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Overview
• Why the Bone Fracture Risk Module (BFxRM) was 

developed

• The probabilistic methods used for making fracture 
likelihood estimates

• Application of the BFxRM in estimating mission 
fracture risk

• BFxRM estimates of post-flight fracture risk

• Areas for future improvement and application of the 
BFxRM
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Why the Bone Fracture Risk Module 
(BFxRM) was developed

• Historically, fracture probability calculations have been used for 
preventative treatment planning in specific clinical populations

• The DXA/T-score system has been used
– To assess risk of fragility fractures 
– Typically applied to an elderly, female, postmenopausal, Caucasian 

population with a high prevalence of osteoporosis 

• This reference population is not analogous to the astronaut corps 
– Those at high risk have T-scores ≤ -2.5 (2.5 standard deviations less 

than the population mean)
– Astronauts are young, healthy, physically fit, work in a unique 

environment and are engaged in unique activities
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The BFxRM was developed for assessing fracture 
likelihood during missions

• Skeletal fracture is a concern for astronauts due to:
– The loss of bone mineral density experienced
– The unique loading states experienced

• The calculation of fracture likelihood was desired for:
– In-flight activities (on space station and in new crew 

capsules)
– During planetary activities (on Earth, Moon and Mars)

• Prediction capabilities were limited due to the lack of 
historical injuries

• The goals of the BFxRM were to:
– Capture the state of knowledge and uncertainty of the 

likelihood of fracture
– Incorporate mission related factors, environmental 

influences, and the best available clinical and biomedical 
knowledge in a probabilistic risk analysis
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Probabilistic risk assessment (PRA) simulation 
models

• Include physical models, physiological 
data and probabilistic simulations

• Acts as integrator for the interacting 
contributing conditions

• Integration obtained with Monte Carlo 
simulations 
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The BFxRM for mission likelihood estimates

Nelson et al., 
Development and Validation of 
a Predictive Bone Fracture Risk
Model for Astronauts,
Annals of Biomedical 
Engineering, 2009,
Vol. 37, Number 11, 2337-2359.
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Post-flight fracture risk

• Quantification of the increased 
likelihood of fracture during post-
flight activities
– Specific loading scenarios were 

modeled:
• Elevated, unprotected falls
• Impacts that included a translational 

velocity 

• Informed injury criteria definition
– Injury loading threshold for off-nominal 

Orion landings
– Developed a deconditioning factor to 

help guide risk decisions
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Post-flight fracture risk – Unprotected lateral fall 
• Loading conditions:

– Lateral falls from 0-1.5 m 
heights

– Translational velocity 0-4 
m/s

– No protective action or 
equipment

• BMD loss:
– LeBlanc BMD loss rate
– Deconditioning during a 

6 month flight

• BMD recovery:
– Sibonga recovery rate
– Estimates at 0 and 365 

days post-flight
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• Mean fracture probability:
– 12% greater than preflight on day 0
– 5% greater than preflight on day 365

• Parameter uncertainty drives the 
large variance in fracture probability 
estimates
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Post-flight fracture risk – Off-nominal landing

• The deconditioning factor was 
defined as the 5th percentile 
value of β
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• Estimated deconditioned vs. 
preflight bone strength

• Loading conditions:
– Loading at the femoral neck
– Similar to lateral fall loading
– No protective equipment 

considered
– Landing surface is land 

rather than water 

• BMD loss:
– LeBlanc BMD loss rate
– Deconditioning during a 6 

month flight
– No recovery time

~ 0.80



National Aeronautics and Space Administration

www.nasa.gov

BFxRM results summary
• The BFxRM provides fracture risk estimates specifically for the astronaut 

population and for the activities they perform
– Spaceflight mission scenarios (in-flight activities and EVAs)
– Return and post-flight scenarios (off-nominal landings, post-flight activities)

• Astronaut fracture resistance after 6 months in space decreases to
– A mean value of 12% less than pre-flight values at return, with a 5th percentile of 20% 

less
– A mean value of 5% less than pre-flight values at one year after return for active 

lifestyle, off-nominal loading conditions

• The uncertainty associated with the fracture risk estimates can be significant

• The source of the uncertainty is due to significant uncertainty in the sensitive 
parameters

– Using the change in BMD as the only factor that contributes to changes in bone 
strength during spaceflight 

– Using simplifying assumptions within the biomechanical loading calculations
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Areas for future improvement and application of 
the BFxRM

• Improved representation of bone and fracture conditions
– Use biomechanical information about real fracture events to improve the 

function that translates the load to ultimate strength ratio to fracture 
probability 

– Integrate FEM and other “bone quality parameters” to increase the fidelity of 
the bone strength estimate

• Perform additional validation and credibility testing

• Address the impacts of other space flight adaptations and 
countermeasure use
– Considering micro-architecture in addition to BMD to predict ultimate strength
– Bisphosphonates, diet and (ARED, AEC) exercise

• Influence mission planning and operational environment
– Spacecraft, spacesuit and habitat designs
– Operational processes and specific training   
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QUESTIONS?  
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