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Plume Induced Erosion
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Descent Profile

Sky Crane Detail
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Mars Descent Imager (MARDI

Image: 0000MD0000000000100524E01
Spacecraft Clock: 397502120 s

Time: 2012-08-06 05:17:33.625
T-26.515s

Sky Crane Altitude: 72.88 m
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Image: 0000MD0000000000100605E01
Spacecraft Clock: 397502141 s

Time: 2012-08-06 05:17:54.625
T-5.515s

Sky Crane Altitude: 10.01 m

Image: 0000MD0000000000100526E01
Spacecraft Clock: 397502121 s |
Time: 2012-08-06 05:17:34.625 |
T-25.515s

Sky Crane Altitude: 63.11 m

Spacecraft Clock: 397502131 s
Time: 2012-08-06 05:17:44.625
T-15515s

Sky Crane Altitude: 18.03 m

Image: 0000MD0000000000100627E01
Spacecraft Clock: 397502147 s

Time: 2012-08-06 05:18:00.625
T+0.485s

Sky Crane Altitude: 6.14 m

MARDI images taken during descent phase. Correlated MARDI
images with trajectory data shows rocket thruster — soil
interaction occurs at roughly 63 meters above the surface at 25
seconds before touchdown. Significant erosion occurs within the

last 15 seconds.

e Erosion Onset (VSE):
Approximately 63 meters

e Severe Erosion (BCF):

~18 meters
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Descent Ground Track
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Digital Terrain Mapping

* Image Stereoscopy using MSL
NAVCAMs

e 1024 x 1024 (1 MP resolution)
* 42 cm spacing

e Composition with Cardinal Systems
VR Mapping software

e Calibration
* DTM generation
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Mapping Calibration: CAD
Models

Detailed engineering CAD model of the
Curiosity rover used to provide scaling
information for the 3D terrain model.

* Tire Width
* Center Tread Length, Tread Spacing, and Wheel Spacing

* “JPL” Morse Code Spacing and width
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Mapping Calibration: Camera
Calibration

* Worked closely with the Cardinal Systems to develop a process to increase the
accuracy of the model. “Autotie” function correlates image measurements and
scales across multiple images.
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Sleepy Dragon & Hepburn
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Burnside & Goulburn
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Erosion Rates & Volumes

Eroded Volume / Rate

Volumetric

Estimated Eroded Mass

Test Test # Soil Type Eroded Mass (m®)
MSL - Flight Goulburn Mars (Coarse) 4.25
MSL - Flight Burnside Mars (Coarse) 21.0
MSL - Flight Hepburn Mars (Coarse) 24.8
MSL - Flight  Sleepy Dragon Mars (Coarse) 33.0

Test Test # Soil Type Volume (m®)  Time (s) Erosion Rate (m%s)
MSL 8 Mars (Fine Sand) 3.29E-04 0.94 3.51E-04
MSL 7 Mars (Fine Sand) 4.91E-04 0.96 5.12E-04

[MsL - Flight  Goulburn N/A 109E-02 15 7.27E-04)
MSL 2 Mars (Fine Sand) 5.86E-04 11 5.35E-04
MSL 23 Mars (Coarse) 9.51E-04 1 9.51E-04
MSL 13 Mars (Fine Sand) 1.07E-03 1 1.07E-03
MSL 21 Mars (Coarse) 1.11E-03 0.95 1.17E-03
MSL 6 Mars (Fine Sand) 1.10E-03 0.94 1.17E-03
MSL 16 Mars (Coarse) 1.44E-03 0.95 1.52E-03
MSL 5 Mars (Fine Sand) 1.65E-03 0.98 1.69E-03
MSL 12 Mars (Fine Sand) 1.97E-03 0.98 2.01E-03
MSL 18 Mars (Coarse) 1.64E-03 0.69 2.39E-03
MSL 20 Mars (Coarse) 2.92E-03 1 2.93E-03
MSL 4 Mars (Fine Sand) 2.35E-03 0.78 3.01E-03
MSL 15 Mars (Coarse) 3.85E-03 1 3.85E-03
MSL - Flight Burnside N/A 5.38E-02 15 3.59E-03
MSL - Flight Hepburn N/A 6.36E-02 15 4.24E-03
MSL - Flight Sleepy Dragon N/A 8.47E-02 15 5.65E-03
MSL 22 Mars (Coarse) 5.01E-03 0.89 5.65E-03
MSL 17 Mars (Coarse) 6.69E-03 0.96 6.98E-03
MSL 19 Mars (Coarse) 6.88E-03 0.97 7.09E-03
MSL 14 Mars (Coarse) 1.67E-02 0.97 1.72E-02
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Conclusions

The MARDI camera allowed us to determine, for the first time, when plume-soil interaction began to occur
which was found to be approximately 63 meters above the ground level.

e Soil erosion continuously increased and visibility decreased as the Sky Crane descends to its final altitude.

The data extraction methods employed to the MSL data were a value added benefit and was performed
without a need to alter the vehicle or collaborate with mission planners during design phase.

e Scientists analyzin% future human and robotic missions utilizing dual stereo camera systems will also benefit from
this method as well.

The effect of subsoil bedrock had a significant effect, as predicted, reducing overall crater diameter and
depth (Goulburn and Burnside) when compared to a similar region with loosely packed soil (Hepburn and
Sleepy Dragon).

e The increased thrust loads associated with any possible human Mars mission will naturally intensify the erosion

problem. If future vehicles are to use retro-propulsive landing system, it will be important to either choose landing
sites with solid foundations or construct a landing site ahead of time.

Vqurlnetric erosion rates agreed well with experimental tests conducted in similar conditions using soil
simulants.

* This agreement validates vacuum chamber testing methodologies for analyzing plume-soil erosion and will allow for
better prediction of erosion rates for similar and derived vehicles in the future.
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Future Work & Implications

e This data is integrated into an erosion database compiled
from surveys of simulated lunar and Mars plume
impingement based erosion for development of empirical
models to predict erosion severity.

 Validation future vacuum chamber tests, empirical codes,
and CFD codes for plume based erosion.

e Potential for use of plume based erosion as a method of
excavation as an alternative for traditional methods
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