Overview of NASA Initiatives in 3D Printing and Additive Manufacturing

2014 DoD Maintenance Symposium
Birmingham, AL • November 17-20, 2014

Niki Werkheiser
In-space Manufacturing Project Manager
Marshall Space Flight Center
NIKI.WERKHEISER@NASA.GOV
Agenda

- NASA Headquarters Structure and Sponsorship
- Aeronautics Applications
- “FOR Space” Additive Manufacturing
- “IN Space” Additive Manufacturing
 - National Research Council Committee on Space-Based Additive Manufacturing (COSBAM) Report Synopsis
 - Initiatives
- Cross-Cutting Tenets
- Summary
- Backup
 - Cross-cutting: Additive Manufacturing Development Processing-Structure-Property Relationships
 - Cross-cutting: Certification – NDE
 - Acknowledgments
Aeronautics Applications
• Engineered materials coupled with tailored structural design enable reduced weight and improved performance for future aircraft fuselage and wing structures

• Multi-objective optimization:
 - Structural load path
 - Acoustic transmission
 - Durability and damage tolerance
 - Minimum weight
 - Materials functionally graded to satisfy local design constraints

• Additive manufacturing using new alloys enables unitized structure with functionally graded, curved stiffeners

• Weight reduction by combined tailoring structural design and designer materials

Design optimization tools integrate curvilinear stiffener and functionally graded elements into structural design

High toughness alloy at stiffener base for damage tolerance, transitioning to metal matrix composite for increased stiffness and acoustic damping
Objective: Conduct the first comprehensive evaluation of emerging materials and manufacturing technologies that will enable fully non-metallic gas turbine engines.

Assess the feasibility of using additive manufacturing technologies to fabricate gas turbine engine components from polymer and Ceramic matrix composites.

- Fabricate prototype components and test in engine operating conditions

Conduct engine system studies to estimate the benefits of a fully non-metallic gas turbine engine design in terms of reduced emissions, fuel burn and cost

Focusing on high temperature and fiber reinforced polymer composites fabricated using FDM, and fundamental development of high temperature ceramics / CMC's using binder jet process

Polymer Vane Configuration in Cascade wind tunnel Rig

Digital Image Correlation Measurements

Finite Element Analysis

Binder jet process was adapted for SiC fabrication

NASA GRC POC: Joseph Grady
“FOR Space” Additive Manufacturing
GRC and Aerojet Rocketdyne tested an additively manufactured injector in 2013 under the Manufacturing Innovation Project (MIP) and Advanced Manufacturing Technologies (AMT) Project.

- MSFC successfully tested two complex injectors printed with additive manufacturing August 2014
- GRC, LaRC, and MSFC Team building on success of MIP and AMT projects to develop and hot fire test additively manufactured thrust chamber assembly
 - Copper combustion chamber and nozzle produced via Selective Laser Melting (SLM)
 - Grade from copper to nickel for structural jacket and manifolds via EBF³

- RL10 Additive Manufacturing Study (RAMS) task order between GRC and Aerojet-Rocketdyne sponsored by USAF.
 - Related activity - Generate materials characterization database on additively manufactured (AM) Ti-6Al-4V to facilitate the design and implementation of an AM gimbal cone for the RL10 rocket engine.

- GRC, AFRL, MSFC Additive Manufacturing of Hybrid Turbomachinery Disk:
• Powder Bed Fusion (PBF) technologies enable rapid manufacturing of complex, high-value propulsion components.
• Flexibility inherent in the AM technologies increases design freedom; enables complex geometries. Designers can explore lightweight structures; integrate functionality; customize parts to specific applications and environments.
• Goal: reduce part count, welds, machining operations → reduce $ and time

Cost Savings and Time Savings

<table>
<thead>
<tr>
<th>Part</th>
<th>Cost Savings</th>
<th>Time Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>J-2X Gas Generator Duct</td>
<td>70%</td>
<td>50%</td>
</tr>
<tr>
<td>Pogo Z-Baffle</td>
<td>64%</td>
<td>75%</td>
</tr>
<tr>
<td>Turbopump Inducer</td>
<td>50%</td>
<td>80%</td>
</tr>
</tbody>
</table>

RS-25 Flex Joint

<table>
<thead>
<tr>
<th>Part Count</th>
<th>Heritage Design</th>
<th>SLM Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>45</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>70+</td>
<td>26</td>
<td></td>
</tr>
<tr>
<td>~147</td>
<td>~57</td>
<td></td>
</tr>
</tbody>
</table>
• AM techniques can create extremely fine internal geometries that are difficult to achieve with subtractive manufacturing methods.

• ISS Tool Design for Manufacturability and Processing
 - Structural Integrity Verification
 - Material Properties
 - Non-destructive Evaluation
 - Structural Analysis and Testing
• GSFC’s first Additive Manufacturing (AM) part for instrument prototype/possible flight use (FY12) - Titanium tube - in a tube – in a tube for cryo thermal switch for ASTRO-H

• First to fly AM component in space (FY13) – battery case on suborbital sounding rocket mission

• Miniaturizing telescopes: Utilize new Direct Metal Laser Sintering (DMLS) to produce \textit{dimensionally stable} integrated instrument structures at lower cost

• Unitary core-and-face-sheet optical bench material
 - Features tailored alloy composition to achieve desired coefficient of thermal expansion

• Efficient radiation shielding through Direct Metal Laser Sintering:
 - Develop a method for mitigating risk due to total ionizing dose (TID) using direct metal laser sintering (DMLS) and the commercially-available Monte-Carlo particle transport code, NOVICE to enable otherwise difficult to fabricate component-level shielding
Aerosol jet printing of various circuit building blocks: crossovers, resistors, capacitors, chip attachments, EMI shielding.

Nanosensors printed directly on a daughter board for chemical detection.

Super-black nanotechnology coating: Enable Spacecraft instruments to be more sensitive without enlarging their size. Demonstrated growth of a uniform layer of carbon nanotubes through the use of Atomic Layer Deposition.
“IN Space” Additive Manufacturing
The Air Force Space Command, the Air Force Research Laboratory Space Vehicles Directorate, the NASA Office of the Chief Technologist and the Space Technology Mission Directorate requested the US National Research Council (NRC) to

- Evaluate the feasibility of the concept of space-based additive manufacturing of space hardware
- Identify the science and technology gaps
- Assess the implications of a space-based additive manufacturing capability
- Report delivered in July
- Printed in September

NRC Report: The Promise (of In Space Manufacturing)

- Manufacturing components
- Recycling
- Creating sensors or entire satellites
- Creating Structures Difficult To Manufacture On Earth Or Launch
- Using resources on off-Earth surfaces
• **Additive manufacturing in space has great potential.** Space system configurations that are currently dominated by requirements to survive ground manufacturing, assembly, test, transport, and launch could be reexamined as AM capability becomes available, and *additive manufacturing might provide the means to transform space architectures.*

However, there are many technological and regulatory hurdles before such a vision could be achieved.

• **Terrestrial challenges remain unresolved.** Before moving additive manufacturing technology to the space environment, further development in several fundamental areas needs to be complete and well understood. These areas represent barriers to a wider use, even in a ground-based environment, and *preclude additive manufacturing techniques moving immediately to a space-based environment.*

• **Space related challenges magnify terrestrial ones.** The space environment (zero gravity, vacuum) poses additional constraints, and additive manufacturing is even more of a systems engineering and industrial logistics problem compared to additive manufacturing on the ground.

• **Technology not implementable without supporting infrastructure.** Supporting infrastructure and environment which are relatively straightforward and easy considerations on the ground (i.e. rent factory space, connect to the local power grid) are not simple for space - issues such as supply chain logistics, integrated processes, minimal human interaction, and quality control are more pronounced.
• **Analysis.** Agencies need to do **systems and cost benefit analyses** (CBA) related to the value of AM in space. The analyses should not focus just on how AM could replace traditional manufacturing but how it can enable **entirely new structures and functionalities that were not possible before.** A specific area where a CBA would be helpful is in the manufacture of smaller satellites on the ISS.

• **Investment.** Targeted investment is needed in areas such as standardization and **certification**, and **infrastructure.** The investment should be strategic, and use workshops and other information-sharing forums to develop roadmaps with short and long-term targets.

• **Platforms.** Given the short life of the **ISS**, agencies should leverage it to the extent feasible to test AM and AM parts.

• **Cooperation, coordination and collaboration.** Instead of stove-piped parallel development in multiple institutional settings, it is critical that there be cooperation, **coordination and collaboration within and across agencies, sectors, and nations.** It would be useful to develop working groups, conferences and leverage existing efforts such as the America Makes.

• **Education and training.** Agencies need to **develop capabilities** related to relevant fields such as material science and others that would be important for the development of the field of AM.
ISS Technology Demonstrations are Key in ‘Bridging’ Technology Development to Full Implementation of this Critical Exploration Technology.
IN Space Manufacturing:
ISS Tech Demo – 3D Print

• The 3D Print project will deliver the first 3D printer on the ISS to investigate the effects of consistent microgravity on melt deposition additive manufacturing and print parts in space.
 • Builds 3D objects with Acrylonitrile Butadiene Styrene (ABS) plastic (same material as Legos)
 • Potential for hundreds of hours of use with reloadable feedstock, replacement extruder heads.

• 3D Print Tech Demo Primary Objectives
 • Successfully perform extrusion-based AM on-orbit by printing multiple parts from polymer material with print quality comparable to Earth-based parts
 • Demonstrate nominal extrusion and traversing
 • Perform ‘on-demand’ print capability via CAD file uplink for requested parts as they are defined
 • Mitigate Functional & Design Risks for Future Facilities

• 3D Print Tech Demo Phases:
 • Phase A: Confirm that **Printer and Processes work in microgravity** via printing of Test Articles & analyses
 • Phase B: Demonstrate functionality of utilization parts such as crew tools and ancillary h/w

3D Printer Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td>33 cm x 30 cm x 36 cm</td>
</tr>
<tr>
<td>Print Volume</td>
<td>6 cm x 12 cm x 6 cm</td>
</tr>
<tr>
<td>Mass</td>
<td>20 kg (w/out packing material or spares)</td>
</tr>
<tr>
<td>Est. Accuracy</td>
<td>95 %</td>
</tr>
<tr>
<td>Resolution</td>
<td>.35 mm</td>
</tr>
<tr>
<td>Maximum Power</td>
<td>176W (draw from MSG)</td>
</tr>
<tr>
<td>Software</td>
<td>MIS SliceR</td>
</tr>
<tr>
<td>Traverse</td>
<td>Linear Guide Rail</td>
</tr>
<tr>
<td>Feedstock</td>
<td>ABS Plastic</td>
</tr>
</tbody>
</table>

Phase A: Print Process Test Examples

- Tensile
- Vertical Column
- Range
- Compression
- Torque
- Flexure

Phase B: Functionality Test Examples

- Hex Head Socket
- Buckles
- Containers
- Caps
- Threads
- Wrench
- Socket
- Buckles
- Caps
- Threads
- Wrench

Examples

- Torque
- Flexure
- Vertical Column
- Compression
- Range
- Tensile
IN Space Manufacturing (ISM) Activities

• **3D Printing in Zero-G Operations and Analyses:**
 – Print first parts on-orbit and conduct analyses of Flight Parts compared to ground samples, publish results

• **Utilization Catalogue Development**
 – Develop a catalogue of approved parts for in-space manufacturing and utilization. Parts might include crew tools, payload components, medical tools, exercise equipment replacement parts, cubesat components, etc.

• **ISS Scanner/In-space Verification & Validation**
 – Fly a CoTS Optical Scanner to ISS to geometrically verify that parts printed are within design specifications

• **In-space Materials Characterization Database**
 – MSFC Foundation for In-space utilization, analyses, testing, & verification

• **In-space Recycler Tech Demo**
 – Objective is to recycle 3D printed parts back into useable feedstock. Two Phase I SBIRs awarded which will be completed early FY15. Goal is to fly an In-space Recycler on ISS in 2016.
IN Space Manufacturing (ISM) Activities

• **Printable Electronics**
 - ARC/MSFC/JPL: Develop in-space manufacturing capabilities to produce functional electronic and photonic component on demand.

• **In-space Additive Repair**
 - JSC/MSFC: working with JSC and MMOD Office to develop and test process for ground-based repair of MMOD simulated damaged panels for future in-space capability.

• **Additive Construction**
 - Co-led by KSC & MSFC: Joint project with Engineer Research and Development Center – Construction Engineering Research Laboratory, U. S. Army Corp of Engineers.
Cross-Cutting
In-space Manufacturing offers:

- Dramatic paradigm shift in the development and creation of space architectures
- Mission safety risk reduction for low Earth orbit and deep space exploration
- New paradigms for maintenance, repair, and logistics.

TRL advancement to application-based capabilities evolve rapidly due to leveraging of significant ground-based technology developments, process characterization, and material properties databases. NASA-unique Investments are required primarily in applying the technologies to microgravity environment.

We must do the foundational work. It's not always sexy, but it is fundamental.

Characterize
Certify
Institutionalize
Design Optimization

Note: Example is of Ground-Based Additive Manufacturing of Propulsion Components for Spaceflight

Characterize → Certify → Institutionalize → Design for AM
Summary

- NASA, including each Mission Directorate, is investing in, experimenting with, and/or utilizing AM across a broad spectrum of applications and projects.
- Centers have created and are continuing to create partnerships with industry, other Government Agencies, other Centers, and Universities.
- For space exploration, AM offers significant reduction to logistics costs and risk by providing ability to create on demand and NASA has implemented the In-space Manufacturing Initiative to develop applicable technologies for in-space applications with the ISS as the ideal test-bed.
- In-house additive manufacturing capability enables rapid iteration of the entire design, development and testing process, increasing innovation and reducing risk and cost to projects.
- There are challenges: Overwhelming message from recent JANNAF AM for Propulsion Applications TIM was “certification.”
- NASA will continue to work with our partners to address this and other challenges to advance the state of the art in AM and incorporate these capabilities into an array of applications from aerospace to science missions to deep space exploration.
Technical Objectives

Build the standard level of information on AM powder bed fusion processes that is required for qualification of any new critical process used for aerospace applications

Expand and extend the manufacturing base for aerospace hardware through standardization and qualification of critical AM processes. Better understanding of controlling process parameters and process failure modes will be achieved through completion of this study. Opportunities for industry participation are available in each of the tasks below.

1. Build Interactions / Effects – ARC/LaRC/MSFC **Objective:** Understand how basic AM build factors influence part properties.

2. Powder Influence / Effects – GRC **Objective:** Understand how basic powder feedstock characteristics influence a part’s physical, mechanical, and surface properties.

3. Thermal Processing / Effects – LaRC/MSFC **Objective:** a) Understand how standard wrought thermal processes influence AM mechanical properties, and b) explore the potential cost and benefit of AM-specific thermal processing.

4. Surface Improvement / Effects – MSFC **Objective:** Understand how as-built and improved AM surface texture influence part performance and fatigue life.

5. Applied Materials Characterization – GRC/LaRC/MSFC **Objective:** Enable use of AM parts in severe aerospace environments.

6. Qualification of AM Critical Components – MSFC **Objective:** Develop an Agency-wide accepted practice for the qualification of AM processes for aerospace hardware.

Related Task: Process Modeling – GRC,MSFC **Objective:** Use precipitation modeling to predict location specific microstructure in as-fabricated and post-processed 718, which has been fabricated with selective laser sintering
Foundational NDE Methodology for Certification of Additive Manufacturing (AM) Parts and Materials

- **Purpose:** Develop certification methodologies designed to ensure the production of safe and reliable AM parts for spaceflight applications. Emphasis will be placed on metals and AM processes used in fabrication of propulsion system components.

- **Justification:** AM is a rapidly emerging technology and there is a recognized lag in AM process and part validation and certification methodologies. NDE has been identified as one key technology to close this gap.

- **Summary:** The OSMA state of the art AM report will be used to define highest priority needs/gaps for NDE of AM parts. Resources will be used to down select and optimize NDE techniques that will then be combined with NDE modeling for a cost-effective methodology for verifying part quality. A workshop will be held mid year to assess progress and further define needs.
Acknowledgements

Ames Research Center – Jessica Koehne
Glenn Research Center – Michael Meyer, Bob Carter
Goddard Space Flight Center – Peter Hughes, Aprille Ericsson
Jet Propulsion Laboratory – Kendra Short
Johnson Space Center – Michael Waid
Kennedy Space Center – Jack Fox
Langley Research Center – Karen Taminger
Marshall Space Flight Center – Frank Ledbetter, Kristin Morgan, Niki Werkheiser, Janet Salverson
National Research Council COSBAM – Dwayne Day, Betsy Cantwell
University of Southern California – Berok Khoshnevis