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Abstract— This paper develops techniques for constructing
empirical predictor models based on observations. By contrast
to standard models, which yield a single predicted output at
each value of the model’s inputs, Interval Predictors Models
(IPM) yield an interval into which the unobserved output is
predicted to fall. The IPMs proposed prescribe the output as an
interval valued function of the model’s inputs, render a formal
description of both the uncertainty in the model’s parameters
and of the spread in the predicted output. Uncertainty is
prescribed as a hyper-rectangular set in the space of model’s
parameters. The propagation of this set through the empirical
model yields a range of outputs of minimal spread containing
all (or, depending on the formulation, most) of the observa-
tions. Optimization-based strategies for calculating IPMs and
eliminating the effects of outliers are proposed. Outliers are
identified by evaluating the extent by which they degrade the
tightness of the prediction. This evaluation can be carried
out while the IPM is calculated. When the data satisfies mild
stochastic assumptions, and the optimization program used for
calculating the IPM is convex (or, when its solution coincides
with the solution to an auxiliary convex program), the model’s
reliability (that is, the probability that a future observation
would be within the predicted range of outputs) can be bounded
rigorously by a non-asymptotic formula.

I. INTRODUCTION

Model identification refers to the process of estimating the
value and the uncertainty of the parameters of a mathematical
model based on observed data. Several approaches to model
identification are available [1], [2]. The most common tech-
nique is Bayesian inference. In this approach the objective
is to calculate a probability density function (PDF) for the
model’s parameters using Bayes’ rule [2]. The resulting
probabilistic model, called the posterior PDF, depends on
a prior PDF for p, and the likelihood function; which in
turn depends on the set of observations available. In spite of
its high computational demands, its inability to enforce key
mathematical attributes to the posterior (e.g., independence),
and of the potentially high sensitivity of the posterior to the
assumed prior, this method is regarded as the benchmark.

This paper develops techniques for constructing IPMs hav-
ing various characteristics. As in the Bayesian inference ap-
proach, the formulations proposed provide a crisp description
of the uncertainty in the value of the model’s parameters. In
contrast to the Bayesian approach however, this prescription
does not require any prior description of the uncertainty,
the resulting uncertainty model is not probabilistic, and the
spread in the predicted output and the model’s reliability are
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both fully characterized. These properties, which are possible
thanks to the assumed structure of the mathematical model,
require for the output to depend linearly on the parameters
and polynomially on the state, i.e., y = p>ϕ(x), where
y ∈ Rny is the output, x ∈ Rnx is the model’s state or
input, p ∈ Rnp is the model’s parameter, and ϕ(x) ∈ Rnp

is a vector of monomials. Optimization-based strategies for
calculating IPMs and eliminating the effects of outliers are
proposed herein. This paper focuses on hyper-rectangular
uncertainty sets, which have the advantage that the range
of an individual parameter is not affected by the value taken
by the others (in contrast to the ellipsoids studied in [3]).
If the data-generating mechanism satisfies mild stochastic
assumptions and the optimization program used to generate
the model is convex, the model’s reliability can be evaluated
rigorously [3]. This paper extend this idea to non-convex
formulations via the principle of equivalence, and proposes
a strategy for the removal of the outliers that degrade the
tightness of the prediction the most.

II. PROBLEM STATEMENT

A system is postulated to act on a vector of state variables
to produce an outcome. The outcome depends on the values
of the state variables and on some other influences, such as
intrinsic variability and random noise, acting on the system
to affect the value of the outcome. Let X ⊆ Rnx be a set
of state variables, and Y ⊆ Rny be a set of outcomes which
might result from the system acting on elements of X .

In the following, the focus will be on the single-outcome
(ny = 1) multi-state/input (nx ≥ 1) case. It is desired to
build a mathematical model of the data-generating mecha-
nism which will predict the outcome corresponding to an
unobserved value of the state. The inability to exactly model
the data-generating mechanism, which might be subject to
intrinsic variability, makes it unreasonable to build a model
which will predict a single outcome value. Instead, an
IPM will predict an interval into which unobserved data
is expected to fall. Engineering judgment is used to pick a
collection of monomials in the state variables, ϕ(x), to use
as basis functions for the mathematical model. There will
be a model parameter for each of these monomials. Data
points zi = (xi, yi) for i = 1, . . . , N are obtained from
observations of the system. Instead of the standard practice
of fitting all of the data as closely as possible with a single
vector p of parameters, the thrust in this work is to restrict
as much as possible a set in Rnp from which p is chosen
while, at the same time, having the property that all data



points (except, possibly, for a few outliers) can be fit exactly
by at least one element in such a set.

The restriction considered herein forces p to belong to
the hyper-rectangle P . For a fixed value of the state x, the
propagation of P through y = p>ϕ(x) yields an interval.
The thrust here is to choose P to make the corresponding
y intervals as small as possible and still allow each chosen
(i.e., non-outlier) data point (xi, yi) to be modeled as yi =
p>ϕ(xi) for some p ∈ P .

In this setting the two problems of interest can be stated
as follows. Suppose N observations z = {zi, i = 1, . . . , N},
are available. First, we want to find an empirical model
(or rule) that, when evaluated at a new value xN+1 of
the state vector, returns an informative prediction of the
unobserved output yN+1. These empirical models, which
are based on the observations comprising z, must meet a
set of design requirements prescribed by the analyst (e.g.,
the predicted range of outputs must contain a percentage
of the observations). Second, under additional stochastic
assumptions on the sampling process from which the data
is obtained, we want to quantify rigorously the probability
that yN+1 will be compliant with such requirements (e.g.,
the probability that a new data point will fall outside the
predicted range).

III. INTERVAL PREDICTION MODELS

An IPM is simply a rule that assigns to each instance
vector x ∈ X a corresponding outcome interval in Y . That
is, an IPM is a set-valued map

I : x→ I(x) ⊆ Y, (1)

where x is a state vector on which the system’s output
depends, and I(x) is the prediction interval. Let M be any
functional acting on a vector x of state variables and a vector
p of parameters to produce an output y, i.e., y = M(x, p).
A parametric IPM is obtained by associating to each x ∈ X
the set of all possible outputs y that result from varying p
over P :

Iy(x, P ) = {y : y = M(x, p) for all p ∈ P}. (2)

Iy(x, P ) will be an interval as long as M(x, p) is a con-
tinuous function of x and p, and P is a connected set. All
instances of M and P considered in this paper will satisfy
these restrictions.

Attention will be limited to the case where (i) the output
is a linear function of the parameter p, (ii) the output is a
polynomial function of the state x, and (iii) the uncertainty
set P is the bounded hyper-rectangle:

P = {p : pmin ≤ p ≤ pmax}. (3)

Hence, the corresponding IPM is given by

Iy(x, pmax, pmin) = {y : y = p>ϕ(x) for all p ∈ P}. (4)

where ϕ(x) is a monomial. The analyst is free to choose
which monomials are relevant to the particular application
under analysis. A general representation of a multivariate

polynomial basis is

ϕ(x) =
[
1, xi2 , xi3 , . . . , xin

]>
, (5)

where x = [x1, . . . , xnx
] is the state, and the vector ij =

[ij,1, . . . , ij,nx
], with ij 6= ik for j 6= k has the exponents of

the monomials. The inclusion of 1 in ϕ(x) guarantees that
every (x, y) pair will be interpolated using some p even if
x = 0.

The limits of the output of the IPM prescribed by (4-5)
can be explicitly computed as

Iy(x, pmax, pmin) =
[
y(x, pmax, pmin), y(x, pmax, pmin)

]
, (6)

where

y(x, pmax, pmin) = ϕ(x)>p̄− ϕ(|x|)>m, (7)

y(x, pmax, pmin) = ϕ(x)>p̄+ ϕ(|x|)>m, (8)

p̄ = (pmax + pmin)/2, and m = (pmax − pmin)/2. Therefore,
the envelopes of the interval valued function Iy , are linear
functions of pmin and pmax, and piecewise polynomial func-
tions of the state. As such, they can possibly have derivative
discontinuities on the coordinate hyperplanes {x ∈ X : xi =
0} for each i = 1, . . . , nx. The spread of Iy , which is the
separation between its limits, is

δy(x, pmax, pmin) = ϕ(|x|)>(pmax − pmin). (9)

Note that the spread depends on the size of P , and not on
its geometric center.

For a given IPM, we might want to evaluate the con-
tribution of individual terms in M to the resulting model
prediction. The contribution of the ϕi(x) term is significant
when either maxx∈X{ϕi(|x|)(pmax,i−pmin,i)} � 0 (the term
contributes significantly to the predicted spread of the output)
or pmin,i ≈ pmax,i 6= 0 (the term affects the location of the
interval value function). Terms not satisfying any of these
conditions can be removed from M without degrading the
accuracy of the prediction. These criteria can be used to
evaluate the effectiveness of the model structure M assumed.

Commonly, the data-generating mechanism is approxi-
mated by the Least Square (LS) prediction, y = p>LSϕ(x),
where pLS, the solution to the LS program pLS =

argminp
∑N
i=1

(
yi − p>ϕ(xi)

)2
, is

pLS = (A>A)−1A>[y1, . . . yN ]>, (10)

where Ai,j = ϕj(xi), for i = 1, . . . , N and j = 1, . . . , np.
While the LS prediction describes the overall trend of
the data, Iy describes its spread. Two types of IPMs are
introduced next.

A. Type-1 IPMs

In this formulation we seek an IPM given by (4-5) with
P given by the following Optimization Program (OP).

Optimization Program 1: The limits of P are given by

〈p̂max, p̂min〉 = argmin
pa, pb

{
Ex[δy(x, pb, pa)] : y(xi, pb, pa) ≤ yi

≤ y(xi, pb, pa), pa ≤ pb} , (11)



where Ex[·] is the expected value operator with respect to
the state variable x, and (xi, yi) for i = 1, . . . , N are the
observations.

In this formulation we search for the limits of the uncertainty
box that minimize the expected interval spread such that all
the observed responses are within the limits of the interval
valued function Iy . When x is a random vector with a
standard joint density function, the cost function in (11) can
be calculated analytically. Otherwise, the sample mean of
δy can be used to approximate it. The resulting IPM, which
is calculated by solving the convex optimization problem in
(11), admits a rigorous reliability assessment (see Section
IV). This assessment formally quantifies the probability that
a future observation will fall within Iy(x).

Note that the formulation in (11) does not guarantee that
pLS ∈ P . Whereas the LS parameter estimate pLS and the
corresponding prediction y = p>LSϕ(x) describe the overall
trend of the data by weighting all data points equally, the set
P and the corresponding interval valued function Iy describe
their spread. This spread is driven by extreme observations.
As such, there is no basis to expect that pLS ∈ P nor that
y(x) ≤ p>LSϕ(x) ≤ y(x) for all x ∈ X . The membership of
pLS in P can be ensured by replacing the last constraint in
(11) with either pa ≤ pLS ≤ pb (i.e., P contains the LS
solution), or pa+pb = 2pLS (i.e., P is centered about the LS
solution). In general, the inclusion of these constraints will
lead to IPMs with larger expected spreads, with the equality
constraint leading to the larger of the two. The formulation
resulting from adding one of these two sets of constraints
will be called the Augmented OP1.

Techniques for making the model prediction tighter based
on the identification and removal of outliers in the data set
are presented next.

The solution of (11) is driven by extreme data points
that might significantly depart from the vast majority of
the observations. Techniques for refining IPMs based on
the identification and removal of outliers, applicable to the
IPMs presented here, are proposed in [3]. These approaches
require the solution of a combinatorial number of opti-
mization problems, and as such, their implementation can
be computationally expensive. An alternative approach for
refining Type-I IPMs is presented next. The presence of
outliers in the data yields unnecessarily large δy’s and P ’s.
Smaller spreads are obtained if outliers are removed from
the data sequence used in (11). Outliers are the observation
points (xi, yi) for some i’s between 1 and N , whose removal
from the data sequence yields an IPM with a considerably
tighter prediction. Prospective outliers are identified by de-
termining the observations for which both (i) the value(s) of
p required to match the data point yields an excessively and
comparatively large P , and (ii) the offset between the least-
square prediction and the observed outcome is comparatively
large. In regard to the first criterion, note that there are
infinitely many points in p-space for which yi = p>ϕ(xi).
The separation between the center of P , p̄, and the hyper-

plane {p : yi = p>ϕ(xi)} is

ρi(pmax, pmin) =

∣∣∣∣2yi − ϕ(xi)
>(pmax + pmin)

ϕ(|xi|)>(pmax − pmin)

∣∣∣∣ ‖m‖. (12)

The metric ρi is the length of the semi-diagonal of the
smallest hyper-rectangle oriented as P (i.e., same center
and diagonal orientation) for which either yi = y(xi, u, v)
or yi = y(xi, u, v), where u = p̄ + ρim/‖m‖ and v =
p̄− ρim/‖m‖. Hence, the metric ρi evaluates the extent by
which the data point (xi, yi) contributes to the spread of
P . In this setting, the observation (xi, yi) satisfies the first
selection criteria when ρi(p̂max, p̂min) ≈ ‖m‖. The empirical
Cumulative Density Function (CDF) of ρ, Fρ, is defined
by Fρ(r) = j/N , where the inequality ρi ≤ r holds for
j of the N values. Prospective outliers are identified by
calculating this CDF and determining the observations for
which Fρ(ρi) > λρ for 0 � λρ < 1. For instance, if
λρ = 0.95 the observations for which ρ is in the highest
5% will satisfy the first selection criterion1.

The second criterion is based on the prediction error
ei =

(
yi − p>LSϕ(xi)

)2
. As before, prospective outliers are

identified by calculating the empirical CDF of e based on
the N observations, Fe, and determining the observations for
which Fe(ei) > λe for 0� λe < 1. Observations satisfying
both criteria will be removed from the data sequence and a
new Type-I IPM will be calculated. The effectiveness of the
procedure can be evaluated by monitoring the value of the
cost function in (11) before and after the removal of outliers.

The presence of outliers is not the only the reason for
discarding data. There may be situations where one is willing
to accept a reduction in the model’s reliability for the sake
of a tighter model prediction. The model’s reliability and
performance, which are evaluated using the developments of
Section IV and the cost function Ex[δy] respectively, should
be traded off until the desired balance is attained.

Example 1: Consider the data-generating mechanism:

y =x2 cos(x)− sin(3x)e−x
2

− x− cos(x2) + xg, (13)

where x(t) is an independent and identically distributed (IID)
sequence of random variables with uniform distribution
over X = [−5.5, 5.5], and g(t) is the IID with a
standard normal distribution. A data sequence z for
N = 150 observations was generated using (13). We
will calculate IPMs based on this sequence having the
structure in (4-5) for np = 7. Therefore, P will be a
hyper-rectangular set in the seven dimensional parameter
space. The 150 observations are marked with ×’s in
Figure 1. The prediction corresponding to the LS solution
corresponding to a six-order polynomial, for which pLS =
[−0.8734,−1.1059,−0.9926, 0.0026,−0.0228,−0.0004,
0.0028]>, is shown as a blue solid line.

Recall that no knowledge of the data-generating
mechanism is required to calculate IPMs. A Type-1

1Note that Fρ is a piecewise constant function that can only take on
multiples of 1/N between 0 and 1. As such, the inequality Fρ(r) ≤ λ
holds for a range of r values.



Fig. 1. IPM A: Type-1 IPM for all N observations.

IPM, to be referred to as IPM A, based on the 150
observations was calculated first. The limits of the
corresponding IPM are shown as dashed lines. Note that all
observations fall in between the envelopes. The uncertainty
set P corresponding to this IPM is bounded by p̂min =
[−13.7738,−2.3647, 1.1603, 0.1666,−0.1899,−0.0046,
0.0061]> and p̂max = [1.9543,−2.3647, 1.1603, 0.1666,
−0.1899 − 0.0046, 0.0066]>. Note that the spread in
the output is mostly caused by parameter variation in
the coefficients of the constant and six-order terms (see
paragraph preceding Section III-A). Note also that pLS 6∈ P .
The propagation of all the elements in P through (4) yields
a family of infinitely many six-order polynomials lying in
between the IPM limits. These envelopes are not members of
the family, i.e., there is no parameter realization of P whose
output is an envelope. This highlights the impossibility of
identifying the IPM envelopes by identifying the worst-case
parameter realizations within P . The expected spread
for IPM A, which is the cost being minimized in the
optimization problem, is Ex[δy] = 8.61. This metric, which
is as an indicator of the model’s performance, will be used
to assess the tightness of the prediction against other IPMs.

The strategy for identifying outliers based on
preprocessing the data sequence is applied next. Recall that
an observation will be regarded as an outlier if the values of
ρ and e are both in the upper quantiles of the corresponding
CDFs. The observations satisfying the selection criteria
for λρ = λe = 0.95 are indicated in Figure 1. Note that
not all the samples near the IPM envelopes are outliers.
The five samples satisfying both criteria were removed
from the set of 150 and a new Type-1 IPM, to be denoted
as IPM B, was calculated. The envelopes of IPM B are
shown in Figure 2. The corresponding P is by p̂min =
[−1.0721,−3.6824,−0.8710, 0.1667,−0.0500,−0.0053,
0.0037]> and p̂max = [3.9264,−1.3838,−0.8362, 0.1667,
−0.0500,−0.0053, 0.0037]>. The reduction in the interval
spread δy is apparent. In this case, parameter variations in
the constant, linear and second order terms are the most
important. Note that the upper limit of the interval valued
function has a derivative discontinuity at x = 0 as predicted
by (7-8). As before, the LS solution is outside P but the

Fig. 2. IPM B: Type-1 IPM after the removal of outliers.

LS prediction is between the IPM limits over the entire X
range. This is the case even though the LS prediction is not
a member of the family of polynomials associated with the
IPM. The performance of IPM B is Ex[δy] = 5.87, which
is 32% better than that of IPM A. In terms of the size of
P , measured by ‖p̂max − p̂min‖2, IPM B is 65% better than
IPM A. Hence, the removal of only five outliers led to a
significant improvement in performance.

B. Type-2 IPMs

A formulation leading to an alternative IPM is presented
next. In contrast to Type-1 IPMs, this approach searches for
P by only using a fixed percentage of the observations. The
observations comprising the removed set, whose members
can be regarded as outliers, are worst-case in the sense that
their removal tightens the model prediction the most. In
particular, we seek an IPM given by (4-5), where P is given
by the following OP.

Optimization Program 2: The limits of P are given by

〈p̂max, p̂min〉 = argmin
pb, pa

{Ex [δy(x, pb, pa)] : (14)

Fρ(pb,pa) (‖pb − pa‖/2) ≥ λ, pb ≥ pa
}
,

where Fρ(pb,pa) is the empirical CDF of ρ(pb, pa), and 0 <
λ ≤ 1 is the fraction of observations to be enclosed by Iy .
In this formulation we identify the uncertainty set P leading
to the interval valued function Iy of minimal spread that
contains 100λ% of the observations. This makes the IPM
insensitive to the 100(1−λ)% of the observations for which
ρ is the largest. Observe that any box with corners at pa
and pb satisfying the inequality constraints contains param-
eters that interpolate at least 100λ% of the observations.
At the optimum, this fraction is as close to 100λ% as
possible (i.e., the first inequality becomes an equality), and
the largest value of ρ among those corresponding to the
100λ% observations retained is as small as possible. The
tightening of the prediction for 100λ% of the observations
yields an empirical model that does not enclose the remaining
100(1 − λ)% of them. This shows that (14) is a chance-
constraint formulation [4], in which one is willing to accept



Fig. 3. IPM C: Type-2 IPM for λ = 29/30.

the occurrence of unfavorable low-probability events for the
sake of an improved performance for high-probability events.

The limits p̂max and p̂min, thus P , depend on the value
of λ chosen. To make this dependency explicit, the left hand
side of (6) is written as Iy(x, pmax(λ), pmin(λ)).

Denote by w = {wj} with j = 1, . . . ,floor[λN ]
the elements of the sequence z that are within
Iy(x, p̂max(λ), p̂min(λ)), (i.e., the data points that were
not considered outliers). When λ = 1, w = z, OP1
and OP2 are equivalent, and the resulting Type-1 and
Type-2 IPMs are equal. This is a consequence of the
first inequality constraint in (14) being equivalent to
y(xi, pmax, pmin) ≤ yi ≤ y(xi, pmax, pmin) for all
i = 1, . . . , N . When λ < 1, w will be a subset of z.
Notice that the formulation in (14) sizes an IPM without
prescribing in advance which particular points in z will be
outliers. Outliers can be identified by determining the data
points (xi, yi) for which Fρ(p̂max,p̂min)(ρi) > λ.

Example 2: In this example we calculate a Type-2 IPM
for the very same N = 150 observations used in Example
1 and λ = 29/30. Hence, we seek an IPM of minimal
spread whose envelopes contain 145 observations, as it
was the case for IPM B. Figure 3 shows the envelopes
of the resulting IPM, to be referred to as IPM C.
The uncertainty set of IPM C is bounded by p̂min =
[−1.8967,−2.4580,−0.3339, 0.0576,−0.1112,−0.0015,
0.0051]> and p̂max = [2.5118,−0.8003,−0.3104, 0.0850,
−0.1093,−0.0015, 0.0052]>. In this case all but the fifth-
order term contribute to the spread of the output. Note that
IPM B and IPM C, which are both considerably tighter
than IPM A, exclude a different set of outliers. The outliers
are the observations shown outside the envelopes. The
comparison of the three IPMs indicates that the envelopes of
IPM C enclose the bulk of the observations most tightly. In
addition, recall that Type-2 IPMs identify and eliminate the
effect of outliers while the IPM is being calculated, and as
such, they don’t have to be chosen and removed in advance.
Figure 4 shows the empirical CDF of ρ corresponding to
IPM A, IPM B and IPM C. Note that Fρ(p̂max, p̂min) for
IPM A, IPM B and IPM C have a steep vertical jump at

Fig. 4. Empirical CDFs Fρ(p̂max, p̂min)
for IPM A, IPM B and IPM C.

ρ = 15.72, ρ = 5.50 and ρ = 4.71 respectively. These
values correspond to Fρ = 1 for both IPM A and IPM B,
and to Fρ = λ for IPM C. These probability jumps, whose
values are 6, 5, and 2% respectively, indicate the percentage
of observations for which there is only one parameter
point p for which yi = p>ϕ(xi) and that point lies on
the surface of P . The concentration of p values on the
surface of P is a consequence of obtaining IPMs for which
the interval spread, thereby the size of the corresponding
uncertainty set, is minimal. Note that for IPM C, 96.66%
of the observations attain a value of ρ which is less than
4.71. This is 30% of the largest value for ρ attained by
IPM A and 85% of that by IPM B. This shows that IPM
C concentrates 100λ% of the observations much closer to
the geometric center of P than either IPM A or IPM B.
Note however that the largest value of ρ attained by IPM C,
which is out of the range shown in the figure, exceeds that
of the other two models. While 100λ% of the observations
are bounded more tightly by IPM C, the value of ρ for
the remaining 100(1 − λ)% has increased considerably.
That is often the price of enforcing chance constraints. This
can be restated as follows. Pick K between 1 and N so
that K = argmax1≤i≤N{ρi}, so (xK , yK) is the outlier
with the largest ρ. Also, pick L between 1 and N so that
L = argmax1≤i≤N{ρi : Fρ(ρi) ≤ λ}, so that (xL, yL) has
the largest ρ among the retained data points. The smaller
ρL, the tighter the prediction for 100λ% of the observations.
The larger ρK−ρL, the better the performance improvement
resulting from removing outliers.

IV. MODEL’S RELIABILITY
The developments that follow are based on the scenario

approach of Calafiore and Campi [5]. Denote by P the
unknown distribution of the process from where the data pairs
(xi, yi) are obtained. P can be interpreted as a probabilistic
cloud in the X×Y -space. The case in which y is a function
of x only is a particular case where P is concentrated over
the function. A general P can accommodate situations where
the fluctuation in the outcome is caused by sources other than
x. No assumption is made on P so that the functional form
relating x and y can be arbitrary.



The reliability of the IPM E is defined as

r(E) = Prob P [(x, y) ∈ Iy (x, p̂max(λ), p̂min(λ))] , (15)

where ProbP[·] is the probability operator based on the distri-
bution P. Hence, r(E) is the probability that the unobserved
state-outcome pair (x, y) will fall within the limits of Iy .
Recall that λ = 1 corresponds to Type-1 IPMs whereas
λ < 1 corresponds to Type-2 IPMs. The following theorem,
taken from [3], permits quantifying the reliability of an
empirical model whenever the optimization problem used for
its calculation is convex.

Theorem 1: Let z = {zi} = {(xi, yi)}, i = 1, . . . , N be
an independent data sequence resulting from a stationary
discrete-time data generating process. Suppose the IPM E
is calculated by solving a convex constrained optimization
problem having a unique solution. Furthermore, assume that
k observations (outliers) out of the N available have been
discarded when calculating the model. Then, for any ε ∈
(0, 1) and k < N−d, where d is the number of optimization
variables, it holds that

Prob PN [r(E) ≥ 1− ε] > 1− β, (16)

where

β =
N !

(N − d)!d!
(1− ε)N−d

k∑
i=0

(N − d)!

(N − d− i)!i!
εi

(1− ε)i
,

and PN is the probability of obtaining the data sequence.
This Theorem provides an assessment on unobserved data.

The theorem states that the reliability of E is no worse than
1−ε with probability greater than 1−β. As for the probability
1 − β, one should note that E is a random element that
depends on N observations of P. Therefore, its reliability can
be greater than or equal to 1−ε for some random observations
but not for others, and β refers to the probability PN =
P× · · · × P of observing a bad set of N samples such that
the reliability of the model is less than 1 − ε. Parameter
ε is referred to as the reliability parameter while β is the
confidence parameter. The confidence probability 1 − β is
key for obtaining results that are guaranteed independently
of the data-generating mechanism. It is worth noting that the
confidence parameter can be made very small such that it
losses any practical significance and r(E) ≥ 1− ε. This can
be done without letting N be too large because β vanishes
exponentially fast with N . Note that assessing the reliability
of the model does not require knowing P.

The convexity of the OP1 enables the direct application
of Theorem 1 to Type-1 IPMs. This includes the cases in
which none (k = 0) and some (k > 0) of the observations
are removed. In contrast to OP1, OP2 is non-convex, thus
Theorem 1 cannot be applied directly to Type-2 IPMs.
However, the reliability of such models can be evaluated by
using a Principle of Equivalence. This principle is based on
identifying an auxiliary convex formulation that will result
in the very same empirical model found by solving the non-
convex formulation. If this is attained, the reliability of the
empirical model, which is independent of the means used

to calculate it, can be rigorously evaluated via the auxiliary
formulation. This approach can be applied to Type-2 IPMs.
In particular, the solution to OP2 using the the data sequence
z is equivalent to the solution of OP1 for the data sequence
w2. Because only the N − k∗ elements in w, where

k∗ = floor[N(1− λ)], (17)

are required by the auxiliary program, the reliability of Type-
2 IPMs is given by (16) with k = k∗. These k∗ observations
fall outside Iy and satisfy Fρ(p̂max,p̂min)(ρi) > λ.

Example 3: The reliability of IPM A, for which N = 150,
d = 14, and k = 0, is no less than 1 − ε = 0.6984 with
confidence 1−β = 0.99. The reliability of IPM B, for which
N = 150, d = 14 and k = 5, is no less than 1− ε = 0.614
with confidence 1− β = 0.99. Hence, the exclusion of five
outliers rendered an improvement in the system performance
of 32% at the expense of a reduction in the reliability of
8.4%. As for IPM C, note that N = 150, d = 14 and k =
k∗ = 5. While the reliability of IPM B and IPM C are the
same, the performance of the latter is 10% better. The above
results illustrate the typical trade-off between performance
and reliability. These two figures of merit can be traded off
by changing the number of outliers (i.e., λ) or the the model’s
structure (i.e., np).

A few of remarks on the significance and practical use of
IPMs are now in order. In real applications, the difference
between outliers and meaningful data is often unclear. In
this regard, the proposed approach provides a probabilistic
certificate of the predicted range of outputs regardless of
both the value of λ and the nature of the discarded data
(outliers or not). Furthermore, note that the uncertainty in p
captures the discrepancy between the observations and the
model prediction regardless of its origin. In the example
above this discrepancy is caused by measurement noise (i.e.,
g(t)) and model-form uncertainty (i.e., describing (13) as a
polynomial). The effects of model-form and parametric un-
certainty, numerical and approximation error, measurement
noise and biases are all lumped into P .
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2When Ex[δy ] is evaluated by the sample mean, equivalence is attained
by using w to evaluate the constraints, and z to evaluate the cost function.


