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Introduction:  The Mars Science Laboratory 

(MSL) rover Curiosity recently completed its fourth 
drill sampling of sediments on Mars. The Confidence 
Hills (CH) sample was drilled from a rock located in 
the Pahrump Hills region at the base of Mt. Sharp in 
Gale Crater. The CheMin X-ray diffractometer com-
pleted five nights of analysis on the sample, more than 
previously executed for a drill sample, and the data 
have been analyzed using Rietveld refinement and full-
pattern fitting to determine quantitative mineralogy. 
Confidence Hills mineralogy has several important 
characteristics: 1) abundant hematite and lesser mag-
netite; 2) a 10 Å phyllosilicate; 3) multiple feldspars 
including plagioclase and alkali feldspar; 4) mafic sili-
cates including forsterite, orthopyroxene, and two 
types of clinopyroxene (Ca-rich and Ca-poor), con-
sistent with a basaltic source; and 5) minor contribu-
tions from sulfur-bearing species including jarosite.  

CheMin X-ray Diffraction:  The CH XRD data 
were processed to generate a conventional 1-D XRD 
pattern for analysis. Prior to conversion, instrumental 
artifacts (bright spots on the CCD) were removed from 
the image. The 1-D XRD pattern were used for phase 
identification, quantitative phase analysis, and back-
ground modeling . Rietveld refinement using Topas® 
[1] (Fig. 1) was used to determine the abundances  
presented in Table 1 and to refine unit-cell parameters 
of major and minor phases. 

 

 
Fig. 1. CheMin Confidence Hills Rietveld refinement; simulated 
pattern (red) with modeled background and observed pattern (blue). 
The baseline shown is a modeled fit that underestimates intensities 
between 5 and 15, 2-theta. 
 

Instrument Modeling.  Before Rietveld refinement, 
information on instrumental peak shapes was obtained 

using data for a beryl:quartz standard measured on 
Mars. In addition, contributions from the Mylar sample 
holder and the Al light-shield were explicitly included 
and refined independently. 

Analysis and Operations:  In contrast to other 
sample analyses performed with CheMin, the CH sam-
ple was analyzed over five nights during sols 765, 771, 
776, 778 and 785, for a total of ~37.5 hours of integra-
tion time. The additional analysis time provided im-
proved detection of some of the minor phases includ-
ing jarosite, magnetite, and pyroxene. Additionally, the 
integration time improved the detection of the broad 
and weak 10 Å phyllosilicate peak. 

Mineralogy:  The mineralogy of Confidence Hills 
(Table 1) is dominated by plagioclase, augite and hem-
atite. Other phases present well above detection limits 
include a 10 Å phyllosilicate, alkali feldspar, an ortho-
pyroxene, pigeonite, magnetite, and forsterite, as well 
as a significant amorphous component. Minor to trace 
phases close to detection limits include cristobalite, 
ilmenite, jarosite, and quartz. The cristobalite identifi-
cation is tentative, due to significant interference of the 
primary diffraction peak with an Al light-shield artifact 
at 25.6° 2θ [2]. The suite of minerals analyzed by 
CheMin, including hematite, phyllosilicates, and sul-
fates, closely resembles the mineralogy predicted for 
the Murray formation by orbital observation [6]. 

Hematite.  Hematite was identified based on large 
intensity for the strongest diagnostic peaks at 28.1°, 
38.7°, and 41.6° 2θ. The identification of hematite by 
XRD also supports the latest interpretation of Chem-
Cam spectroscopy indicating cystalline hematite [3]. 
The hematite abundance (~8 wt%) is significantly 
more than observed in other samples from Gale Crater: 
0.8, 0.6, 0.7, and 0.6 wt% for Rocknest, John Klein, 
Cumberland, and Windjana, respectively [4,5]. The 
high abundance of hematite corroborates the orbital 
detection of hematite by VNIR spectroscopy and sug-
gests a trend of increasing hematite abundance as Cu-
riosity approaches the lower strata of Mount Sharp 
[6,7]. 

Clay Mineralogy. The CH XRD pattern exhibited a 
small broad peak at ~10 Å. Compared with the previ-
ous samples containing phyllosilicates (Fig. 2), John 
Klein and Cumberland, the 10 Å peak is not as well 



resolved and the 02l diffraction band is overlapped and 
obscured by pyroxene peaks and so cannot be used to 
distinguish among the varieties of smectite [4,5]. 
Based on this information, it can only be concluded 
that the 10 Å peak is representative of a collapsed 
smectite or other poorly ordered 10 Å mineral (e.g.,  
illite), similar to that seen in John Klein. Based on re-
sults from a FULLPAT [8] analysis of the CH sample, 
there is ~ 11 wt% phyllosilicate. 

 
Table 1. Confidence Hills Mineralogy – Total and crystalline 

phase abundance (amorphous and phyllosilicate free) 

Mineral Abundance 
(wt. %) 

Crystalline 
(wt. %) 

Plagioclase 22.2 37.9 
Augite 7.0 12.0 
Hematite 7.8 13.4 
K-spar 5.7 9.7 
Orthopyroxene 4.4 7.5 
Pigeonite 3.8 6.5 
Magnetite 2.5 4.3 
Forsterite 1.9 3.3 
Cristobalite 1.7* 3.0* 
Ilmenite 0.9* 1.6* 
Jarosite 0.2* 0.4* 
Quartz 0.4* 0.6* 
Phyllosilicate 11 - 
Amorphous 31 - 

 * - At or near detection limits 
 
Feldspars. There is evidence for multiple feldspar 

phases in CH. Plagioclase is the most abundant (~23 
wt%) and was best modeled by two different plagio-
clase members, andesine (~21 wt%) and oligoclase (~2 
wt%). Refined unit-cell parameters are broadly con-
sistent with these compositions. In addition to plagio-
clase, K- feldspar was also detected and was best mod-
eled using an orthoclase structure model. Overall, the 
feldspar mineralogy differs from Windjana (i.e., less 
rich in K- feldspar) and is more similar to John Klein 
and Cumberland. This could indicate a less-evolved 
mineralogy and more mafic igneous origin for the CH 
feldspars.  

Minor Phases. The minor phases identified include: 
jarosite, quartz, cristobalite, and ilmenite. Although 
near detection limits, the jarosite identification provid-
ed a convincing improvement in fit in Rietveld refine-
ment, particularly for the diffraction peak at ~34º 2θ. 
In addition, an Fe-sulfate is consistent with the SAM 
results of SO2 evolution from thermal decomposition at 
~600° C. As previously mentioned, the cristobalite 

identification is tentative because of the overlapping Al 
light-shield peak at 25.6° 2θ. 

 

 
Fig. 2. Comparison of low-angle phyllosilicate peaks between Cum-
berland, John Klein, and Confidence Hills. 
 

Amorphous and Phyllosilicate.  As with previous 
samples analyzed by MSL, CH contains a large per-
centage of amorphous component(s). Using FULLPAT 
[7], it is estimated that as much as 31 wt% of the sam-
ple consists of amorphous material. If this is combined 
with the clay percentage, the total phyllosilicate and 
amorphous component of CH accounts for ~40 wt% of 
the sample. 

Conclusions:  The detection of abundant hematite, 
a phase rare in previous sediment samples, is con-
sistent with the predicted suite of minerals identified 
from orbital spectroscopy. Spectral mapping of the 
Murray formation indicates a mineralogy containing a 
mixture of hematite, phyllosilicates, and sulfates. The 
CH mineralogy is consistent with the Murray for-
mation orbital mineralogy and indicates that MSL has 
reached the lower strata of Mt. Sharp. The presence of 
hematite and iron-sulfate could also indicate that CH 
formed under a more acidic environment with iron-
bearing fluid interaction. The CH sample also exhibits 
a transition to a higher abundance of plagioclase com-
pared with the more alkali-rich previously analyzed 
Windjana sample. As CH represents a more basaltic 
mineralogy, this could indicate a different provenance 
and less-evolved igneous origin than Windjana. 
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