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Abstract
An ensemble approach is used to examine the sensitivity of smoke loading and smoke direct
radiative effect in the atmosphere to uncertainties in smoke emission estimates. Seven different
fire emission inventories are applied independently to WRF-Chem model (v3.5) with the same
model configuration (excluding dust and other emission sources) over the northern sub-Saharan
African (NSSA) biomass-burning region. Results for November and February 2010 are
analyzed, respectively representing the start and end of the biomass burning season in the study
region. For February 2010, estimates of total smoke emission vary by a factor of 12, but only
differences by factors of 7 or less are found in the simulated regional (15°W–42°E, 13°S–17°N)
and monthly averages of column PM2.5 loading, surface PM2.5 concentration, aerosol optical
depth (AOD), smoke radiative forcing at the top-of-atmosphere and at the surface, and air
temperature at 2 m and at 700 hPa. The smaller differences in these simulated variables may
reflect the atmospheric diffusion and deposition effects to dampen the large difference in smoke
emissions that are highly concentrated in areas much smaller than the regional domain of the
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study. Indeed, at the local scale, large differences (up to a factor of 33) persist in simulated
smoke-related variables and radiative effects including semi-direct effect. Similar results are also
found for November 2010, despite differences in meteorology and fire activity. Hence, biomass
burning emission uncertainties have a large influence on the reliability of model simulations of
atmospheric aerosol loading, transport, and radiative impacts, and this influence is largest at local
and hourly-to-daily scales. Accurate quantification of smoke effects on regional climate and air
quality requires further reduction of emission uncertainties, particularly for regions of high fire
concentrations such as NSSA.

S Online supplementary data available from stacks.iop.org/ERL/9/075002/mmedia

Keywords: fire emission inventory, Sahel and northern sub-Saharan African region, smoke
radiative effect, mesoscale modeling, air quality

1. Introduction

Biomass burning is one of the largest contributors of both
gaseous and particulate emissions to the atmosphere,
accounting for about 34–38% and 40% of the total global
loadings of carbonaceous aerosols and black carbon (BC),
respectively (Forster et al 2007). Hence, smoke particles
emitted from biomass burning significantly affect air quality,
weather, and climate variability (e.g., Wang et al 2013, Ge
et al 2014, and references therein). Despite the enormous
progress achieved in satellite remote sensing and atmospheric
modeling during the last couple of decades, the overall
atmospheric impacts of aerosols originating from biomass
burning such as BC and OC (organic carbon) continue to be
one of the largest uncertainties in climate research
(IPCC 2013). This is partly due to the modeling uncertainties.
A significant relative inter-model standard deviation (97%) of
radiative forcings at the top of atmosphere (TOA) can be
found for a case with prescribed partially absorbing aerosols
(Stier et al 2013). Another major reason is that fire emissions
are often poorly constrained mainly due to their rather
sporadic and transient characteristics that cannot all be mea-
sured in situ (e.g., IPCC 2013, Ichoku et al 2012).

Accurately observing the size, lifetime, and energetics of
fires is challenging with current observing systems (Hyer
et al 2012). For instance, burned areas derived from different
methods, such as field inventory, satellite-based burn scars, or
satellite hot spots, present a substantial difference with a
factor of 7 in North America and a factor of 2 across the
global domain (Boschetti et al 2004). In addition, the physical
and optical properties of emitted aerosol particles, and the
emission factors of different aerosol particle types can be
highly variable both within and among fires (e.g., Akagi
et al 2011). Hence, it has been shown that the estimate of
smoke emission for the same region and same time can differ
by factors of 2–4 on an annual basis, and by 8–12 or more for
a given fire event (e.g., van der Werf et al 2010, Fu
et al 2012). In particular, bottom-up emission estimates have
been shown to systematically lead to an underestimation of
aerosol optical depth (AOD) (Kaiser et al 2012, Petrenko
et al 2012). Thus they are consistently lower than top-down
emission estimates based on observations of atmospheric
aerosol particles (from satellites).

This study is aimed at analyzing how the uncertainties or
differences of BC and OC emissions among various emission
inventories can affect the spatial and temporal distribution of
aerosols and aerosol radiative effects in regional air quality
and climate models. Rather than a bottom-up analysis of the
uncertainties in emission inventories, the focus here is to
evaluate how the air quality and climate models, such as
online-coupled regional Weather Research and Forecasting
Model with Chemistry (WRF-Chem; Fast et al 2006, Grell
et al 2005), respond to these uncertainties. While the emis-
sion-receptor relationships and the variations of such rela-
tionships with meteorology have been studied considerably in
the past, through the analysis of observational data and
numerical experiments, such as within the framework of
AEROCOM (Aerosol Comparisons between Observations
and Models, Textor et al 2006), this study differs from past
research in that: (a) a total of seven emission inventories
developed by different research groups and commonly used
and referenced in the literature is compiled and analyzed in
this study; (b) these emission inventories are applied to the
meteorology-chemistry coupled model (WRF-Chem) with the
same meteorological initial and boundary conditions and
model configurations for the same region and study time
period. With such a design, our study helps to reveal the
nonlinear relationship between emission and radiative effect
of smoke particles and addresses the question: ‘Do the dif-
ferences in the smoke emission inventories amplify the dif-
ferences in the estimate of smoke radiative effects?’.
Answering this question is required to understand the role of
uncertain biomass-burning emissions in the overall uncer-
tainties of regional climate forcings.

All modeling experiments here are conducted for Feb-
ruary and November 2010 over the African Equatorial and
surrounding regions by using WRF-Chem version 3.5 (WRF-
Chem3.5). An earlier study using WRF-Chem for the same
region in February 2008 showed a good model skill at cap-
turing patterns of smoke and dust transport (Yang et al 2014).
We have selected 2010 in the current study instead of 2008
because not all the smoke emission inventories are available
for 2008. November and February are selected because they
represent respectively the typical start and end of the main
biomass-burning season in our study region. Thus, the
emission inventories for these two months include emission
of fires in different synoptic regimes (Yang et al 2013). In this

2

Environ. Res. Lett. 9 (2014) 075002 F Zhang et al



study, to expedite the computation, only smoke particle
emissions of OC and BC are considered, and the emissions
from other sources including industrial/biogenic emissions
and wind-blown sea-salt and dust aerosols are not imple-
mented in the simulations. In addition, no scaling factor is
applied to the total amount of biomass burning aerosol from
the emission inventories used.

We describe the model configuration and experiment
design in section 2. Results and analyses for February and
November 2010 are shown in sections 3 and 4, respectively.
Section 5 is for summary and discussions.

2. Model description and experiment design

2.1. Configuration of WRF-Chem3.5

The WRF-Chem model version 3.5 is used in this study (Fast
et al 2006, Grell et al 2005). The model configuration is
similar to the one used in Ge et al (2013) and Yang et al
(2013), as well as their treatments of OC/BC optical proper-
ties. The gas-phase chemistry is based on the Regional Acid
Deposition Model, version2 (RADM2) photochemical
mechanism (Stockwell et al 1990). The aerosol modules are
the Modal Aerosol Dynamics Model for Europe (MADE)
(Ackermann et al 1998). The radiative schemes used are the
two-stream multi-band Goddard model Chou et al (1998)
with ozone climatology for shortwave (SW) and the RRTM
scheme (Mlawer et al 1997) for longwave. The smoke direct
radiative effect is considered in the radiative calculations, but
aerosol indirect effect (e.g., aerosol-cloud microphysical
interaction) is not turned on in the model for this study. To
facilitate the study of smoke semi-direct effect on the cloud
and resultant change of cloud radiative effects (CREs), we
introduced in these two radiative transfer codes the extra
outputs for downwelling and upwelling radiative fluxes at the
TOA and SFC (ground surface) for both clear sky and all sky
conditions.

2.2. Experiment design

In this study, based on Lambert conformal projection, a
double-nested grid configuration is used over the northern
sub-Saharan African (NSSA) region: the coarse outer domain
has horizontal resolutions of 81 km× 81 km with total
130 × 85 grid points; the fine inner domain has 259 × 133
points with 27 km grid spacing. The lower left corners for
these two domains are (21.88°S, 29.42°W) and (13.24°S,
16.55°W), respectively. The inner domain can be roughly
delineated in figure 1. Similar to Yang et al (2012), no
transboundary transport of chemical species into the model
domain is considered.

A total of seven smoke inventories are used indepen-
dently to specify the BC and OC emissions: (1) FLAMBE
(Fire Locating and Modeling of Burning Emissions inventory;
Reid et al 2009), (2) FINNv1.0 (Fire Inventory from NCAR
version 1.0; Wiedinmyer et al 2011), (3) GFEDv3.1 (Global
Fire Emissions Database version 3.1; van der Werf

et al 2010), (4) FEER-SEVIRIv1.0 (Fire Energetics and
Emissions Research version 1.0 using fire radiative power
(FRP) measurements from the geostationary Meteosat Spin-
ning Enhanced Visible and Infrared Imager (SEVIRI);
Roberts and Wooster 2008, Ichoku and Ellison 2013), (5)
GFASv1.0 (Global Fire Assimilation System version 1.0;
Kaiser et al 2012), (6) GBBEP-Geo (NESDIS Global Bio-
mass Burning Emissions Product; Zhang et al 2012), and (7)
QFEDv2.4 (Quick Fire Emissions Dataset version 2.4; Dar-
menov and da Silva 2013). The key specifics of these emis-
sion algorithms are listed in table 1. For those inventories
(GFED, FINNv1.0, GFAS, and QFED) that do not present the
diurnal cycle of smoke emissions, we applied the diurnal
profile based upon the three hourly and daily temporal
variability in fire emissions derived from Geostationary
Operational Environmental Satellite (GOES) and MODIS
(Mu et al 2011). Finally, the emission rates are kept as con-
stant for each hour in every three-hourly interval. FINNv1.0,
GFEDv3.1, GFASv1.0, and QFEDv2.4 provide smoke
emissions for different constituents (such as OC, BC, PM2.5).
For other inventories that do not specifically contain BC and
OC emissions (such as FLAMBE, FEER-SEVIRIv1.0, and
GBBEP-Geo), this study used the set of emission factors
described by Andrea and Merlet (2001) to convert total dry
matter burned to BC and OC in GBBEP-Geo, and to obtain
the OC and BC emission ratios both relative to PM2.5 and to
TPM (total particulate matter, table 1). By multiplying those
emission ratios with the corresponding products from the
emission inventories, OC and BC emissions for FLAMBE
and FEER-SEVIRIv1.0 are obtained as well.

Eight sets of simulations are performed for each month,
with the first not considering any fire emissions and the rest
respectively incorporating seven different emission inven-
tories (as mentioned above). In the model, the injection height
of smoke (only OC+BC) emissions is specified as 650 m
above the surface (Yang et al 2013). The 1°× 1° National
Center for Environmental Prediction (NCEP) 6 h Final Ana-
lysis (FNL) data are used for initializing and specifying the
temporally evolving lateral boundary conditions. For all
simulations, we provide a spin-up time of one week, and only
data during February and November 2010 are analyzed.

3. Results and analyses for February

3.1. From emission source to atmospheric loading

Figure 1 shows the monthly-total smoke OC+BC emissions
(g m−2; a1–a7) and monthly-mean simulated column total
PM2.5 (mg m−2; c1–c7) during February 2010, along with
their ratios to the means among different inventories for
smoke emission (b1–b7) and for PM2.5 (d1–d7), respectively.
Clearly, all inventories showed the zonal distribution of fire
emissions around 0–15°N, along with some in the Congo
tropical forest (about 7°S, 15°E) (figures 1(a1)–(a7)). These
emissions originate primarily from the predominant human-
induced fires related to agricultural, savanna, and deforesta-
tion burning in the study region (e.g., Hao and Liu (1994),
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Johnson et al 2008, Dami et al 2012). Confined within the
0–15°N belt are the three high smoke emission centers situ-
ated around 15°W −5°W, 0–10°E, and 15°E–30°E, which
also correspondingly render three locations of high con-
centrations of simulated total PM2.5 (figure 1). Hereafter,
these regions are named west, middle and east regions,
respectively.

Only FEER-SEVIRIv1.0 produced the strongest emis-
sions in the middle region and far weaker emissions in the
east region where the strongest emissions are commonly
found for the other emission inventories. As shown in table 1,
only FEER-SEVIRIv1.0 and QFEDv2.4 are based on top-
down approaches that use satellite measurements of both FRP
and smoke AOD. However, the FEER-SEVIRIv1.0 emissions
over NSSA region are based on geostationary satellite-sensor
(SEVIRI) FRP data in conjunction with FEERv1.0 smoke
emission coefficients derived from MODIS FRP and near-
source smoke AOD (Ichoku and Ellison 2013). Therefore, the
difference between the emission inventories also in part
supports the fact that the large uncertainty existing among
different satellite retrievals may include the spatial and tem-
poral variation of fires. Furthermore, a qualitative comparison
of the model total column OC+BC simulations with total
column AOD retrievals from MODIS on Terra and Aqua in
February 2010 (figures 1(e) and (f)) show that aerosol con-
centrations are prominent both in the middle and east regions,

with the middle region showing a slightly higher loading;
indicating that the various emission inventories spatially
reflect relative strengths and weaknesses in capturing emis-
sion source strengths by using different approaches.

Considering all the estimates as a whole, the overall
mean and standard deviation among different smoke emission
inventories are 607 ± 397 Gg, with coefficients of variation
(CV defined as ratio of standard deviation and the mean of all
inventories) of 65%–68% (table 2). Perhaps due to the
adoption of MODIS AOD to constrain their smoke emissions,
FEER-SEVIRIv1.0 and QFEDv2.4 have similar total emis-
sions and both are a factor of 2–3 larger than GFASv1.0. The
smallest emission estimated by GBBEP-Geo is likely due to
its use of a constant conversion factor (0.368 ± 0.015 kg (dry
mass) M J−1) (Zhang et al 2012), which is four times smaller
than that (1.37 kg (dry mass) M J−1) used in GFASv0 (Kaiser
et al 2009). Compared with GBBEP-Geo, the GFASv1.0
algorithm continues to adopt the larger land cover-specific
conversion factors, leading to larger smoke emissions (Kaiser
et al 2012). Furthermore, the absence of constraining
GBBEP-Geo with either MODIS AOD or something similar
may be another key reason for its lower emissions. As a
result, GBBEP-Geo yields a factor of 8–16 smaller emissions
than those indicated by FEER-SEVIRIv1.0 and QFEDv2.4.
The MODIS burn-scar mapping method used by GFEDv3.1
cannot detect small fires that burn less than half of its

Figure 1. Comparisons among FLAMBE, FINNv1.0, GFEDv3.1, FEER-SEVIRIv1.0, GFASv1.0, GBBEP-Geo and QFEDv2.4 for (a1–a7)
monthly total smoke OC+BC emissions (unit: g m−2) during February 2010. The plot is made at the native resolution for corresponding
emission inventory; (b1–b7) the ratio of individual smoke emissions to their means among different inventories (Ratio_smoke); (c1–c7)
February mean column total PM2.5 (unit: mg m−2) simulated by WRF-Chem3.5; (d1–d7) the ratio of PM2.5 from different emission
inventories to their means (Ratio_PM2.5). (e and f) total column aerosol optical depth (AOD) at 550 nm wavelength from MODIS on Terra
and Aqua satellites, respectively, as plotted within the NASA Giovanni interactive visualization system (http://disc.sci.gsfc.nasa.gov/
giovanni).

Table 1. Intercomparisons of different smoke emission inventories used in this study.

Category Method Data Resolution
Fire data
source References Fields

Bottom-up
approaches

Fuel consumption and
burned area based

FLAMBE 1∼ 5 km, hourly MODIS/
GOES

Reid
et al (2009)

PM2.5

FINNv1.0 ∼1 km2, daily MODIS Wiedinmyer
et al (2011)

BC,OC,
PM2.5,
etc

GFEDv3.1 0.5° × 0.5° Monthly TRMM-VIRS/
ATRS;
MODIS

van der Werf
et al (2010)

BC,OC,
PM2.5,
etc

FRP-based with land
cover specific conver-
sion factors and emis-
sion factors

GFASv1.0 0.5° × 0.5°, daily MODIS Kaiser
et al (2012)

BC,OC,
PM2.5,
etc

GBBEP-Geo 3∼ 4 km, hourly GOES
(SEVIRI in
Africa)

Zhang
et al (2012)

Total
dry mass

Top-down
approaches

FRP-based with satellite
AOD constraint

FEER-
SEVIRIv1.0

1° × 1°, hourly MODIS/
SEVIRI

Ichoku and
Ellison
(2013)

Total parti-
culate
matter

QFEDv2.4 0.25° × 0.3125°, or
0.1° × 0.1° daily

MODIS Darmenov and
da
Silva (2013)

BC, OC,
PM2.5,
etc
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500 m× 500 m nominal pixel size (Giglio et al 2009). Thus,
the larger emission in GFASv1.0 as compared to GFEDv3.1
is mainly due to a higher detection threshold used by the
MODIS burned area observation product than those in the
underlying MODIS FRP observations (Kaiser et al 2012).

More spatial discrepancies can be seen in figure 1, in
which the ratios of smoke emissions of OC+BC to the means
among different inventories (labeled as Ratio_smoke) are
shown. North-South gradients of fire emissions differ among
different smoke inventories, perhaps driven by the different
gradients in vegetation density, fuel type and land cover
adopted in these inventories. FLAMBE usually has the largest
emissions in tropical Africa with Ratio_smoke > 5. Smaller
smoke emissions from FLAMBE and FINN are found in the
northern parts of the NSSA than in their southern parts, while
the reverse is true for GFED. GFAS and QFED show similar
spatial patterns may due to the similar application of MODIS
FPR observations in both (Kaiser et al 2012, Darmenov and
da Silva 2013). Overall, the domain means of Ratio_smoke
averaged only over the grids having fire emissions are 0.9,
0.4, 0.5, 2.6, 1.1, 0.2, and 1.3 for FLAMBE, FINN, GFED,
FEER-SEVIRI, GFAS, GBBEP-Geo, and QFED, respec-
tively. The overall mean and standard deviation of Ratio_s-
moke are 1.00 ± 0.81, with a CV of 81%.

Although FLAMBE, one of the bottom-up approaches,
produces larger domain total emissions (1235 Gg) than even
the top-down approaches, it does not have the largest domain
mean of Ratio_smoke (0.9). This is because of a few very big
emissions in FLAMBE. The maximum grid-cell emission of
9.09 g m−2 for FLAMBE as compared to <3.55 g m−2 for the
other inventories outweighs its overall smaller emissions,
more than FEER-SEVIRI and QFED for instance. Among the
different inventories based on their daily total emissions per

grid cell (figure 2(a)), FLAMBE cumulative smoke (OC+
BC) emission is generally in the middle, and smaller than
FEER-SEVIRI and QFED for small to medium values. It is
only after including big emissions (>148 mgm−2, i.e., log
(OC+BC emission) >5) that FLAMBE becomes larger than
those of the top-down approaches. This may be due to a static
estimate of 62.5 ha area burned per MODIS hot spot adopted
by FLAMBE. Reid et al (2009) shows how this estimate
results in over-estimation of fire-affected areas in grassland
and savanna landscapes, and under-estimation in densely
forested landscapes.

For the monthly-mean column loading of PM2.5 simu-
lated by WRF-Chem3.5, their domain means are 188, 126,
128, 177, 123, 95, and 187 Gg for FLAMBE, FINNv1.0,
GFEDv3.1, FEER-SEVIRIv1.0, GFASv1.0, GBBEP-Geo
and QFEDv2.4, respectively (figure 1). The overall mean and
standard deviation are 146 ± 37 Gg with a CV of 25%
(table 2). The PM2.5 loadings are within a factor of 2.4 (taking
the smallest one from GBBEP-Geo as base), compared with a
factor of 12 difference in the emissions. Moreover, as shown
in figure 1, the domain means of Ratio_PM2.5 (i.e., the ratios
of simulated PM2.5 loadings to the means among different
inventories) are 1.2, 0.9, 0.9, 1.2, 0.9, 0.7, and 1.2 for
FLAMBE, FINN, GFED, FEER-SEVIRI, GFAS, GBBEP-
Geo, and QFED, respectively. The CV of Ratio_PM2.5 is
20%, much smaller than that of Ratio_smoke (81%). Hence,
in terms of quantities over the study domain, the large dif-
ferences in smoke (OC+BC) emissions are not reflected in
the simulated loading of PM2.5.

The results may in part reflect the nonlinearity in the
source-receptor relationship. In this relationship, the atmo-
sphere, through diffusion as well as wet and dry deposition
processes, generally dampens the effect of differences in the

Table 2. Comparisons among domain-total smoke (OC+BC) emissions (Gg), simulated monthly-mean PM2.5 loadings (Gg), simulated
monthly-mean domain-mean AOD, simulated monthly-mean domain-mean smoke effectsa on SWTOAclr, SWSFCclr (W m−2), T2 and T700
(K), respectively. The maximal smoke effects are also listed in parenthesis. The period covered is February 2010.

Variables

Smoke (OC+
BC) emis-
sions (Gg)

Simulated PM2.5

loadings (Gg) AOD
ΔSWTOAclr

(W m−2)
ΔSWSFCclr

(W m−2) ΔT2(K) ΔT700(K)
FLAMBE 1235 188 0.034 −0.42 (−2.34) −2.47 (−25.1) −0.033 (−0.26) 0.017 (0.096)
FINN 495 126 0.021 −0.43 (−1.74) −1.16 (−12.6) −0.022 (−0.16) 0.009 (0.058)
GFED 302 128 0.022 −0.38 (−1.43) −1.32 (−12.3) −0.030 (−0.20) 0.010 (0.078)
FEER-
SEVIRI

839 177 0.032 −0.40 (−2.43) −2.22 (−15.6) −0.039 (−0.33) 0.020 (0.118)

GFAS 376 123 0.021 −0.37 (−1.37) −1.26 (−5.4) −0.025 (−0.15) 0.009 (0.062)
GBBEP-
Geo

103 95 0.015 −0.37 (−1.37) −0.69 (−2.4) −0.017 (−0.16) 0.003 (0.076)

QFED 898 187 0.034 −0.35 (−1.74) −2.48 (−13.4) −0.048 (−0.28) 0.020 (0.105)
Mean δ± b 607 ± 397 146 ± 37 0.026

± 0.008
−0.39 ± 0.03 −1.66 ± 0.72 −0.03 ± 0.01 0.013

± 0.006
Rangec 12 2 2.3 1 3.6 3 7
CVd 65% 25% 31% 8% 43% 33% 46%

Note:
a All domain-mean smoke effects shown here are only based on those grids with 95% confidence by paired samples t test.
b δ: standard deviation;
c Range: max/min;
d CV(coefficient of variation): δ/mean.
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source strength on the atmospheric loadings. This can be
more clearly shown in figure 2(c). February is the beginning
of the transition time from the dry to the wet season in the
NSSA region. Thus, the smoke emissions in February, though
much smaller than those in January, obviously decrease with
time (figure 2(b)). Correspondingly, the simulated PM2.5

loadings decrease with time as well (figure 2(c)), although
there exist some peaks caused by big smoke emission events,
e.g., on the 6th–7th February. The slopes of PM2.5 decrease
from −3.67 to −4.77 to −1.39 to −2.18 and then to −0.30 as
the smoke emissions decrease from FLAMBE, FEER-
SEVIRI and QFED to FINN, GFED, and GFAS and then to
GBBEP-Geo. Clearly those inventories producing larger
smoke emissions and thus larger PM2.5 loadings generally
have larger damping decrements, inferring the nonlinearity in
the source-receptor relationship. In other words, the differ-
ences in the total amount of emissions among various emis-
sion inventories is mainly due to the large differences in the
estimate of emissions from areas of large fire concentrations
(figure 2(a)). However, these seemingly large fires are prob-
ably constituted by multiples of relatively smaller fires that
are very local and only persist for a few days at most. As a
result, in regional and monthly averages, the effect of dif-
ferences in the smoke emissions on the atmospheric loadings
is largely dampened, resulting in the CVs of the domain
means of PM2.5 loadings and Ratio_PM2.5 within a factor of
2–3. However, at the local scale where the large concentra-
tions of the fires occur, quite different spatial patterns are still
found (figure 1). For example, taking the GBBEP-Geo as
base, the PM2.5 loading differences can reach up to a factor of
16–33 in the smoke source region with the Ratio_PM2.5 of
GBBEP-Geo larger than 0.2.

The surface PM2.5 mass concentration shows a similar
contrast with respect to emission as the PM2.5 column load-
ing, and overall, it shows a CV of 37% in the domain and
monthly averages (figure S4). In terms of Ratio_SFC_PM2.5

(i.e., the ratios of simulated surface PM2.5 concentration to the
means among different inventories), the CV is 23%. How-
ever, again, at the local scale, a factor of up to 10–60 dif-
ference can be found in surface PM2.5 concentrations.

3.2. Smoke clear-sky radiative impacts

Figure 3 shows monthly-mean modeled aerosol optical depth
(AOD) at 550 nm, aerosol absorption optical depth (AAOD,
blue contour) at 550 nm overlaid with the map of surface
albedo, and the smoke radiative effects on modeled clear-sky
net downwelling shortwave (SW) top of atmosphere (TOA)
radiative fluxes (ΔSWTOAclr, Wm−2) in February 2010. Note
that only statistically significant ΔSWTOAclr values (paired
samples t test with p < 5%) are shown in figure 3.

The AODs (figures 3(a1)−(a7)) present similar patterns
as their corresponding PM2.5 loadings (figures 1(c1)−(c7)).
The larger the PM2.5 loadings are, the bigger the AODs. The
domain averages of AOD at 550 nm are 0.034, 0.021, 0.022,
0.032, 0.021, 0.015, and 0.034 for FLAMBE, FINN, GFED,
FEER-SEVIRI, GFAS, GBBEP-Geo and QFED, respec-
tively. Their overall mean and standard deviation are

Figure 2. (a) Cumulative smoke (OC+BC) emissions (unit: kg m−2)
based on the daily total amounts per grid; (b) daily total smoke
OC+BC emissions (unit: Gg); (c) daily mean total PM2.5 simulated
by WRF-Chem3.5 over the whole fine domain of interest (unit: Gg),
along with the fitting lines and the slope ranges. Comparisons are
among FLAMBE, FINNv1.0, GFEDv3.1, FEER-SEVIRIv1.0,
GFASv1.0, GBBEP-Geo and QFEDv2.4.
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0.026 ± 0.008, with a spread of 31%. The relative difference
of 2.3 is close to that of the simulated total PM2.5 loadings
(2.0), reflecting the first-order linear relationship between
aerosol mass loading and its optical depth as well.

Negative ΔSWTOAclr are commonly found with the
domain means of –0.42, –0.43, –0.38, –0.40, –0.37, –0.37,
and –0.35 Wm−2 for FLAMBE, FINN, GFED, FEER-
SEVIRI, GFAS, GBBEP-Geo, and QFED, respectively
(figures 3(c1)−(c7)). Their mean and standard deviation are
– 0.39 ± 0.03 Wm−2 with a spread of 8%. This can be
understood that smoke particles with low or moderate AOD
values over the low surface albedo conditions (such as over
the ocean and tropical forest region with albedo less than
0.15) (figures 3(b1)−(b7)) generally scatter more solar radia-
tion back-to-space than the parts being absorbed (Wang and
Christopher 2006). However, over the bright surfaces, the
smoke absorption can be enhanced by strong and multiple
reflection of solar radiation between the surface and smoke
layer (Ge et al 2014). Hence, over the arid Saharan region
(northward of 15°N with surface albedo > 0.3), positive
ΔSWTOAclr values are found. Also in smoke source regions
with moderate surface albedo (0.2−0.25), AOD is larger and
single scattering albedo is low, yielding larger AAOD and
absorption and hence large positive ΔSWTOAclr. The can-
cellation between the smoke negative and positive TOA
forcings mentioned above produced only a factor of 1.2 dif-
ferences in domain-means of ΔSWTOAclr, which is far less
than that in smoke emissions.

3.3. Smoke all-sky radiative impacts

At regional scales, the surface temperature change is mainly
due to the change of net downwelling SW radiative flux. We
show in figure 4 the modeled net downwelling SW radiative
fluxes at the SFC both under clear sky (ΔSWSFCclr,
figures 4(a1)–(a7)) and all sky (ΔSWSFC, figures 4(b1)–(b7))
conditions. To study the changes of CREs induced by smoke
particles, we also show in figures 4(c1)–(c7) the modeled SW
CREs at SFC (ΔSWCREsfc, Wm−2). The SWCREsfc is
defined as = −F FSWCRESFC SW,SFC

all
SW, SFC
clr , where F is the net

(downward minus upward) flux, clr designates clear skies,
and all denotes a mixture of clear and cloudy skies. Note that
only statistically significant results (paired samples t with
p< 5%) are shown in figure 4, which is similar to that of Ge
et al (2014).

ΔSWSFCclr generally is more significant than its coun-
terpart at the TOA, because both absorption and scattering of
smoke particles result in the extinction of radiation at the
surface. Their values can be up to −25.1, −12.6, −12.3, −15.6,
−5.4, −2.4 and −13.4Wm−2 for FLAMBE, FINN, GFED,
FEER-SEVIRI, GFAS, GBBEP-Geo, and QFED, respec-
tively (figures 4(a1)–(a7)). The locations of large reductions
of SWSFCclr coincide quite well with the regions of strong
smoke emissions (figures 1(a1)–(a7)), and hence also those of
large AODs (figures 3(a1)–(a7)). Overall, the domain avera-
ges of ΔSWSFCclr are −2.47, −1.16, −1.32, −2.22, −1.26,
−0.69 and −2.48Wm−2 for FLAMBE, FINN, GFED, FEER-
SEVIRI, GFAS, GBBEP-Geo and QFED, respectively.

Together, their uncertainty range is within a factor of 4, and
their mean and standard deviation are −1.66 ± 0.72, with a CV
of 43%. This uncertainty range is slightly larger than that of
AOD (i.e., 2), possibly reflecting the role of multiple scat-
tering and surface inhomogeneity in the domain averages.
Moreover, quite different spatial patterns are still found,
especially over the source regions. Taking ΔSWSFCclr for
example, their differences based on the different emissions
compared to GBBEP-Geo can reach up to a factor of 4–19.

During February 2010, there are two distinct synoptic
regimes in the domain of interest: one, the dry region north of
∼10°N without clouds at all except at its eastern edge; and the
other, the wet region south of ∼10°N with heavy clouds,
especially in the ITCZ domain (not shown). As shown in
figures 4(b1)–(b7), spatial distributions of ΔSWSFC over the
dry region appear to be very similar to those of ΔSWSFCclr

due to the lack of clouds. In the wet region, changes in the
instantaneous fields of clouds induced by smoke particles can
be quite large, although most of them did not satisfy the
paired samples t test at the monthly scale (figure not shown).
This is mainly due to the high sensitivity of cloud fields to
changes in atmospheric circulation, vertical profiles of
meteorological fields, vertical stability, and other factors.
Nevertheless, over the strong smoke emission regions, sig-
nificant proportions of ΔSWCREsfc were consistently found
to be positive (figures 4(c1)–(c7)), further modifying SWSFC.
Positive ΔSWCREsfc increase SWSFC, showing a weakened
smoke radiative effect.

Finally, we examine the smoke radiative effects on
temperature at 2 m (ΔT2, K, figures 5(a1)–(a7)) and air tem-
perature in the lower troposphere 700 hPa (ΔT700, K,
figures 5(b1)–(b7)). Note that only statistically significant
differences (paired samples t test with p< 5%) are shown
here. Generally speaking, due to the smoke particles’ radia-
tive effects, in the smoke emission areas, surface temperature
(T2) decreases while temperature in the lower troposphere
(e.g., 700 hPa) increases. The strong reductions of T2 are
generally caused by the strong decreases in SWSFC, whereas
the increases of T700 result from the BC strong absorptions. In
addition, the large changes of T700 are generally southeast of
those in T2, coinciding with the direction of northeast trade
winds. In brief, the decreases of ΔT2 can be up to 0.26, 0.16,
0.20, 0.33, 0.15, 0.16, and 0.28 K, and ΔT700 also show
maximal increases with values of 0.096, 0.058, 0.078, 0.118,
0.062, 0.076, and 0.105 K, for FLAMBE, FINN, GFED,
FEER-SEVIRI, GFAS, GBBEP-Geo and QFED, respec-
tively. This thermal vertical structure is favorable to a stable
atmosphere, and hence reduces the formation of cloud, par-
tially explaining the generally positive changes of SWCREsfc

in FLAMBE and QFED (figure 4). The relative small smoke
effects on T2 over the ocean are due to the ocean’s large heat
capacity and latent heat release, and the slight warming may
be partly due to the mixing of smoke-absorption-induced
warm air in the lower part of the troposphere with the air near
the surface (Wang and Christopher 2006).

Overall, the mean and standard deviation of ΔT2 and
ΔT700 are −0.03 ± 0.01 and 0.013 ± 0.006K, with a CV of
35% and 51%, respectively. However, we note that the
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Figure 3. Distribution of monthly averaged quantities in February 2010. (a1)–(a7) Column total modeled aerosol optical depth (AOD) at
550 nm; (b1)–(b7) column total modeled aerosol absorption optical depth (AAOD) at 550 nm (blue contours) over the surface albedo
(shaded); (c1)–(c7) modeled net downward SW radiative fluxes at TOA under clear sky ΔSWTOAclr (W m−2). The ΔSWTOAclr shown here
are significant at the 95% confidence by paired samples t test. Here Δ = − _( ) ( ) ( )SWTOA SWTOASWTOA

i iclr clr clr non smoke
, where,

i=FLAMBE/FINN/GFED/ FEER-SEVIRI/GFAS/GBBEP-Geo/QFED.
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Figure 4. The distribution of monthly averaged quantities in February 2010. (a1)–(a7) difference of modeled net downward SW radiative
fluxes at the ground surface under clear sky conditions (ΔSWSFCclr, W m−2); (b1)–(b7) difference of modeled net downward SW radiative
fluxes at the ground surface under all sky (ΔSWSFC, W m−2); (c1)–(c7) difference of modeled cloud radiative effects at the ground surface
(ΔSWCREsfc,W m−2). Here Δ = − _F F F( ) ( ) ( )i i non smoke, where, F denotes SWSFCclr or SWSFC or SWCREsfc; i the same as figure 3. All the
differences shown here are significant at the 95% confidence by t test for paired samples (of Fi and Fnon_smoke).

Figure 5. The distribution of monthly averaged differences in February 2010 for: (a1)–(a7) modeled temperature at 2 m (ΔT2, K); (b1)–(b7)
modeled temperature at 700 hPa (ΔT700, K); (c1–c7) the ratio of ΔT2 from different inventories to their means (Ratio_ΔT2); (d1)–(d7) the ratio
of ΔT700 from different inventories to their means (Ratio_ΔT700). Here Δ = − _F F F( ) ( ) ( )i i non smoke, where, F is T2 or T700; i the same as
figure 3. All the differences shown here are significant at the 95% confidence by paired samples t test, which are also the base for the
calculation of domain means.
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absolute changes in temperature are likely affected by the
model configuration in terms of OC and BC ratio, model
boundary condition, parameterization schemes for cloud and
boundary layers, and relative position between smoke and
cloud layers (Feingold et al 2005, Wilcox 2012). While the
values of these changes appear small in terms of domain
averages, it should be considered that the domain is about
eight times larger than the smoke source region (primarily
contained within the 4°N–10°N belt). At local scales, the
absolute changes of T2 and T700 associated with individual
experiments are much larger than their counterparts in domain
averages. Among all experiments, a factor of 3 and 7 differ-
ences in ΔT2 and ΔT700 are also found, both of which are less
than that of smoke emissions (12). Moreover, as shown in
figures 5(c1)–(c7) and (d1)–(d7), the domain means of
Ratio_ΔT2 (i.e., the ratios of simulated ΔT2 to the means
among different inventories) are 1.4, 0.9, 1.0, 1.6, 0.9, 0.8,
and 1.6 for FLAMBE, FINN, GFED, FEER-SEVIRI, GFAS,
GBBEP-Geo, and QFED, respectively, and those of
Ratio_ΔT700 (i.e., the ratios of simulated ΔT700 to the means
among different inventories) are 1.5, 0.7, 1.0, 1.9, 0.8, 0.2,
and 1.9. The overall mean and standard deviation are
1.17 ± 0.35 with a CV of 30% for Ratio_ΔT2, and 1.14 ± 0.65
with a CV of 56% for Ratio_ΔT700. Those CV are larger than
that of Ratio_PM2.5 (<25%), probably due to the fact that
only statistically significant values are considered, although
they are all significantly smaller than the CV of Ratio_smoke
(81%). All the numerical comparisons presented in this study
are summarized in tables 2 and 3.

4. Results and analyses for November

Although meteorology (including the precipitation belt asso-
ciated with ITCZ) and emission location and amount are
significantly different between February (figure 1 and table 1)
and November (figure S1 and table S1), the results obtained
for February apply similarly to November. Thus, the atmo-
spheric diffusion and deposition in the model significantly
dampen the large difference in smoke emissions, and large

differences persist in simulated smoke-related variables and
radiative effects at the local scale (figure S2-S8, and table S1
and S2). The main features that reflect differences between
February and November include the following:

� Compared to a factor of 16 difference among the seven
emission inventories in the increases of their cumulative
domain-total smoke (OC+BC) emissions with time
(figure S3), only a factor of 3 or less difference exists
in those of their simulated column PM2.5 loadings,
surface PM2.5 concentrations, smoke forcing at TOA and
surface, and smoke effect on temperature at 2 m (figure
S2). Such smaller range of the emission effects on
modeled atmospheric parameters reflects the nonlinearity
in the source-receptor relationship.

� As the season transitions from wet to dry in November,
the smoke emissions and PM2.5 loadings gradually
increase from the start to the end of November 2010
(figures S2 (b) and (c)), which is opposite to the gradual
decrease in February. However, the simulations with
FLAMBE emissions also showed a somewhat unique
feature that is inconsistent with simulations based on the
other emissions. FLAMBE smoke emissions and hence
its PM2.5 loadings are significantly large before Novem-
ber 7th. But then, they sharply decrease afterwards until
November 20th before increasing again at the end of the
month (figures S2 (b) and (c)).

5. Summary and discussions

In this study, by using WRF-Chem3.5 with a fixed model
configuration, the sensitivity of the simulated smoke particle
loading and smoke direct radiative effects are analyzed for
seven commonly used global smoke emission inventories. It
is shown that, for the NSSA region, the inventories of smoke
organic and BC emissions have 65% and 68% CV during
February and November 2010, respectively. However, the CV
of simulated monthly mean total PM2.5 loading and hence the
AOD are no more than 37% for monthly averages over the

Table 3. Comparisons among domain-means of Ratio_Smoke, Ratio_PM2.5, Ratio_ΔT2, and Ratio_ΔT700. All ratios are compared with the
mean values across all emission inventories. The period covered is February 2010.

Ratio_Smoke Ratio_PM2.5 Ratio_ ΔT2a Ratio_ ΔT700a

FLAMBE 0.9 1.2 1.4 1.5
FINN 0.4 0.9 0.9 0.7
GFED 0.5 0.9 1.0 1.0
FEER-SEVIRI 2.6 1.2 1.6 1.9
GFAS 1.1 0.9 0.9 0.8
GBBEP-Geo 0.2 0.7 0.8 0.2
QFED 1.3 1.2 1.6 1.9
Mean δ± 1.00 ± 0.81 1.00 ± 0.20 1.17 ± 0.35 1.14 ± 0.65
Range 13.0 1.7 2.0 9.5
CV 81% 20% 30% 56%

Note:
a All domain-mean smoke effects shown here are only based on those grids with 95%
confidence by paired samples t test.

12

Environ. Res. Lett. 9 (2014) 075002 F Zhang et al



entire domain. The large differences in smoke inventories can
be primarily attributed to the discrepancies in the estimates of
emissions for regions with high fire concentrations. Since
such fires are often local and only persist up to a couple of
days, their impacts on atmospheric modeling become smaller
as they are averaged over larger areas and longer time periods.
Consequently, a factor of up to 12–16 relative difference in
total smoke (OC+BC) emissions contrasts appreciably with
the domain-averaged differences of their atmospheric impact
which represents factors of ∼2, 2–3, ∼1, 4–5, ∼3 and 7–13 for
column PM2.5 loading, surface PM2.5, AOD, TOA forcing,
surface forcing, surface temperature, and temperature at
700 hPa, respectively. However, at monthly and local scales,
especially for areas with concentrated burning, significant
differences in smoke loadings and the radiative feedback
(e.g., a factor of up to 33 in February 2010) can still be found,
reflecting the large differences in the spatial and temporal
patterns of fire emissions among the different inventories.
Hence, to further reduce the uncertainties in regional model-
ing of smoke effect on climate and air quality, it is critical to
resolve the discrepancies in estimating emissions from highly
concentrated burning areas. The case studies reported here
only presented and analyzed the fire emission differences and
their impact on model simulations. Future studies are needed
to combine observations with models and field campaign data
(if possible) to investigate and possibly mitigate the causes of
the large discrepancies among the different emission
inventories.
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