AUTONOMOUS, DUAL CHAMBER BIOREACTOR FOR THE GROWTH OF 3-D EPITHELIAL-STROMAL TISSUES IN MICROGRAVITY

LAUREN RYAN
THE GEORGE WASHINGTON UNIVERSITY
DR. ZARANA PATEL
RADIATION
PROJECT BACKGROUND

• Using 3D organotypic models
 • Closely linked to characteristics of normal human tissue
 • Model for effect of microgravity
 • Stressors combined with microgravity

• Critical Air Liquid Interface
 • Bioreactor available for microgravity cell culture does not accommodate
 • This project creates autonomous dual chamber bioreactor allowing for research on 3D tissue models
METHODS AND PROCEDURES

• Spent time working at Rice University

• Responsibilities:
 • Researching Parts
 • Electronics and Coding

• Skills and Techniques:
 • Arduino
 • Troubleshooting Code/Circuit
 • Design Process
 • Teamwork
 • Building a System
Case 1: What Happens At T=0 (when the Media Fills The Entire Chamber)

- Media is in the input reservoir
- Valve 2 opens
- Peristaltic Pump turns on, pumps media
- Valve 4 opens
- Valves 5 and 6 both open
- Both chambers fill with media
- Pump turns off
- Valves 2, 4, 5, 6 close
- Is the top chamber full?
 - No
 - Yes
 - Is the bottom chamber full?
 - No
 - Yes

ELECTRONICS AND CODING

• Needed to control 12 VDC devices with Arduino
• Built a solid state relay to act as an electrical switch
• Troubleshooting
RESULTS

• Valves Opening, Pump
 Turning On According to Code

• Putting it All Together in the System
DISCUSSION

• Contributions:
 • Integral part of the system
 • ISS experimentation

• Lessons Learned:
 • Arduino Coding
 • Technical Ordering
 • Patience in Troubleshooting
 • Working in a Team to Build a System
ACKNOWLEDGEMENTS

• Zarana Patel
• Janice Huff
• Matthew Wettergreen
• Felipe Nonato
• Lauren Merkle
• Judith Hayes
• Ron McNeel