WSi₂ in Si₁₋ₓGeₓ composites: processing and thermoelectric properties

Jon Mackey
Mechanical Engineering, University of Akron

Alp Sehirlioglu
Materials Science and Engineering, Case Western Reserve University

Fred Dynys
RXC, NASA Glenn Research Center

NASA Cooperative Agreement: NNX08AB43A
NASA/USRA Contract: 04555-004
Thermoelectricity

- Study of the coupled transport of electrical and thermal energy.
- Solid-state phenomenon requires no moving parts or working fluids, and generates no noise, torque, or vibrations.
 - As a result thermoelectric devices are extremely reliable.
- Power Generation
 - Spacecraft, automotive, aerospace, gas pipelines, well sites, and offshore platforms.
- Refrigeration
 - On chip cooling, electronics, and automotive.
- High reliability, low conversion efficiency.

Spacecraft Power

- Radioisotope thermoelectric generators (RTG) have powered 45 spacecraft.

GPHS-RTG (Galileo/Ulysses)

WSi$_2$ in Si$_{1-x}$Ge$_x$ Composites
Thermoelectricity

- Study of the coupled transport of electrical and thermal energy.
- Radioisotope thermoelectric generators (RTGs) have powdered spacecraft.

As a result, thermoelectric devices are extremely reliable.

Photos nasa.gov

WSi$_2$ in Si$_{1-x}$Ge$_x$ Composites

Thermoelectricity

- Study of the coupled transport of electrical and thermal energy.
- Radioisotope thermoelectric generators (RTG) have powdered spacecraft.
- As a result, thermoelectric generators are extremely reliable.
- High reliability, low conversion efficiency.
- Globally, TE has applications in spacecraft, automotive, aerospace, gas pipelines, well sites, and offshore platforms.

As a result, thermoelectric devices are extremely reliable.

BMW, Volkswagen

WSi₂ in Si₁₋ₓGeₓ Composites

GPHS-RTG (Galileo/Ulysses)

Silicon Germanium Alloys

- Popular choice for RTG systems:
 - High temperature, mechanically robust, stable in air or vacuum, reasonable ZT, Stivers (1964).
 - N- and p-type doped with P and B, respectively.
 - Enhancement from Si/Ge alloy phonon scattering, Abeles et al. (1962), Abeles (1963).
- Traditional samples were solidified and homogenized with zone-leveling, Dismukes et al. (1964).

\[
ZT_{Material} = \frac{S^2 \sigma T}{k}
\]

Enhancing Si/Ge

- Powder processing provides some microstructure control.
- Grains of 2-5 μm show 10% ZT improvement over large grains, Rowe et al. (1993).
- Original nano-structuring theory developed by Hicks and Dresselhaus (1993).
 - Reduce lattice conductivity, enhance power factor.
- SOA, Nano sized grains show 30% ZT improvement, Joshi et al. (2008), Wang et al. (2008).
 - Thermally induced grain growth can hinder practical usefulness.
Silicide in Si/Ge Approach
- Thermally stable silicide nano-precipitates in Si/Ge.
- Precipitate size can preferentially scatter phonons over charge carriers.
- Experimentally verified for:
 - CrSi$_2$-Si$_{80}$Ge$_{20}$, Zamanipour & Vashaee (2012).
 - MoSi$_2$-Si$_{92}$Ge$_8$, Favier et al. (2014).

Silicide in Si/Ge Theory
- Figure: Mingo et al. Nano Letters 9 (2009) 711-715.
- Various metal silicides with different volume fractions.
- No inclusions in Si$_{50}$Ge$_{50}$ alloy.

WSi$_2$ in Si$_{1-x}$Ge$_x$ Composites
- Graph showing thermal conductivity (κ) vs. nanoparticle diameter [nm].
Powder Processing

- Planetary milling:
 - 8 hours @ 300-580 rpm
 - Ball to powder ratio 3-5
- Spark plasma sintering:
 - 800-1100°C
 - 70-90 Mpa
 - 5-10 min hold
- Powders handled under Argon atmosphere.

Test Matrix

<table>
<thead>
<tr>
<th>Si/Ge at% Ratio</th>
<th>70/30</th>
<th>80/20</th>
<th>90/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2% Dopant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-Type, B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Type, P</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tungsten Silicide Volume Fraction

- 0%
- 1%
- 2%
- 5%

WSi$_2$ in Si$_{1-x}$Ge$_x$ Composites
Microstructure

- Study on milling profile.
 - a) Milled powder profile 1
 - c) Milled powder profile 2
 - b) Sintered pellet of powder a)
 - d) Sintered pellet of powder c)

Aggressive milling alloys Si and Ge, but does not form the WSi$_2$ phase.
WSi$_2$ phase formed during sintering.
Silicide precipitate size ranged from <90 nm to micron range. Difficult to control with powder processing.

Sintering Study

- Analyzed ram travel data from SPS.
- W influences sintering kinetics by lowering the sintering strain rate and increasing required dwell time.
Si/Ge at% Ratio
70/30
80/20
90/10

Tungsten Silicide Volume Fraction
0% X
1% X
2% X
5% X

P-type, B
N-type, P
2% Doped

Start End Reset

Start End Reset

Never fully recovers

Dopant Segregated
Dopant Re-distributed

WSi$_2$ in Si$_{1-x}$Ge$_x$ Composites

End
Start
Cooling
Heating

Resistivity (Ohm-cm)

Temperature (Celsius)
Introduction

Processing

Properties

WSi$_2$ in Si$_{1-x}$Ge$_x$ Composites

Si/Ge at% Ratio

<table>
<thead>
<tr>
<th>Si/Ge at% Ratio</th>
<th>70/30</th>
<th>80/20</th>
<th>90/10</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>O</td>
<td>X</td>
<td>O</td>
</tr>
<tr>
<td>P-type, B</td>
<td>N-type, P</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2% Doped

P-type, B

N-type, P

Dopant Segregated

Dopant Re-distributed

Start

End

Reset

Electrical Properties

Thermal Properties

WSi$_2$ in Si$_{1-x}$Ge$_x$ Composites
Figure of Merit

Nano grain SOA n-type
Nano grain SOA p-type
RTG n-type
RTG p-type

WSi$_2$ in Si$_{1-x}$Ge$_x$ Composites
• Investigated influence of oxygen contamination on samples.
• Loaded SPS dies in both Argon and Air.
• Silica formation did not alter electrical properties significantly.

• Silica formation reduced lattice thermal conductivity.
• Lower thermal conductivity leads to 10-40% ZT improvement.
• N-type samples are not as sensitive to oxygen contamination.
Silica formation reduced lattice thermal conductivity.

Lower thermal conductivity leads to 10-40% ZT improvement.

N-type samples are not as sensitive to oxygen contamination.

Investigated influence of oxygen contamination on samples.

Loaded SPS dies in both Argon and Air.

Silica formation did not alter electrical properties significantly.

Lower thermal conductivity leads to 10-40% ZT improvement.

N-type samples are not as sensitive to oxygen contamination.

Two Couple Device

- Fabricated 2-couple proof of concept device.
- Operated in air for over 5 months.

Device Characterization

Endurance Testing

WSi$_2$ in Si$_{1-x}$Ge$_x$ Composites
Conclusion

- Silicide phase successfully reduces lattice thermal conductivity.
- Increased ZT for silicide composites as compared to baseline Si/Ge.
- Oxygen contamination further reduces lattice thermal conductivity.
- Tungsten silicide phase offers tuning of carrier concentration.
- Silicide phase does not hinder thermal stability.

Acknowledgements

Tom Sabo, Ray Babuder, Ben Kowalski, Clayton Cross
NASA Glenn Research Center

Dr. Michael Cinibulk
AFRL Wright Patterson Air Force Base

Dr. Sabah Bux, Dr. Jean-Pierre Fleurial
JPL

NASA Cooperative Agreement: NNX08AB43A