters determined from fitting equa-
tions (16) and (17) to results from measured data.

f (Hz) (m,n) C0 C1 φ |RW |
480 2,0 1.023 1.277 1.116 0.22

960 2,0 1.177 1.046 0.072 0.24

960 2,1 0.920 1.025 0.358 0.29

960 2,2 1.177 1.169 -1.571 0.19

960 4,0 1.014 0.797 1.264 0.32

960 4,1 1.106 1.238 0.655 0.07

960 6,0 0.957 1.263 1.342 0.12

The curve fit results for equation (17), the normalized mode power for the P− mode amplitude, are
plotted in Figure 9a for different frequencies and propagating mode numbers. Noting the low values for |RE |
in Table 1, we see that very little energy reflects back from the duct exit for as Bg gets small and source
row C remains constant, the power in the P− wave decreases proportionally to the decrease in the source
row B power. Figure 9b shows the curve fit results for equation (16), the normalized mode power for the P+

mode amplitude. Even though P+ may be dominated by the wave generated from source row C, which is
held constant, only one, the (4,1) mode at 960Hz, has constant power with changes in Bg since that mode
has the lowest treated wall reflection coefficient. For the other frequencies and mode numbers, the sloping
line indicates interference between the P+ wave generated by source row C and the treated wall reflected
wave from source row B. A positive slope with increasing Bg shows constructive interference. Conversely, a
negative slope with increasing Bg indicates destructive interference.

VII. Concluding Remarks

The rotating rake mode measurement data analysis process was extended from the analysis of data from
one rake to include the data simultaneously collected from a co-rotating second rake. Since measurements at
one rake location do not provide sufficient data to determine the direction of propagating modes, a second
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rake measurement axially separated from the first rake is minimally necessary. The analysis of the data from
each rake is the same, providing total circumferential mode amplitudes at each microphone location. By
taking the data from two microphone rakes simultaneously, changes with axial distance are captured in the
total circumferential mode amplitudes. The two sets of total circumferential mode amplitudes are considered
to be the sum of radial basis functions half of which are for modes propagating in one direction and the other
half propagating in the other direction. Hence, using a least-squares fit to the total circumferential mode
amplitudes from both locations, the mode amplitudes that apply to modes propagating in both directions
are obtained. The method ensures that evanescent modes are properly included in the fit.

Experiments were conducted using artificial acoustic sources generating modal content in the duct to
be measured by the rotating rakes. Using a single source, standing waves were generated between the
source and the open end of the duct. A single rake measured the mode amplitude of a standing wave and
with measurements from two rakes, the standing wave was decomposed into the modes propagating in each
direction. This data were used to determine the reflection coefficients for the open end of the duct. Compared
to analytical predictions, discrepancies with measured reflection coefficients could be large. Other studies
using different measurement methodologies had similar levels of discrepancy. Results from rake measurements
between two sources showed that the method could distinguish the behavior of the propagating modes in
each direction as one source varied in amplitude.
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Figure 1: Schematic diagram of the Advanced Noise Control Fan duct with Configurable Fan Artificial Noise
System and rotating rakes installed.

Figure 2: Pictures of the two rotating rakes installed near the lip of the duct and a close-up of the rakes
with a 2.5 inch separation distance.
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Figure 3: ANCF in mode reflection configuration
where the reflection from the duct termination is
measured.

Figure 4: ANCF in mode reflection configuration
where an artificial reflection is generated and the
modes are measured between the two sets of sources.
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Figure 5: Comparison of one-rake and two-rake analyses for mode amplitude using ANCF measured data
with different exit conditions. 480Hz, mode (2,0). Source row C.
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Figure 6: Comparison of one-rake and two-rake analyses for mode amplitude using ANCF measured data
with two sources (Figure 4). 480Hz, mode (2,0). Red dash line shows upper limit of eq. (8).
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Figure 7: Comparison of one-rake and two-rake analyses for mode amplitude using ANCF measured data
with two sources (Figure 4). 960Hz, mode (4,1). Red dash line shows upper limit of eq. (8).
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Figure 9: Relative change of the directional propagating modes as measured in the configuration of Figure 4
with source rows B and C. Lines are the curve fits of the data. 1H is 480Hz. 2H is 960Hz.
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