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ABSTRACT

The representative concentration pathway (RCP) simulations included in phase 5 of the Coupled Model

Intercomparison Project (CMIP5) quantify the response of the climate system to different natural and an-

thropogenic forcing scenarios. These simulations differ because of 1) forcing, 2) the representation of the

climate system in atmosphere–ocean general circulationmodels (AOGCMs), and 3) the presence of unforced

(internal) variability. Global and local sea level rise projections derived from these simulations, and the

emergence of distinct responses to the four RCPs depend on the relative magnitude of these sources of

uncertainty at different lead times. Here, the uncertainty in CMIP5 projections of sea level is partitioned at

global and local scales, using a 164-member ensemble of twenty-first-century simulations. Local projections at

New York City (NYSL) are highlighted. The partition between model uncertainty, scenario uncertainty, and

internal variability in global mean sea level (GMSL) is qualitatively consistent with that of surface air tem-

perature, with model uncertainty dominant for most of the twenty-first century. Locally, model uncertainty is

dominant through 2100, with maxima in the North Atlantic and the Arctic Ocean. Themodel spread is driven

largely by 4 of the 16 AOGCMs in the ensemble; these models exhibit outlying behavior in all RCPs and in

both GMSL and NYSL. The magnitude of internal variability varies widely by location and across models,

leading to differences of several decades in the local emergence of RCPs. The AOGCM spread, and its

sensitivity to model exclusion and/or weighting, has important implications for sea level assessments, espe-

cially if a local risk management approach is utilized.

1. Introduction

Coastal flood risk assessments require the character-

ization of the magnitude and sources of uncertainty in

future local sea level (LSL; NPCC2 2013; Hinkel et al.

2014; Kopp et al. 2014). LSL is influenced by atmo-

spheric, oceanic, glaciological, and geological processes

(Stammer et al. 2013; Milne et al. 2009), and the local

* Current affiliation:Atmospheric and Environmental Research,

Inc., Lexington, Massachusetts.

Corresponding author address: Christopher Little, Atmospheric

and Environmental Research, Inc., 131 Hartwell Ave., Lexington,

MA 02421.

E-mail: clittle@aer.com

838 JOURNAL OF CL IMATE VOLUME 28

DOI: 10.1175/JCLI-D-14-00453.1

� 2015 American Meteorological Society



signature and time evolution of these processes is ex-

pected to vary in the future (Church et al. 2011, 2014;

Kopp et al. 2014). However, changes in the ocean’s

thermodynamic properties, mass distribution, and dy-

namics, driven by the coupled ocean–atmosphere sys-

tem, underlie much of the observed variability in LSL

(Stammer et al. 2013). These processes, here collectively

referred to as the ‘‘oceanographic component’’ of sea

level change, are expected to continue to play a large

role in driving twenty-first-century sea level trends, es-

pecially along the northeastern U.S. coastline (Yin and

Goddard 2013; Kopp et al. 2014).

Atmosphere–ocean general circulation models

(AOGCMs) included in Phase 5 of the Coupled Model

Intercomparison Project (CMIP5; Taylor et al. 2012)

project the coupled ocean–atmosphere response to

twenty-first-century anthropogenic and natural forcings

[representative concentration pathways (RCPs); also

referred to here as scenarios]. These simulations con-

stitute an ensemble of opportunity and thus may not

span the full range of possible future climates (Tebaldi

and Knutti 2007; Reichler and Kim 2008; Knutti et al.

2010). However, uncertainty associated with RCPs,

model formulation, and internal variability can be

quantified and compared (Sansom et al. 2013; Yip et al.

2011; Hawkins and Sutton 2009). These studies provide

insight into AOGCM-derived sea level projections at

different lead times and spatial scales, informing as-

sessments and uncertainty reduction efforts.

CMIP5 simulations have been analyzed as an en-

semble to assess the oceanographic component of future

sea level changes (e.g., Kopp et al. 2014; Slangen et al.

2014; Pardaens et al. 2011; Yin 2012; Perrette et al.

2013). Generally, these multimodel ensemble pro-

jections include some measure of uncertainty. For ex-

ample, the recent Intergovernmental Panel on Climate

Change Fifth Assessment Report (AR5; Church et al.

2014) presents a likely (67%) range of projections con-

ditional on RCP, but the assessment does not indicate

the relative contribution of model and scenario un-

certainty at a local level. In other assessments, a reduced

subset of the available models, realizations, and forc-

ing scenarios has been used (NPCC2 2013; National

Research Council 2012). The influence of these largely

subjective and/or practical choices is unclear. Fur-

thermore, there has been limited attention on the role

of internal variability on LSL at different projection

lead times. Using a 40-member ensemble of Commu-

nity Climate System Model (CCSM) simulations, Hu

and Deser (2013) highlight the importance of internal

variability. However, their analysis uses only one

model and a single forcing scenario, and it does not

extend beyond 2060.

Here, we use the analysis of variance (ANOVA) de-

composition of Yip et al. (2011) to partition sources of

uncertainty in the decadally averaged oceanographic

component of sea level change arising from different

RCPs, AOGCMs, and internal variability across the

CMIP5 ensemble. We present these sources of uncer-

tainty at two lead times. The first, 2040, corresponds to

a roughly 25-yr adaptation planning horizon; the second,

2090, is relevant to long-term (;75 years) planning ef-

forts and is comparable to projections examined in other

analyses. We examine ensemble and model-by-model

projections in the global mean and in New York City

(NYC). Using a newmetric, we showwhenRCP-driven

sea level trends emerge (i.e., when projections become

scenario dependent) and how this ‘‘crossover time’’

varies by location and AOGCM. We highlight the

implications of model spread and outliers on future

assessments.

2. Methods

We analyze changes in decadal mean sea level in

CMIP5 ‘‘historical’’ and ‘‘RCP’’ simulations archived at

the Program for Climate Model Diagnosis and Inter-

comparison (PCMDI; http://cmip-pcmdi.llnl.gov/cmip5/),

using the subset (16) of AOGCMs that include simula-

tions for the complete range of RCP scenarios (RCP2.6,

RCP4.5, RCP6.0, and RCP8.5). Many of these models

utilize multiple realizations run from different initial

conditions. The list of models and number of realizations

in the ensemble are shown in Table 1.

CMIP5 output fields are split into a global mean sea

level (h) and a local anomaly (h). We perform the same

corrections to these fields as Yin (2012), including re-

moving the linear drift from global mean sea level

change in the preindustrial control runs (Gupta et al.

2013). The decadal mean, local sea level rise (SLR,

where positive is an increase from the 1986–2005 base-

line) for a CMIP5 simulation is given by

SLRm,r,s(t, x, y)5Dhm,r,s(t)1Dhm,r,s(t, x, y) , (1)

where D is the change at time t from the 1986 to 2005

mean and s, m, and r indicate the RCP scenario, ocean

model, and realization, respectively.

CMIP5 ocean models use a variety of curvilinear

grids, which we interpolate to a common 0.58 3 0.58 grid.
Grid points are included in the multimodel analysis only

if they include data from all models. The SLR at NYC is

taken from the grid point nearest the Battery tide gauge

(40.258N, 74.258W).

To partition sources of uncertainty, we adopt the

ANOVA decomposition of Yip et al. (2011). For each
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set of realizations, the model scenario mean is given by

SLR(m, �, s, t); the multimodel mean for each scenario is

given by SLR(�, �, s, t); and the overall mean across all

scenarios and models is given by SLR(�, �, �, t), where the
dot indicates an unweighted arithmetic mean. The total

sample variance (T) is the sum of four components: that

driven by the forcing (RCP) scenario (S), different

AOGCMs (M), internal variability (V), and a model–

scenario interaction term (I) that accounts for different

responses to individual RCPs (see Yip et al. 2011, their

Figs. 2 and 6), shown as

T(x, y, t)5 S(x, y, t)1M(x, y, t)1V(x, y, t)1 I(x, y, t) .

(2)

All terms of Eq. (2) are calculated as in Yip et al. (2011),

except forV; we do not include AOGCMs with only one

realization in the calculation of this term.

The crossover time tc is defined to occur when the var-

iance driven by scenario and internal variability are equal:

S(x, y, tc)5V(x, y, tc) . (3)

TABLE 1. List of model simulations included in the ensemble.

Modeling center Model name Model expansion

RCP

Total2.6 4.5 6.0 8.5

Beijing Climate Center (BCC),

China Meteorological Administration

BCC_CSM1.1 BCC, Climate System

Model, version 1.1

1 1 1 1 4

BCC, China Meteorological Administration BCC_CSM1.1M BCC_CSM1.1

(moderate resolution)

1 1 1 1 4

National Center for Atmospheric Research CCSM4 Community Climate

System Model, version 4

4 4 4 4 16

Commonwealth Scientific and Industrial

Research Organisation (CSIRO) in

collaboration with Queensland Climate

Change Centre of Excellence

CSIRO Mk3.6.0 CSIRO Mark 3.6.0 10 10 10 10 40

National Oceanic and Atmospheric

Administration (NOAA) Geophysical

Fluid Dynamics Laboratory (GFDL)

GFDL CM3 GFDL Climate Model, version 3 1 1 1 1 4

NOAA GFDL GFDL-ESM2M GFDL Earth System Model

with MOM, version 4

component

1 1 1 1 4

NOAA GFDL GFDL-ESM2G GFDL Earth System Model

with GOLD component

1 3 1 1 6

National Aeronautics and Space

Administration (NASA) Goddard

Institute for Space Studies (GISS)

GISS-E2-R GISS Model E2, coupled

with the Russell ocean model

3 16 3 3 25

Met Office Hadley Centre HadGEM2-ES Hadley Centre Global

Environment Model, version

2–Earth System

4 4 4 4 16

L’Institut Pierre-Simon Laplace (IPSL) IPSL-CM5A-LR IPSL Coupled Model, version 5A,

low resolution

4 4 1 4 13

Atmosphere and Ocean Research Institute

(AORI; University of Tokyo), and National

Institute for Environmental Studies (NIES),

and Japan Agency for Marine-Earth Science

and Technology (JAMSTEC)

MIROC5 Model for Interdisciplinary

Research on Climate, version 5

3 3 3 3 12

JAMSTEC, AORI (University of Tokyo),

and NIES

MIROC-ESM MIROC, Earth System Model 1 1 1 1 4

JAMSTEC, AORI (University of Tokyo),

and NIES

MIROC-ESM-CHEM MIROC-ESM, Chemistry Coupled 1 1 1 1 4

Meteorological Research Institute (MRI) MRI-CGCM3 MRI Coupled Atmosphere–Ocean

General Circulation Model,

version 3

1 1 1 1 4

Norwegian Climate Centre NorESM1-M Norwegian Earth System Model,

version 1 (intermediate

resolution)

1 1 1 1 4

Norwegian Climate Centre NorESM1-ME NorESM1-M with carbon cycling

(and biogeochemistry)

1 1 1 1 4

Total 38 53 35 38 164
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The crossover time is similar to the ‘‘time of emergence’’

described in Hawkins and Sutton (2012); both metrics

quantify when a climate signal is distinguishable from

‘‘noise’’ driven by internal variability. Here, we employ

this metric for both the multimodel ensemble and in-

dividual models.

3. Results

a. Ensemble mean and total uncertainty

Although the principal focus of this analysis is un-

certainty, we produce amultimodel, multiscenariomean

projection of the oceanographic component of SLR

(contours in Fig. 1). The oceanographic component of

global mean sea level (GMSL) exhibits a lagged response

to anthropogenic forcing; in this analysis and other

studies (e.g., Yin 2012), most sea level rise occurs in the

second half of the century, even in RCP simulations in

which concentrations stabilize or decrease over this pe-

riod. Averaged across RCPs, GMSL increases by 8 cm

over the first 40 years of the twenty-first century and by

13 cm over the subsequent 50 years. The 2090 GMSL rise

of 21 6 6 cm from this ensemble compares to 20 6 5 cm

from an arithmetic mean of the four RCPs in AR5.

As indicated in Church et al. (2014), the spatial pat-

tern of sea level change is relatively insensitive to RCP.

Thus, the multiscenario mean shown in Fig. 1 reflects

several robust regional anomalies described by other

studies, notably maxima of SLR in the Atlantic and

Arctic, particularly later in time (Yin 2012; Bouttes and

Gregory 2014; Slangen et al. 2014; Perrette et al. 2013).

Although the magnitude of SLR is robust by a simple

criterion ([SLR(�, � , � , t)/T 0:5]. 1, where T 0.5 is the

sample standard deviation) in both time periods in all

locations except for the Southern Ocean (where sea

level changes are small), its variance can be high at

a regional level. Large (absolute) uncertainty is usually

associated with regions that exhibit higher SLR, with an

exception in the South Pacific, when models indicate

a more robust signal.

Figure 2 highlights the oft-discussed twenty-first-

century sea level rise ‘‘hotspot’’ in the North Atlantic

(Yin et al. 2009; Yin and Goddard 2013; Kopp et al.

2014), indicating coherent maxima in both signal and un-

certainty. Although NYC is on the southwestern mar-

gins of the hotspot, the sea level change averaged over

the North Atlantic subpolar gyre and northeastern U.S.

coast are highly correlated (Yin et al. 2009), and we use

FIG. 1. The (left) 2040 and (right) 2090multimodel, multiscenario, multirealization decadal mean SLR [SLR(�, �, �, t),
contours, in cm] and ensemble standard deviation (T 0.5, shading, in cm). Cross-hatching indicates regions in which

the ensemblemean divided by the ensemble standard deviation is less than one (m/T0:5 , 1). Box indicates the region

shown in more detail in Fig. 2.

FIG. 2. As in Fig. 1b, but for the North Atlantic (boxed region in

Fig. 1b). The asterisk marks the grid point analyzed as NYC in

subsequent figures.
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the sea level at NYC (NYSL) in the remainder of the

paper because 1) it is a marker for the hotspot at

a coastal location and 2) New York City has significant

exposure of coastal assets (Hallegatte et al. 2013;

NPCC2 2013).

b. Partitioning uncertainty

We decompose the sources of uncertainty in these

ensemble projections in Fig. 3, which illustrates their

temporal evolution, and Fig. 4, which shows global snap-

shots of the main effects (S, M, and V) in 2040 and 2090.

The evolution of uncertainty in GMSL (Figs. 3a,c) is

qualitatively consistent with projections of global mean

surface air temperature (Yip et al. 2011; Hawkins and

Sutton 2009). Model uncertainty is the largest source of

uncertainty through most of the twenty-first century,

increasing monotonically through the period. However,

the rate of increase in scenario uncertainty is higher

throughout the twenty-first century, and this quantity

increases to 65% of the variance by 2090. Uncertainty

driven by internal variability is comparable to that of

scenario uncertainty before 2035 (the crossover time)

but decreases to a negligible component of the total

uncertainty by the late twenty-first century.

As expected, uncertainty is higher for all sources at

a local level (Figs. 3b,d; Hawkins and Sutton 2009).

Although the absolute uncertainty arising from internal

variability is relatively constant throughout the century

in NYSL, its fractional contribution is initially much

higher than in GMSL (up to;50%, compared to,30%

globally) and takes longer to decay. Both model and

scenario uncertainty are higher in NYSL than in GMSL,

but model uncertainty is dominant throughout the

twenty-first century, remaining greater than 65% through

2090. Model–scenario interaction grows over time, in-

dicating that models have a different response to in-

dividual RCPs, but this term remains small compared to

the main effects.

At almost all locations, sea level change remains

scenario independent in 2040 (Fig. 4a). By 2090, the

response to RCPs is apparent and is particularly strong

in the Northern Hemisphere subpolar gyres, the Arctic,

and in a band north of the Antarctic Circumpolar Cur-

rent (ACC; Fig. 4b); these are locations where heat is

FIG. 3. The uncertainty in decadal mean (a) GMSL and (b) NYSL contributed by each component of the total

variance [black, scenario, S(t); blue, model,M(t); red, internal,V(t); green, model scenario, I(t)]. (c),(d) The fraction

of the variance in SLR at each location driven by each component. Dashed vertical line indicates the crossover time.
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entering the ocean (Kuhlbrodt and Gregory 2012;

Bouttes and Gregory 2014). There is virtually no sce-

nario uncertainty south of the ACC, indicating that

changes in the Southern Ocean are largely due to

a scenario-independent dynamic response, oftenattributed

to strengthening westerlies (Bouttes and Gregory 2014).

In both time periods and in almost all global locations,

model uncertainty (Figs. 4c,d) is larger than scenario

FIG. 4. The (left) 2040 and (right) 2090 variance in SLR (cm2, on a log scale) for each of the main effects: (a),(b)

scenario uncertainty S(t); (c),(d) model uncertaintyM(t); and (e),(f) internal variability V(t). (g),(h) The fraction of

the variance in SLR (cm2) contributed by model uncertainty [M(t)/T(t)].
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uncertainty, with maxima in theNorthAtlantic subpolar

gyre and the Arctic and minima in the Southern Hemi-

sphere midlatitudes, especially in the Pacific (Fig. 4c).

The global dominance of model uncertainty late in the

twenty-first century is highlighted in Figs. 4g and 4h.

Although it is highest as a fraction of the total variance

in the Southern Ocean, model uncertainty is also high in

the North Atlantic hotspot, where up to 75% of the

variance is due to model spread.

In contrast to the other components, internal vari-

ability (Figs. 4e,f) does not grow in time, which means

that internal variability, as described by this multi-

model metric, does not change under a warming cli-

mate. Spatially, variability is maximized in the western

Pacific, Arctic, and the North Atlantic subpolar gyre,

locations in which various modes of decadal and mul-

tidecadal variability (including the Pacific decadal and

North Atlantic oscillations) are particularly strong (Liu

2012).

c. Model comparison

We examine individual AOGCM projections in this

section: first, by comparing model–scenario mean pro-

jections [SLR(m, �, s, t)] for each of the 16 models, and

second, by comparing four realizations of three models

for all RCPs.

1) MODEL–SCENARIO MEAN PROJECTIONS

Projections of individual models averaged across re-

alizations (Fig. 5) underscore the lack of differentiation

between scenarios in the first half of the twenty-first

century. By the late twenty-first century, GMSL rise is

monotonic with end-of-century forcing. However, there

is virtually no difference between RCP4.5 and RCP6.0,

as the different evolution of forcing in these two scenarios

is integrated by the sea level response. Most of the intra-

model spread is driven by RCP8.5. The interscenario dif-

ference in GMSL is consistent across models, indicating

FIG. 5. The (left) 2040 and (right) 2090model–scenario mean SLR, for (a),(b) the global mean and (c),(d) the local

anomaly at NYC. Each symbol represents an RCP scenario (RCP2.6, triangles; RCP4.5, circles; RCP6.0, squares;

RCP8.5, asterisks). Models are listed in ascending order of 2090 global mean sea level change for RCP8.5.
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that the sensitivity of GMSL to incremental forcing be-

yond that specified in RCP2.6 is very similar over the

twenty-first century (revealing why model–scenario un-

certainty is relatively small in Fig. 3).

Figures 5c and 5d compare the sea level anomaly at

NYC to more clearly distinguish each AOGCM’s local

response. By 2040 at NYC,models exhibit nonmonotonic

changes with RCPs that are amplified later in the century.

As noted by earlier studies (Yin et al. 2009; Yin 2012;

Horton et al. 2010), there is a common, scenario-

dependent increase in the NYC anomaly by the end of

the century; however, it remains relatively small (,12 cm

across all RCP scenarios) in seven models. GFDL CM3

and the two MIROC-ESMs project the highest GMSL

and NYSL anomaly in this ensemble. MRI-CGCM3 is

a low outlier in both GMSL and the local NYC anomaly,

with a total NYSL rise of less than 20 cm by 2090 for all

scenarios. These four models also bound the GMSL

projections in the ensemble used by Yin (2012). In these

four models, there is a correlation between SLR anom-

alies at NYC and the global mean for each model that

strengthens with stronger forcing (Fig. 6). CSIRO

Mk3.6.0 and MIROC5 also project high SLR anomalies

at NYC, with more moderate rates of GMSL rise.

2) INDIVIDUAL REALIZATIONS

To compare internal variability across AOGCMs, we

present time series of SLR from three models—CCSM4

(left), CSIRO Mk3.6.0 (center), and HadGEM2-ES

(right)—in Fig. 7. Although not a comprehensive set,

these are the only models that include four or more re-

alizations for each of the four RCPs, and they are

indicative of the range of scenario dependence and

internal variability in this ensemble. Additionally, this

analysis of four CCSM4 realizations may be compared

to the larger ensemble of Hu and Deser (2013).

In the global mean (Figs.7a–c), realizations vary by

less than 1 cm, and scenarios are clearly seen to differ-

entiate (emerge) in the 2040s. Because decadal-time-

scale internal variability in GMSL is small, the time of

emergence is driven by themagnitude and response time

of the forced change.

The NYC results (Figs. 7d–f) indicate that differences

between scenarios at a local level can be obscured by

internal variability well into the second half of the cen-

tury, particularly for RCP2.6, RCP4.5, and RCP6.0. By

quantifying the magnitude of the uncertainty due to

scenario and internal variability for each of thesemodels

(Figs. 7g–i), it is evident that 1) scenario and internal

variability in any individual model are not stable over

time and 2) there are large intermodel differences in the

magnitude of internal variability, even if the same

number of realizations (four) are included for each

AOGCM. These differences result in crossover times at

NYC of 2030, 2045, and 2055 for the three models. The

earlier emergence of scenario dependence in CCSM4 is

driven by smaller internal variability (the CSIRO

Mk3.6.0 and HadGEM2-ES mean twenty-first-century

variability of ;30 cm2 is almost an order of magnitude

larger than the CCSM4), while the late emergence of

HadGEM2-ES is also influenced by a weaker sea level

response.

We examine the magnitude of scenario uncertainty

and internal variability around the crossover time (2050)

in Fig. 8. In general, the spatial patterns of scenario

dependence and internal variability are similar across

the three AOGCMs, but the magnitude varies, partic-

ularly with respect to internal variability. The ranking of

the models’ internal variability appears to be similar in

all global locations, with HadGEM2-ES showing the

greatest variability.

The crossover time metric allows local differences in

scenario dependence to be quantified for both the en-

semble (Fig. 9a) and individual models (Figs. 9b–d). The

local crossover time derived from the model ensemble

can vary from the 2040s to beyond the twenty-first

century, with later emergence driven by low scenario

uncertainty and/or high internal variability (Fig. 8). In

general, crossover occurs earlier in the tropics; however,

scenarios emerge far earlier in the Atlantic and Indian

Oceans than in the Pacific (up to 25 years earlier at the

same latitude). This is driven by the generally weak

decadal-time-scale tropical internal variability and the

more robust scenario-dependent sea level changes in the

Pacific. Although there is a strong scenario-dependent

FIG. 6. Comparison of the 2090 ensemblemean change in GMSL

and NYC anomaly for each AOGCM, for RCP2.6 (gray) and

RCP8.5 (black). Numbers correspond tomodels listed in ascending

order of 2090 GMSL change for RCP8.5.

15 JANUARY 2015 L I T TLE ET AL . 845



signal in the North Atlantic, it is collocated with a region

of highmodel spread. The only locations where different

emission trajectories are apparent before 2050 are the

tropical Atlantic and Indian Oceans.

The spatial pattern of emergence is somewhat con-

sistent between the ensemble and the individual models,

but the individual models show 1) a much earlier

emergence and 2) a few notable differences in spatial

patterns. CCSM4, with its relatively low internal vari-

ability, drives an earlier, and fairly uniform, emergence;

the other two models have regions of high internal

variability (Fig. 8) in the northern subtropical and sub-

polar gyres that obscure the response to different RCPs.

4. Discussion

Our results indicate that uncertainty in the oceano-

graphic component of sea level change is dominated by

AOGCM spread over much of the globe through 2100

and that the magnitude of internal variability varies

widely across AOGCMs. This discussion focuses on the

implications of these findings on projections of sea level

and the emergence of a scenario-dependent sea level

trend. We do not attempt to evaluate individual models;

rather, we suggest possible origins of model divergence,

highlight outliers, and underscore their importance to

local risk assessments.

FIG. 7. Time series of (a)–(c) GMSL and (d)–(f) NYSL rise (in cm) from four realizations of the (left) CCSM4, (middle) CSIRO

Mk3.6.0, and (right) HadGEM2-ES models. Colors indicate RCP (blue, 8.5; green, 6.0; red, 4.5; black, 2.6). (g)–(i) The NYSL variance

(in cm2) contributed by internal variability (red) and scenario uncertainty (black). Dashed vertical line indicates the crossover time.
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a. Origins of model spread

Several properties of ocean models have been in-

voked to explain the spread in CMIP5 GMSL pro-

jections. Kuhlbrodt and Gregory (2012) emphasize the

importance of the vertical temperature structure and

its role in governing twenty-first-century stratification.

In the North Atlantic and the Southern Ocean, where

eddies and convection are responsible for much of

the vertical heat transport, parameterizations of these

small-scale processes across CMIP5models may lead to

differing magnitudes of twenty-first-century heat up-

take (Church et al. 2014). Using two GFDL-ESMs,

Hallberg et al. (2013) show that temperature biases (via

their influence on thermal expansion coefficients) and

differences in vertical mixing drive roughly equivalent

differences in twenty-first-century GMSL rise. These

factors—temperature biases, upper-ocean stratifica-

tion, and vertical mixing—are difficult to separate, but

their combined effect is likely to be involved in the

varying representation of thermosteric sea change

across AOGCMs.

Differences in atmospheric models are also relevant

to GMSL. For example, the ocean component of GFDL

CM3 is very similar to GFDL-ESM2M, which has a 2090

GMSL rise of 29 cm. The substantially higher GMSL in

CM3 (40 cm) indicates that greater near-surface warm-

ing of the global ocean—driven by a stronger atmo-

spheric feedbacks—is as, if not more, important than the

different ocean model formulations represented in this

ensemble.

NYSL is strongly influenced by the dynamics of the

Atlantic meridional overturning circulation (AMOC).

More specifically, a weakened AMOC has been shown

to drive increases in NYSL in observations and models

(Yin et al. 2009; Yin and Goddard 2013). The spread in

the local anomaly at NYC in these CMIP5 models is

likely to be driven primarily by the widely varying rep-

resentation of this circulation. The two AOGCMs that

bound the range of sea level changes in this analysis,

FIG. 8. The variance in SLR due to (left) scenario uncertainty and (right) internal variability in 2050 for four realizations

of the (a),(b) CCSM4; (c),(d) CSIROMk.3.6.0; and (e),(f) HadGEM2-ES models. Note log scale (in cm2).
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GFDL CM3 and MRI-CGCM3, also bound the twenty-

first-century AMOC response in the set of models in-

vestigated by Cheng et al. (2013). By 2100 in the RCP8.5

simulation, AMOC declines by ;60% from its mean

historical strength inGFDLCM3 and;15% in theMRI

model. Other AOGCMs cluster around declines of

30%–40% (Cheng et al. 2013; Weaver et al. 2012). At

the local scale, the different resolution and bathymetry

of each AOGCM are likely to contribute to model

spread (Holt et al. 2009), although it is difficult to isolate

any systematic effects.

In Fig. 6, outliers, particularly GFDL CM3 and the

MIROC-ESM’s, exhibit high GMSL rise and a high

NYC anomaly. Although the mechanisms underlying

this correlation require further study, we hypothesize

that it is robust but indirect: models with stronger at-

mospheric feedbacks drive a simultaneous decline in the

AMOC and enhanced warming of the upper ocean.

Regardless of its origin, this correlation should be

included in sea level assessments; considering GMSL

and the local anomaly (e.g., the zostoga and zos fields

in CMIP5 output) independently will artificially de-

crease uncertainty in late-century projections. In

NYC and the northeastern U.S. coastline, this corre-

lation widens the spread of projections considerably

(Kopp et al. 2014).

In the Arctic, different AOGCM representations

of ice–ocean processes result in a wide range of

twenty-first-century declines in sea ice (Liu et al. 2013).

Sea ice decline will influence ocean heat uptake, salinity,

and/or circulation, although the precise mechanisms

connecting sea ice and local sea level changes are complex

and deserve further study.

b. The influence of model spread on sea level
projections

In many coastal locations (including New York City),

uncertainty in the oceanographic component of LSL

comprises a large fraction of the total LSL uncertainty

(Kopp et al. 2014; Perrette et al. 2013; Slangen et al.

2014). Thus, the treatment of the CMIP5 model spread,

and, in particular, high and low outliers, meaningfully

impacts LSL projections, especially if high-end (low

probability) outcomes are targeted.

The effect of excluding outliers is shown in Fig. 10, in

which the dark-shaded region indicates the range of the

central 10 AOGCM projections (approximately the

middle 66% of the ensemble). The exclusion of six

models reduces the 2090 GMSL rise spread by;75% to

25–30 cm. At NYC, the spread is reduced by ;50% to

33–56 cm. The range of projections may also be widened

by its treatment in an assessment: if, as in the AR5, we

make a (conservative) assumption that the 5th–95th

range of model output constitutes the likely (67%) range,

the implied range of projections in this ensemble would

be much larger.

FIG. 9. The local crossover time; the year at which scenario uncertainty [S(t)] first reaches a value larger than the variance due to internal

variability [V(t)] for (a) the multimodel ensemble and (b)–(d) the three individual models shown in Figs. 7 and 8.
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Figure 10 is intended to be heuristic; however, it in-

dicates that exclusion orweighting schemes based on top–

down observational metrics—for example, temperature

biases, heat uptake, and/or AMOC behavior—will have

a substantial impact on projections. Although evaluat-

ing AOGCMs is difficult (Tebaldi and Knutti 2007;

Santer et al. 2009; Sansom et al. 2013), these sea level

metrics integrate over many processes and thus may be

reliable indicators of model performance (Reichler and

Kim 2008; Tebaldi and Knutti 2007). Furthermore, be-

cause of the long response times of the deep ocean

(Church et al. 2014; Gregory et al. 2013), much of the

twenty-first-century sea level response is driven by

twentieth and early twenty-first-century forcing. The

memory ofGMSL, and its sensitivity to initial conditions

(Hallberg et al. 2013), implies that models that better

reflect sea level trends and hydrography in the observed

period will give better projections over the twenty-first

century. We also note the potential for implicit weight-

ing if all models are considered equal. Here, our en-

semble was selected using one criterion: the availability

of all four RCPs. This ensemble included several models

that originate from the same modeling center. Although

some of these AOGCMs exhibit diversity in their re-

sponse (i.e., GFDL and BCC), the two NorESMs and

MIROC-ESMs provide very similar sea level pro-

jections, suggesting that it is unreasonable to consider

these models independent.

We thus encourage efforts to evaluate and/or weight

sea level projections by their performance against ob-

servations. However, we highlight three cautionary

notes. First, there is a limited number of AOGCMs

(some of which share ocean model components);

downweighting will effectively shrink the sample size

included in assessments. Second, the central range may

be systematically biased, either because of limitations in

historical forcing (Gupta et al. 2013; Gregory et al. 2013)

or AOGCM representation of ocean heat uptake

processes (Church et al. 2014). Third, significant ef-

forts to reduce uncertainty in the oceanographic

component of LSL should take place alongside other

components of the LSL budget (e.g., freshwater ad-

ditions from ice sheet and glacier mass changes and

vertical land motion). In the future, the uncertainty

analysis techniques employed here may be adapted to

include these additional sources of sea level change,

facilitating a clear prioritization of uncertainty re-

duction efforts.

c. The importance of internal variability

Although the attribution of an anthropogenic signal in

global mean sea level is clear (Marcos andAmores 2014;

Church et al. 2014), our results suggest that the influence

of different radiative forcing trajectories on sea level is

obscured (especially at the local level) in the twenty-first

century by 1) long oceanic response times, 2) highmodel

uncertainty in regions of large sea level change, and 3)

varying model representations of internal variability.

Furthermore, our results emphasize that the time of

emergence will vary greatly depending on a model’s

climate forcing, response to climate forcing, and repre-

sentation of internal variability.

To characterize internal variability, we have used

a subset of models with a limited number of realizations,

FIG. 10. Time series ofmodel–scenariomean (a)GMSLand (b) NYSL rise forRCP 8.5 (in cm). Each line is a single

AOGCM; light shading indicates the ensemble range; darker shading encompasses the central 10 models at each

time.
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averaged over subdecadal time periods, and may not

have captured lower frequency modes (Chambers et al.

2012). The magnitude of internal variability may in-

crease with more realizations (Deser et al. 2012) or in-

creased model complexity (Olson et al. 2013); we also

cannot judge whether the CMIP5 AOGCMs with mul-

tiple realizations comprise a representative subset.

Furthermore, with many models contributing only one

realization, there is the potential for mischaracterizing

internal variability as model uncertainty.

The importance of characterizing internal variability

for early-to-midcentury sea level projections and de-

tection suggests work should continue along two fronts:

1) developing alternate techniques to capture the rep-

resentation of internal variability in models (Hawkins

and Sutton 2009; Imbers et al. 2014; Haigh et al. 2014),

perhaps using long-term control runs and/or synthetic

techniques, and 2) model–data comparison aimed at

determining whether model-based methods capture

observed modes of sea level variability, particularly

those relevant to long-term climate changes.

5. Conclusions

We have investigated the magnitude and sources of

uncertainty in twenty-first-century CMIP5 projections

of the oceanographic component in sea level at a global

and local scale, using New York City as a case study. In

the global mean, uncertainty in SLR due to different

RCPs (here referred to as scenario dependence) is

smaller than that resulting from different AOGCMs

(model, or structural, uncertainty) throughout most of

the twenty-first century and smaller than model-derived

estimates of internal variability through approximately

2035. Scenario dependence is driven largely by RCP8.5;

sea level exhibits a limited dependence on other RCPs

over the twenty-first century.

Locally, the fractional contribution of each source of

uncertainty to the total is highly spatially variable. All

sources are largest in the North Atlantic and the Arctic

Ocean, likely because of the widely varying AOGCM

representations of the Atlantic meridional overturning

circulation and sea ice processes.

The wide spread of model projections of sea level

trends and variability, particularly in the North Atlantic,

implies that 1) the choice (or weighting) of models is

important for ensemble projections of oceanic quanti-

ties such as sea level and 2) the emergence of scenario

dependence will vary depending on location and on the

model used (later in a model with a higher degree of in-

ternal variability and/or weaker scenario dependence).

Four models exhibit a significant deviation from the

multimodel mean in both global mean SLR and SLR at

New York City. The inclusion of these outliers dramati-

cally changes projections; if the central 10 models are

used (;67% range), the 2090 global mean sea level

spread decreases by 75%. We suggest that the dynamics

and/or realism of these outlyingmodels should be further

investigated using top–down observational constraints

(e.g., sea level change, ocean heat uptake, and tempera-

ture) and ‘‘twin’’ models to quantify formulation-related

uncertainty. These efforts have the potential to drive

meaningful uncertainty reductions.

Fairly uniformly over the globe, internal variability is

as large as that due to RCPs until 2050; in some loca-

tions, this ‘‘crossover’’ does not occur in the twenty-first

century. Local sea level assessments should thus con-

sider the role of regional internal variability and should

not expect a differentiation of SLR trajectories for dif-

ferent emissions scenarios through at least midcentury.

In the northeastern United States, this differentiation

could be obscured through most of the twenty-first

century, even if the spread between ocean climate

models is substantially reduced.
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