Ultrasonic Measurement of Loads in Bolts Used in Structural Joints

NESC NDE Face to Face Meeting, Michoud, LA
March 24, 2015

Ajay M. Koshti, D.Sc. PE
NASA Johnson Space Center, Houston TX
Summary

- The paper is an overview of work by the author in measuring and monitoring loads in bolts using an ultrasonic extensometer.

- A number of cases of bolted joints are covered. These include,
 - a clamped joint with clearance fit between the bolt and hole,
 - a clamped joint with bolt in an interference fit with the hole,
 - a flanged joint which allows the flange and bolt to bend;
 - and a shear joint in a clevis and tang configuration.

- These applications were initially developed for measuring and monitoring preload in National Aeronautics and Space Administration (NASA) Space Shuttle Orbiter critical joints but are also applicable for monitoring loads in other critical bolted joints of structures such as transportation bridges and other aerospace structures.

- The papers cited here explain how to set-up a model to estimate the ultrasonic load factor and accuracy for the ultrasonic preload application in a clamped joint with clearance fit.

- The ultrasonic preload application for clamped joint with bolt in an interference fit can also be used to measure **diametrical interference** between the bolt shank and hole, as well as **interference pressure** on the bolt shank.

- Results of simulation and experimental data are given to demonstrate use of ultrasonic measurements in a shear joint.

- A bolt in a flanged joint experiences both tensile and bending loads. This application involves measurement of bending and tensile preload in a bolt.

- The ultrasonic beam bends due to bending load on the bolt. Results of a numerical technique to compute the trace of ultrasonic ray are presented.
List of Papers Included in This Paper

Section 1

Section 2

Section 3

Section 4

Section 5

Section 1. Clamped Bolted Joint11: Ultrasonic Set-up

Figure 1 -- Ultrasonic preload configuration

Figure 4. Cut away of a clamped joint
1. Clamped Bolted Joint11: Ultrasonic Measurement of Bolt Tension, Two Instruments

- Ultrasonic Method
 - Couple an ultrasonic transducer to one end of the bolt
 - Pulse/echo mode
 - Measure the apparent length of the bolt
 - Length measurement before and after application of the tension
 - Compute ultrasonic stretch
 - Preload is proportional to ultrasonic stretch

<table>
<thead>
<tr>
<th>Raymond Boltgage Equation</th>
<th>StressTel Boltmike Equation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P_R = \left(\frac{AEK_R}{L} \right) \left(\frac{V_m}{V_i} \right) \delta L_c + Y$</td>
<td>$P_S = \left(\frac{V_m}{V} \right) \left(\frac{AE}{1-\alpha} \right) \left(\frac{\delta L_c}{L + \delta L_c} \right) + Y$</td>
</tr>
</tbody>
</table>

$P = \text{Preload, lb}$
$A = \text{Bolt gross section area, in}^2$
$E = \text{Young's modulus, lb/in}^2$
$K_R = \text{Raymond Stress factor (\sim 0.3 for steel)}$
$L = \text{Bolt effective length under tensile stress, in}$
$V_m = \text{Ultrasound velocity in material, in/sec}$
$V_i = \text{Instrument setting for ultrasonic velocity, in/sec}$
$\delta L_c = \text{Temperature compensated ultrasonic stretch, in}$
$Y = \text{Y intercept of calibration linear fit}$
$\alpha = \text{Acoustoelastic constant}$
$\varepsilon = \text{Strain}$

Raymond Boltgage is predecessor to extensometers by Bidwell Industrial Group, Middletown, CT, USA) and StressTel Boltmike is predecessor to extensometers by General Electric Inspection Technology.
1. Clamped Bolted Joint11: Comparison of Preload Equations and Error Estimation

\[
\left(\frac{\Delta P_R}{P_R} \right)^2 \Delta E^2 + \left(\frac{\Delta V_m}{V_m} \right)^2 + \left(\frac{\Delta A}{A} \right)^2 + \left(\frac{\Delta L_g}{L_g} \right)^2 + \left(\frac{\Delta \alpha}{1 - \alpha} \right)^2 + \left(\frac{\Delta \delta L_c}{\delta L_c} \right)^2 + \left(\frac{\Delta Y}{P_R} \right)^2
\]

\[
(\Delta \delta L_c)^2 = \left([\Delta \delta L_c]_{\text{coupling}} \right)^2 + \left([\Delta \delta L_c]_{\text{temperature}} \right)^2 + \left([\Delta \delta L_c]_{\text{instrument}} \right)^2
\]

Figure 2 – Systematic errors
1. Clamped Bolted Joint: Example of Error Estimation

<table>
<thead>
<tr>
<th>Parameter Description</th>
<th>Parameter Symbol</th>
<th>Engineering Units</th>
<th>SI units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shank diameter</td>
<td>D</td>
<td>0.705 in</td>
<td>17.907 mm</td>
</tr>
<tr>
<td>Tolerance on the shank diameter</td>
<td>ΔD</td>
<td>0.001 in</td>
<td>0.0254 mm</td>
</tr>
<tr>
<td>Velocity setting</td>
<td>V</td>
<td>232494 in/sec</td>
<td>5.90535 x 10⁶ mm/sec</td>
</tr>
<tr>
<td>Ultrasound velocity in the fastener</td>
<td>V₀</td>
<td>232494 in/sec</td>
<td>5.90535 x 10⁶ mm/sec</td>
</tr>
<tr>
<td>Tolerance on the ultrasound velocity</td>
<td>ΔV</td>
<td>232.494 in/sec</td>
<td>5.90535 x 10⁶ mm/sec</td>
</tr>
<tr>
<td>Young’s modulus</td>
<td>E</td>
<td>3.1 x 10⁸ psi</td>
<td>31840.9 kg/mm²</td>
</tr>
<tr>
<td>Tolerance on the Young’s modulus</td>
<td>ΔE</td>
<td>3.1 x 10⁸ psi</td>
<td>31840.9 kg/mm²</td>
</tr>
<tr>
<td>Effective length</td>
<td>L₁</td>
<td>6.12 in</td>
<td>155.448 mm</td>
</tr>
<tr>
<td>Tolerance on the effective length</td>
<td>ΔL</td>
<td>0.025 in</td>
<td>0.635 mm</td>
</tr>
<tr>
<td>Grip correction</td>
<td>gᵢ</td>
<td>0.649 in</td>
<td>16.485 mm</td>
</tr>
<tr>
<td>Actual length</td>
<td>L₂</td>
<td>8.5 in</td>
<td>215.9 mm</td>
</tr>
<tr>
<td>Acoustoelastic constant</td>
<td>α</td>
<td>-2.5714</td>
<td>-2.5714</td>
</tr>
<tr>
<td>Tolerance on the acoustoelastic constant</td>
<td>Δα</td>
<td>0.00257</td>
<td>0.00257</td>
</tr>
<tr>
<td>Tolerance on the instrument calibration</td>
<td>ΔL_calib</td>
<td>0.0003 in</td>
<td>0.000762 mm</td>
</tr>
<tr>
<td>Coupling error for the ultrasonic length</td>
<td>ΔL_coupling</td>
<td>0.0003 in</td>
<td>0.000762 mm</td>
</tr>
<tr>
<td>Temperature coefficient</td>
<td>Cₚ</td>
<td>5.4 x 10⁻⁵/F</td>
<td>9.72 x 10⁻⁵°C</td>
</tr>
<tr>
<td>Tolerance on the temperature coefficient</td>
<td>ΔC₀</td>
<td>5.4 x 10⁻⁵/F</td>
<td>9.72 x 10⁻⁵°C</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>Tᵢ</td>
<td>80 °F</td>
<td>26.7 °C</td>
</tr>
<tr>
<td>Tolerance on the operating temperature</td>
<td>ΔTᵢ</td>
<td>0.5 °F</td>
<td>0.28 °C</td>
</tr>
<tr>
<td>Reference temperature</td>
<td>Tᵢ₀</td>
<td>75 °F</td>
<td>23.9 °C</td>
</tr>
<tr>
<td>Targeted preload</td>
<td>P</td>
<td>53,000 lb</td>
<td>24091 kg</td>
</tr>
</tbody>
</table>

Computed Parameter | Symbol | Equation Number | Engineering Units | SI Units |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cross-sectional area</td>
<td>A</td>
<td>0.390 m²</td>
<td>251.846 mm²</td>
<td></td>
</tr>
<tr>
<td>Stress factor</td>
<td>Kₛ</td>
<td>6</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>Fractional tolerance on the stress factor</td>
<td>ΔKₛ/Kₛ</td>
<td>29</td>
<td>0.00092</td>
<td></td>
</tr>
<tr>
<td>Fractional tolerance on the shank area</td>
<td>ΔA/A</td>
<td>27</td>
<td>0.00284</td>
<td></td>
</tr>
<tr>
<td>Fractional tolerance on the ultrasound velocity</td>
<td>ΔV/V</td>
<td>0.011</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Fractional tolerance on the Young’s modulus</td>
<td>ΔE/E</td>
<td>0.001</td>
<td>0.001</td>
<td></td>
</tr>
<tr>
<td>Fractional tolerance on the effective length</td>
<td>ΔL_e/L_e</td>
<td>28</td>
<td>0.00457</td>
<td></td>
</tr>
<tr>
<td>Tolerance on the ultrasonic stretch due to the coupling</td>
<td>[ΔLₖ]ₜₜ</td>
<td>36</td>
<td>0.0004 in</td>
<td></td>
</tr>
<tr>
<td>Tolerance on the ultrasonic stretch due to the temperature</td>
<td>[ΔLₖ]ₜₜₜ</td>
<td>37, 38, 39</td>
<td>0.0003 in</td>
<td></td>
</tr>
<tr>
<td>Tolerance on the ultrasonic stretch</td>
<td>ΔLₖ</td>
<td>34</td>
<td>0.0006 in</td>
<td></td>
</tr>
<tr>
<td>Estimated ultrasonic stretch</td>
<td>ΔLₑₑₑ</td>
<td>12b</td>
<td>0.0957 in</td>
<td></td>
</tr>
<tr>
<td>Elongation</td>
<td>ΔLₑₑₑₑₑ</td>
<td>12a</td>
<td>0.0268</td>
<td></td>
</tr>
<tr>
<td>Estimated load factor</td>
<td>Fₛᵉᵉ</td>
<td>10b</td>
<td>553.651.4 lbf/in</td>
<td></td>
</tr>
<tr>
<td>Tolerance on the load factor</td>
<td>ΔFₛᵉᵉ/Fₛᵉᵉ</td>
<td>31 or 32</td>
<td>0.00555</td>
<td></td>
</tr>
<tr>
<td>Fractional preload measurement accuracy</td>
<td>ΔPₛ/Pₛ</td>
<td>33 or 26a</td>
<td>0.00846</td>
<td></td>
</tr>
<tr>
<td>Preload measurement accuracy</td>
<td>ΔPₛ</td>
<td>33</td>
<td>448 lbf</td>
<td></td>
</tr>
<tr>
<td>204 kg</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Section 2. Ultrasonic Measurements on a Bolt in an Interference Fit Joint12,13,14

Paper covers

• Measurement of preload in interference fit joint bolts
 • Includes temperature compensation
• Measurement interference quantities such as
 • Diametrical interference and interference pressure
• Includes two configurations
 • Case I: Pull one of the ends in a universal testing machine – No nut turning, not a bolted joint
 • Case II: Turning/torqueing the nut – Real life bolted joint
 • Popularly, for no interference Case I condition is used to approximate Case II!
 • Difference between the two cases
• Analytical model for ultrasonic measurements
 • Analytical model for clamped joint with no interference is derived as a special case of the above model diametrical interference set to zero.
 • Comparison of experiments with the simulation is provided.
2. Interference Fit Joint12,13,14: Cross Section of the Sleeve-bolt Joint and Regular Bolt Joint

Two sleevebolts are used to attach forward end of vertical tail.
2. Interference Fit Joint12,13,14: Some Quantities and Equations in the Analytical Model

Bolt diameter \[D_{b0}^T = D_{b0}^R (1 + K_b \Delta T). \]

Temperature difference \[\Delta T = T - R \]

Hole diameter \[D_{h0}^T = D_{h0}^R (1 + K_h \Delta T) \]

Bolt length \[l_{b0}^T = l_{b0}^R (1 + K_b \Delta T) \]

Hole length \[l_{h0}^T = l_{h0}^R (1 + K_h \Delta T) \]

Diametrical interference \[I^T = D_{b0}^T - D_{h0}^T \]

Diametrical interference \[I^T = \Delta D_{h0}^T - \Delta D_{b0}^T \]

Interference Pressure \[Q = Q_0 - C_4 P \]

Tensile Preload \[P \]

Ultrasonic velocity \[\rho_0 \left(V_0^R \right)^2 = \lambda + 2\mu + (2l + \lambda)\theta + (4m + 4\lambda + 10\mu)\varepsilon_{11}, \]

Preload and tensile strain \[P = EA\varepsilon_{11} \]
2. Interference Fit Joint12,13,14: Analytical Model for Two Cases

CASE I: Bolt Pulled

Ultrasonic stretch with interference

\[\Delta L^i = \Delta t^R_{cs} \left(\frac{V^i}{2} \right) = l^R_{b0} \left(\frac{(1 + \varepsilon_{11})}{(1 + \beta \cdot \varepsilon_{11})} - 1 \right) \left(\frac{V^i}{V^R_0} \right) = \varepsilon_{11} l^R_{b0} \left(\frac{1 - \beta}{1 + \beta \cdot \varepsilon_{11}} \right) \left(\frac{V^i}{V^R_0} \right) \]

Ultrasonic stretch without interference

\[\Delta L^i = \Delta t^R_{cs} \left(\frac{V^i}{2} \right) = \varepsilon_{11} l^R_{b0} \left(1 - \beta \right) \left(\frac{V^i}{V^R_0} \right) \]

Load factor without interference

\[W^{av} = \frac{P}{\Delta L^i} = \frac{AE_b}{l^R_{b0} \left(1 - \beta \right)} \left(\frac{V^R_0}{V^i} \right) \]

CASE II: Nut Tightened

Ultrasonic stretch with interference

\[\Delta L^i = l^T_{bs} \varepsilon_{11} \left(1 - \beta \right) \left(\frac{1}{1 + K_b \cdot \Delta T} \right) \left(\frac{V^i}{V^R_0} \right) \]

Ultrasonic stretch without interference

\[\Delta L^i = l^T_{bs} \varepsilon_{11} \left(1 - \beta \right) \left(\frac{1}{1 + K_b \cdot \Delta T} \right) \left(\frac{V^i}{V^R_0} \right) \]

Effective length

\[l^T_{bs} = l^T_{bs} \left(\frac{K_h \Delta T + \varepsilon_h + K_h \Delta T \varepsilon_h}{1 + \varepsilon_{11}} \right) \]

Load factor

\[W^{av} = P/\Delta L^i \]

These expressions are more accurate than used in Raymond and StressTel Boltgages
2. Interference Fit Joint12,13,14: Schematic of Preload Characteristic Curves

All characteristic lines theoretically meet and merge after exceeding a certain load when bolt interference is lost.
2 Interference Fit Joint12,13,14: Analytical Model for Friction and Pressure on Shank

Preload at nut end - Loading

\[P_{NL} = P + \left(f \pi D_{b0}^T l_{h0}^T Q / 2 \right) \]

Preload at nut end - Unloading

\[P_{NU} = P - \left(f \pi D_{b0}^T l_{h0}^T Q / 2 \right) \]

Frictional force to push bolt out of the hole

\[F_{\text{max}}^0 = f \pi D_{b0}^T l_{h0}^T Q_0 \]

Shank pressure during – Loading and unloading

\[Q_L = \frac{Q_0 - C_4 P_{NL}}{1 - 0.5 \pi C_4 f D_{b0}^T l_{h0}^T} \]

\[Q_U = \frac{Q_0 - C_4 P_{NU}}{1 + 0.5 \pi C_4 f D_{b0}^T l_{h0}^T} \]

Load Factor - Loading

\[W_L = \frac{P_{NL}}{\Delta L_{imL}} \]

Preload characteristic equation

\[P = W \Delta L_{im}^i + Y \]
2. Interference Fit Joint12,13,14: Simulation Run Results for Applied Load Versus the Ultrasonic Stretch for Various Cases

The two lines theoretically meet and merge after exceeding a certain load when Bolt interference is lost. Very small difference in this case
2. Interference Fit Joint12,13,14: Simulation Run Comparison with Experiments

<table>
<thead>
<tr>
<th>Quantities defining the load characteristics</th>
<th>Simulation</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>P^R_H Residual preload</td>
<td>kg</td>
<td>1127</td>
</tr>
<tr>
<td>ΔL^i_1 Assembly stretch</td>
<td>mm</td>
<td>0.0260</td>
</tr>
<tr>
<td>ΔL^i_2 Residual stretch</td>
<td>mm</td>
<td>0.0164</td>
</tr>
<tr>
<td>ΔL^i_0 Initial stretch</td>
<td>mm</td>
<td>0.0424</td>
</tr>
<tr>
<td>W_L Load factor during loading</td>
<td>kg/mm</td>
<td>34,037</td>
</tr>
<tr>
<td>W_U Load factor during unloading</td>
<td>kg/mm</td>
<td>34,447</td>
</tr>
</tbody>
</table>

Simulation based on the analytical model compares well with experiments.
2. Interference Fit Joint 12,13,14: Analytical Model, Determination of Bolt Interference

- Method to measure the interference between the bolt and hole without removing the bolt.
 - The bolt is subjected to a loading/unloading cycle without removing it from the hole.
 - The ultrasonic stretch is measured and the load characteristics are plotted.
- Measure the friction F and residual stretch. Using Preload versus ultrasonic stretch plot.
- Determine the maximum interference pressure from the friction using following Eq.

$$F_{\text{max}} = f \pi D_{b0}^{T} l_{h0}^{T} Q_{\text{max}}$$

- Determine interference pressure Q_{0} using following Eq.

$$Q_{\text{max}} = Q_{0} / \left(1 + 0.5 \pi C_{4} f D_{b0}^{T} l_{h0}^{T} \right)$$

- Determine the interference from the interference pressure using following Eq.

$$I_{s}^{T} = I_{0}^{T} = I^{T} = Q_{0} C_{3}$$
2. Interference Fit Joint12,13,14: Conclusions

- An analytical model for ultrasonic tensile preload measurements on a bolt in a joint given.
 - The model covers two cases of the joint, with and without the diametrical interference.
 - The model accounts for change in the joint temperature.

- Paper provides results of a computer application based on the model that simulates the ultrasonic preload gage to provide preload from the transit time measurements.

- The model in this paper considers both, the constant effective length (machine pull) and the variable effective length (nut torque).

- The paper provides an ultrasonic technique to measure the interference pressure and the diametrical interference of a bolt in a joint.

- The simulated characteristics compare well with the experimental results.
Section 3. Ultrasonic Preload Measurement in Shear Joint15,16: Loading, shear force and bending moment on the bolt

- Ray Tracing Analytical Model
 - No beam spread,
 - No beam-bending
 - No variation in the beam intensity normal to the direction of path.
 - The reflector reflects the wave back as a plane wave.
 - The bolt profile is an arc of a circle.
3. Ultrasonic Preload Measurement in Shear Joint15,16: Ultrasonic Ray Path in a Bent Bolt

\[(R - x_i + 2C \sin \phi) \tan \phi / \cos 2\phi \]

\[(R - x_i + 2C \sin \phi) \tan \phi \]

\[(x_1, y_1) \]

\[(x_2, y_2) \]

\[(x_3, y_3) \]

\[A / \cos 2\phi \]

\[C / \cos \phi \]

\[A / \tan 2\phi \]

\[2C \sin \phi \]

\[(R - x_i + 2C \sin \phi) / \tan \phi \tan 2\phi \]

\[(R - x_i + 2C \sin \phi) \]

\[\text{CENTER OF BOLT CURVATURE} \]

Ajay M. Koshti, NASA Johnson Space Center, Houston, TX. Conference: NESC NDE TDT Face to Face Meeting, Michoud, LA
3. Ultrasonic Preload Measurement in Shear Joint15,16: Ultrasonic Ray Path in a Bent Bolt
3. Ultrasonic Preload Measurement in Shear Joint15,16: Analytical Model

Radius, effective length and bending angle

\[R = \frac{l}{\phi} \]

Ray shift

\[Q = -2C \sin \phi - \left(\frac{l}{\phi} - x_1 - 2C \sin \phi \right) \tan \phi \tan 2\phi - A \tan 2\phi \]

Pulse transit time

\[t_1 = \frac{P_1 P_2 + P_3 P_4 + P_4 P_5 + P_6 P_7}{V_0} + \int_{p_2}^{p_3} \frac{ds}{V_{23}} + \int_{p_3}^{p_6} \frac{ds}{V_{56}} \]

Pulse transit time

\[t_1 = \frac{P_1 P_2 + P_3 P_4 + P_4 P_5 + P_6 P_7}{V_0} + \int_{p_2}^{p_3} \frac{dy}{V_{23}} + \sec 2\phi \int_{p_3}^{p_6} \frac{dy}{V_{56}} \]

Integration increment

\[\Delta y_{23} = \frac{(R - x_1) \tan \phi}{m_1} \]

Integration increment

\[\Delta y_{56} = \frac{(R - x_1 + 2C \sin \phi) \tan \phi}{m_1} \]

Ray returning point

\[x_1^f = \frac{x_c + 2C \sin \phi + (R + 2C \sin \phi) \tan \phi \tan 2\phi + A \tan 2\phi}{1 + \tan \phi \tan 2\phi} \]
3. Ultrasonic Preload Measurement in Shear Joint15,16: Analytical Model

Radial Coordinate
\[r^c = R - r \]

Velocity
\[V = V_0 \left(1 + c_1 \epsilon_v \right) \]

Stress
\[\sigma = \frac{M_{av} r^c}{I} \]

Velocity
\[V = V_0 \left(1 - \frac{c_1 r^c \cos^2 \gamma}{R} \right) \]

Received ultrasonic signal
\[U(t) = \int \int u(x_1, z, t) dx_1 dz \]

\[u(x_1, i) = - \frac{2 \sin \left(2 \pi c \left(\frac{i - 1 - \Delta i}{N} \right) + \pi \right) e^{-a \left(2\pi \left(\frac{i-1-\Delta i}{N} \right) - \pi \right)^2}}{\pi r_z^2} \]
3. Ultrasonic Preload Measurement in Shear Joint15,16: Values of Some Parameters Used in the Simulation

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(l)</td>
<td>mm (in.)</td>
<td>95.5 (3.76)</td>
</tr>
<tr>
<td>(A)</td>
<td>mm (in.)</td>
<td>91.95 (3.62)</td>
</tr>
<tr>
<td>(C)</td>
<td>mm (in.)</td>
<td>28.45 (1.12)</td>
</tr>
<tr>
<td>(V_0)</td>
<td>Mm/sec (in./sec)</td>
<td>5905347.6 (232494)</td>
</tr>
<tr>
<td>(E)</td>
<td>Mpa, kg/mm(^2) (psi)</td>
<td>21.3729 x 10(^6), 21.8 x 10(^6), (31 x 10(^6))</td>
</tr>
<tr>
<td>(c_1)</td>
<td></td>
<td>-2.45</td>
</tr>
<tr>
<td>(c)</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>(N)</td>
<td></td>
<td>1024</td>
</tr>
<tr>
<td>(f)</td>
<td>Hz</td>
<td>5 \times 10^6</td>
</tr>
<tr>
<td>(a)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>(r_s)</td>
<td>mm (in.)</td>
<td>6.35 (0.25)</td>
</tr>
<tr>
<td>(x_s)</td>
<td>mm (in.)</td>
<td>1.5 (0.059)</td>
</tr>
<tr>
<td>(x'_s)</td>
<td>mm (in.)</td>
<td>2.894 (0.114)</td>
</tr>
<tr>
<td>(m_1)</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>(m_2)</td>
<td></td>
<td>40</td>
</tr>
<tr>
<td>(H)</td>
<td>kg (lb)</td>
<td>45.5, 90.9, 136.4, 181.8, 227.3 (100, 200, 300, 400, 500.0)</td>
</tr>
<tr>
<td>(I)</td>
<td>mm(^4) (in.(^4))</td>
<td>4.91 \times 10^4 (0.01179)</td>
</tr>
<tr>
<td>(\Delta \phi)</td>
<td>Radian for 45.45 kg (100 lb)</td>
<td>0.0006455</td>
</tr>
<tr>
<td>(\Delta U/H)</td>
<td>mm/kg, (in/lb) at 227.3 kg (500 lb)</td>
<td>-1.9 \times 10^{-4} (-3.4 \times 10^{-4})</td>
</tr>
</tbody>
</table>
3. Ultrasonic Preload Measurement in Shear Joint15,16: Simulated Waveforms Before and After Bending Load Using the Analytical Model

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{waveforms.png}
\caption{Red: Before shear load
Blue: After shear load
Progression of Wave form with increasing shear load}
\end{figure}
3. Ultrasonic Preload Measurement in Shear Joint: Measurements On a Bolt in a Shear Bending Set-up

- Study effect of bolt bending on ultrasonic measurements
- Used slotted, counterbored and stepped end bolts
- Used single and dual element transducers in pulse/echo mode
- Simply supported at ends, load in the center
- Load from 0 to 455 kg (1,000 lb) with steps of 45.5 kg (100 lb)
- 23 runs
3. Ultrasonic Preload Measurement in Shear Joint15,16: Run Designation Scheme

- Transducer Descriptor
 - Capital letter
 - A, B: Transducer halves
 - C: Circular element transducer

- Clock Position of the Transducer

- Reflector Descriptor
 - Lowercase letter
 - a, b: Reflector halves
 - c: Circular end reflector
 - s: Slotted end reflector
 - e: Reflector area without slot

- Clock Position of the Reflector
 - s3: Slot direction from 3 to 9
 - e3: Slot position from 12 to 6
 - b6: Midpoint of the circular half b at 6
3. Ultrasonic Preload Measurement in Shear Joint: Run Configurations

<table>
<thead>
<tr>
<th>Run Number</th>
<th>Elevation</th>
<th>Port 1 (Front)</th>
<th>Port 2 (Back)</th>
<th>Port 3 (Front)</th>
<th>Port 4 (Back)</th>
<th>Port 5 (Front)</th>
<th>Port 6 (Back)</th>
<th>Port 7 (Front)</th>
<th>Port 8 (Back)</th>
<th>Port 9 (Front)</th>
<th>Port 10 (Back)</th>
<th>Port 11 (Front)</th>
<th>Port 12 (Back)</th>
<th>Port 13 (Front)</th>
<th>Port 14 (Back)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>B6-B6</td>
<td>B6-B6</td>
<td>B6-B5</td>
<td>B6-B5</td>
<td>C-e5</td>
<td>C-e5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>A12-a12</td>
<td>B6-B5</td>
<td>B6-B5</td>
<td>B6-B5</td>
<td>C-e5</td>
<td>C-e5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>B6-a12</td>
<td>B6-a12</td>
<td>A12-c2</td>
<td>B6-c2</td>
<td>C-e5</td>
<td>C-e5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>B6-a12</td>
<td>B6-a12</td>
<td>B6-c2</td>
<td>B6-c2</td>
<td>C-e5</td>
<td>C-e5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>A9-a9</td>
<td>A3-a3</td>
<td>A9-a9</td>
<td>A9-a9</td>
<td>A8-a8</td>
<td>A8-a8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>A9-a3</td>
<td>A9-a3</td>
<td>A9-a3</td>
<td>A9-a3</td>
<td>A9-a9</td>
<td>A9-a9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-1</td>
<td>1</td>
<td>A9-b6</td>
<td>A9-b6</td>
<td>A9-b6</td>
<td>A9-b6</td>
<td>C-b6</td>
<td>C-b6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-2</td>
<td>1</td>
<td>A9-a12</td>
<td>A9-a12</td>
<td>A9-a12</td>
<td>A9-a12</td>
<td>C-a12</td>
<td>C-a12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-1</td>
<td>1</td>
<td>B3-b6</td>
<td>B3-b6</td>
<td>B3-b6</td>
<td>B3-b6</td>
<td>C-b6</td>
<td>C-b6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-2</td>
<td>1</td>
<td>B3-a12</td>
<td>B3-a12</td>
<td>B3-a12</td>
<td>B3-a12</td>
<td>C-a12</td>
<td>C-a12</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-1</td>
<td>1</td>
<td>A12-b3</td>
<td>A12-b3</td>
<td>A12-b3</td>
<td>A12-b3</td>
<td>C-b3</td>
<td>C-b3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9-2</td>
<td>1</td>
<td>A12-a9</td>
<td>A12-a9</td>
<td>A12-a9</td>
<td>A12-a9</td>
<td>C-a9</td>
<td>C-a9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

March 24, 2015

Ajay M. Koshti, NASA Johnson Space Center, Houston, TX. Conference: NESC NDE TDT Face to Face Meeting, Michoud, LA
3. Ultrasonic Preload Measurement in Shear Joint15,16: Ultrasonic Stretch versus Load Experimental Data

Chart 1

Chart 2

Chart 3

Chart 4

Chart 5

Chart 6
3. Ultrasonic Preload Measurement in Shear Joint15,16: Simulation versus Experiment

Experiment and Simulation of ultrasonic stretch versus load for run 12 (B6-c)
3. Ultrasonic Preload Measurement in Shear Joint15,16: Conclusions

- Ultrasonic measurements can be linear with bending for small amount of bending.
- For larger amount of bending the ultrasonic measurements become erratic due to excessive signal distortion.
 - Although phased array transducers with full matrix capture and custom processing would eliminate the issues with distortion.
- Ultrasonic measurements can be used to measure:
 - Bending loads in some bolts
 - Combined tensile and bending loads in some bolts
- The experiment and simulation show a similar relationship between the ultrasonic stretch and applied load in the experimental load range.
- The analytical model forms basis for the method of measuring bending loads using ultrasonic measurements.
 - The model is used here applicable for all shear/bending load configurations given here.
- It would be desirable to incorporate effect of beam-bending in the model.
Section 4. Effect of Bolt Bending in Flanged Joint on Ultrasonic Measurements

- **Shuttle Booster Hold Down Post Bolts**
- **Orbiter/747 Aft Attach Bolts**
 - Two 2” Dia. Inconel 718 bolts
 - Loaded to 115 to 155 kip
 - Clamped joint, clearance fit
- **Vertical Tail Forward Attach Bolts**
 - Two 1” Dia. MP35N bolts
 - Loaded to 50 kip
 - clamped joint, interference fit
4. Flanged Joint on Ultrasonic Measurements17: Orbiter/External Tank Umbilical Mate

Orbiter/ET Umbilical Attach Bolts
Two umbilicals, Left one for liquid hydrogen and Right one for liquid oxygen
Three 0.7” Dia. X 8” long MP35N bolts per umbilical, Flanged joint in a clearance fit, 45 to 61 kip load
Provides structural joint and pressure on fluid line seals to prevent leakage.
Three bolts of an umbilical are preloaded simultaneously using hydraulic tensioners. The tensioners pull the bolt and allow the nut to be tightened by a small torque.

March 24, 2015
Ajay M. Koshti, NASA Johnson Space Center, Houston, TX. Conference: NESC NDE TDT Face to Face Meeting, Michoud, LA
4. Flanged Joint on Ultrasonic Measurements: Ultrasonic Measurements on Umbilical Bolts

- Umbilical bolt measurements in original bolt configuration
 - Ultrasonic signal distorted causing unreliable readings
- Signal distorted due to bolt bending
 - Umbilical flanges bend under bolt tension and cause bolt bending
 - Typical bolt protrusion over the nut is ~1/8 in.
 - Bolt stretch = 0.022 in
 - Flange bending, flange compression/sagging, nut compression
 - Bolt protrusion is a measure of flange bending
- Estimated end to end Bolt Bending < 1 degree

• Bolt End Configurations
 - Old bolt had a slot in the end
 - The slot provides a separate echo
 - The end (back) provides a relatively stronger echo
 - Ultrasonic measurements are possible on both echoes
 - Modified bolt has a 1/2” counterbore
 - The counterbore echo is measurable

Slotted End Before Preload Slotted End After Preload

Raymond boltgage signals

Counterbore Echo Slot Echo Bolt End Echo

StressTel boltmike signals

Ajay M. Koshti, NASA Johnson Space Center, Houston, TX. Conference: NESC NDE TDT Face to Face Meeting, Michoud, LA 33
4. Flanged Joint on Ultrasonic Measurements17: Test Fixtures with Umbilical Joint Hardware

- Simulated Joint with ultrasonic transducer and temperature probe

Long Fixture

Short Fixture
4. Flanged Joint on Ultrasonic Measurements17: Short Fixture with Umbilical Joint Hardware

Test Assembly

Test Assembly with Ultrasonic Transducer

Joint Assembly without Fixture

Top View

Assembly Parts

Boltmike with Temperature Probe

March 24, 2015

Ajay M. Koshti, NASA Johnson Space Center, Houston, TX. Conference: NESC NDE TDT Face to Face Meeting, Michoud, LA
4. Flanged Joint on Ultrasonic Measurements17: Analytical Model with Geometric and Bending Effect

Phase change due to Geometry and bending effect.

\[\Delta \phi_{Gb} = \left(\frac{2\pi}{\lambda} \right) \left[\left(\frac{L}{\theta} - x \right) \tan \theta - 2L - \frac{2\theta'}{S} \left(x + \frac{Q}{4} \right) \right] \]

Ultrasonic signal response.

\[U(t) \propto \iint_{A} u(x, y, t) \, dx \, dy \]
4. Flanged Joint on Ultrasonic Measurements: Comparison of Simulated Signals

Effect of Phase Gradient on a Flat Reflector (Without Slot)

 Beam shift, signal shift, and loss of signal amplitude

Effect of Phase Gradient with Slot

 Beam shift, signal shift, loss of signal amplitude, and higher signal distortion.

Stress Effect
- Bolt tension increases the path length
 - Ultrasonic stretch = 3 x Physical stretch
- Bolt bending results in bending stress in the bolt
 - On tensile region the path length increases
 - On the compressive side the path length decreases
- The bending stress results in slight bending of the beam away from the compressive side

Geometry Effect
- Path length of rays decrease in the compressive region
- Path length increases in the tensile region
- Part of the beam is lost due to beam shift
- Signal width increases but amplitude decreases

March 24, 2015 Ajay M. Koshti, NASA Johnson Space Center, Houston, TX. Conference: NESC NDE TDT Face to Face Meeting, Michoud, LA
4. Flanged Joint on Ultrasonic Measurements: Bolt and Transducer Orientations in the Fixture, End Gap

End gap as a measure of bending load

Reference Runs

Short fixture, single element transducer, edge shimmed, Gap closing = 0.203 mm (0.008 in.)

<table>
<thead>
<tr>
<th>Run and configuration</th>
<th>Fixture</th>
<th>Bolt</th>
<th>Reflector</th>
<th>Reflector angles</th>
<th>Transducer</th>
<th>Transducer angle</th>
<th>Stretch at nominal load, mm (in.)</th>
<th>54% Stretch at nominal load, mm (in.)</th>
<th>100% Stretch at nominal load, mm (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1A</td>
<td>Short</td>
<td>Slotted</td>
<td>End</td>
<td>72 & -108</td>
<td>Single</td>
<td>N/A</td>
<td>0.927 (0.0365)</td>
<td>1.824 (0.0718)</td>
<td></td>
</tr>
<tr>
<td>R1B</td>
<td>Short</td>
<td>Slotted</td>
<td>Slot</td>
<td>-18 & 162</td>
<td>Single</td>
<td>N/A</td>
<td>0.917 (0.0361)</td>
<td>1.803 (0.0710)</td>
<td></td>
</tr>
<tr>
<td>R2A</td>
<td>Short</td>
<td>Counterbored</td>
<td>End</td>
<td>N/A</td>
<td>Single</td>
<td>N/A</td>
<td>0.927 (0.0365)</td>
<td>1.867 (0.0735)</td>
<td></td>
</tr>
</tbody>
</table>
4. Flanged Joint on Ultrasonic Measurements17: Summary of Regular Runs

- Gap closing
 - Short fixture: 2.1 mm (0.083 in.)
 - Long fixture: 2.74 mm (0.108 in.)
- Three measurement points
 - Zero load
 - 54\% nominal load: 41,370 kPa (6,000 psi) hydraulic pressure
 - 100\% nominal load: 77,222 kPa (11,200 psi) hydraulic pressure
- Ten regular runs
 - Short and long fixture
 - One slotted and one counterbored bolt
 - Two orientations for the slotted bolt
 - Single and dual element transducer in each run
 - Many orientations for the dual transducer

<table>
<thead>
<tr>
<th>Run number</th>
<th>Fixture configuration</th>
<th>Bolt end</th>
<th>Reflector type</th>
<th>Transducer angle, Deg.</th>
<th>Transducer angle, Deg.</th>
<th>Relative stretch at 54% of load, %</th>
<th>Relative stretch at 100% of load, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Long Slotted End</td>
<td>72 & -108 Single</td>
<td>N/A</td>
<td>4.4</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1B</td>
<td>Long Slotted Slot</td>
<td>-18 & 162 Single</td>
<td>N/A</td>
<td>5.5</td>
<td>4.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1C</td>
<td>Long Slotted End</td>
<td>72 & -108 Dual</td>
<td>72</td>
<td>.44</td>
<td>.65</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1D</td>
<td>Long Slotted End</td>
<td>72 & -108 Dual</td>
<td>-108</td>
<td>25.2</td>
<td>21.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>Long Slotted End</td>
<td>0 & 180 Single</td>
<td>N/A</td>
<td>11.0</td>
<td>8.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2B</td>
<td>Long Slotted Slot</td>
<td>90 & -90 Single</td>
<td>N/A</td>
<td>8.6</td>
<td>7.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2C</td>
<td>Long Slotted End</td>
<td>0 & 180 Dual</td>
<td>180</td>
<td>14.6</td>
<td>13.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2D</td>
<td>Long Slotted End</td>
<td>0 & 180 Dual</td>
<td>0</td>
<td>11.8</td>
<td>12.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3A</td>
<td>Long Slotted End</td>
<td>72 & -108 Single</td>
<td>N/A</td>
<td>4.7</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3B</td>
<td>Long Slotted Slot</td>
<td>-18 & 162 Single</td>
<td>N/A</td>
<td>6.4</td>
<td>5.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3C</td>
<td>Long Slotted Slot</td>
<td>-18 & 162 Dual</td>
<td>0</td>
<td>10.2</td>
<td>12.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3D</td>
<td>Long Slotted End</td>
<td>72 & -108 Dual</td>
<td>180</td>
<td>3.0</td>
<td>2.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3E</td>
<td>Long Slotted End</td>
<td>72 & -108 Dual</td>
<td>0</td>
<td>7.1</td>
<td>6.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3F</td>
<td>Long Slotted End</td>
<td>72 & -108 Dual</td>
<td>180</td>
<td>7.4</td>
<td>.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4A</td>
<td>Long Counterbored End</td>
<td>N/A Single</td>
<td>N/A</td>
<td>17.0</td>
<td>10.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4B</td>
<td>Long Counterbored End</td>
<td>N/A Dual</td>
<td>180</td>
<td>10.4</td>
<td>Distorted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4C</td>
<td>Long Counterbored End</td>
<td>N/A Dual</td>
<td>0</td>
<td>9.3</td>
<td>Distorted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4D</td>
<td>Long Counterbored End</td>
<td>N/A Dual</td>
<td>90</td>
<td>5.2</td>
<td>-4.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4E</td>
<td>Long Counterbored End</td>
<td>N/A Dual</td>
<td>90</td>
<td>40.3</td>
<td>29.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5A</td>
<td>Short Counterbored End</td>
<td>N/A Single</td>
<td>N/A</td>
<td>9.86</td>
<td>8.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5B</td>
<td>Short Counterbored End</td>
<td>N/A Dual</td>
<td>180</td>
<td>22.7</td>
<td>Distorted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5C</td>
<td>Short Counterbored End</td>
<td>N/A Dual</td>
<td>0</td>
<td>8.49</td>
<td>Distorted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5D</td>
<td>Short Counterbored End</td>
<td>N/A Dual</td>
<td>90</td>
<td>5.02</td>
<td>-7.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5E</td>
<td>Short Counterbored End</td>
<td>N/A Dual</td>
<td>90</td>
<td>27.39</td>
<td>22.58</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6A</td>
<td>Short Slotted End</td>
<td>72 & -108 Single</td>
<td>N/A</td>
<td>7.1</td>
<td>1.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6B</td>
<td>Short Slotted Slot</td>
<td>-18 & 162 Single</td>
<td>N/A</td>
<td>5.0</td>
<td>6.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6C</td>
<td>Short Slotted End</td>
<td>72 & -108 Dual</td>
<td>72</td>
<td>.74</td>
<td>.61</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6D</td>
<td>Short Slotted End</td>
<td>72 & -108 Dual</td>
<td>-108</td>
<td>23.8</td>
<td>24.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6E</td>
<td>Short Slotted Slot</td>
<td>-18 & 162 Dual</td>
<td>-18</td>
<td>12.2</td>
<td>12.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6F</td>
<td>Short Slotted Slot</td>
<td>-18 & 162 Dual</td>
<td>162</td>
<td>4.2</td>
<td>4.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7A</td>
<td>Short Slotted End</td>
<td>0 & 180 Single</td>
<td>N/A</td>
<td>7.7</td>
<td>7.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7B</td>
<td>Short Slotted Slot</td>
<td>90 & -90 Single</td>
<td>N/A</td>
<td>7.5</td>
<td>8.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7C</td>
<td>Short Slotted End</td>
<td>0 & 180 Dual</td>
<td>180</td>
<td>18.1</td>
<td>19.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7D</td>
<td>Short Slotted End</td>
<td>0 & 180 Dual</td>
<td>0</td>
<td>13.2</td>
<td>Distorted</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7E</td>
<td>Short Slotted End</td>
<td>90 & -90 Dual</td>
<td>90</td>
<td>-4.2</td>
<td>-3.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7F</td>
<td>Short Slotted Slot</td>
<td>90 & -90 Dual</td>
<td>-90</td>
<td>23.0</td>
<td>23.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7G</td>
<td>Short Slotted End</td>
<td>0 & 180 Dual</td>
<td>90</td>
<td>-5.2</td>
<td>-5.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7H</td>
<td>Short Slotted End</td>
<td>0 & 180 Dual</td>
<td>-90</td>
<td>20.3</td>
<td>20.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4. Flanged Joint on Ultrasonic Measurements17: Actual and Estimated Relative Stretch

- Used single ray analysis
- Shows some corroboration with the analytical model
- More variation in actual measurements

Table 3: Comparison of theoretically estimated stretch with actual stretch

<table>
<thead>
<tr>
<th>Run and configuration</th>
<th>Transducer angle, degree</th>
<th>% of nominal load</th>
<th>Chosen distance x, mm (in.)</th>
<th>Chosen angle α, degree</th>
<th>Ray shift, Q, mm (in.)</th>
<th>Estimated stretch, mm (in.)</th>
<th>Actual stretch, mm (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4</td>
<td>N/A</td>
<td>54</td>
<td>-1.01 (-0.04)</td>
<td>0.4</td>
<td>-2.8 (-0.11)</td>
<td>0.083 (0.0033)</td>
<td>0.0914 (0.0036)</td>
</tr>
<tr>
<td>S4</td>
<td>N/A</td>
<td>100</td>
<td>-1.77 (-0.07)</td>
<td>0.6</td>
<td>-4.26 (-0.17)</td>
<td>0.2030 (0.0080)</td>
<td>0.1651 (0.0065)</td>
</tr>
<tr>
<td>SD</td>
<td>90</td>
<td>54</td>
<td>3.048 (0.12)</td>
<td>0.4</td>
<td>-2.84 (-0.11)</td>
<td>-0.0745 (-0.0029)</td>
<td>-0.0076 (-0.0003)</td>
</tr>
<tr>
<td>SD</td>
<td>90</td>
<td>100</td>
<td>4.572 (0.18)</td>
<td>0.6</td>
<td>-4.26 (-0.17)</td>
<td>-0.1675 (-0.0066)</td>
<td>-0.1422 (-0.0056)</td>
</tr>
<tr>
<td>SE</td>
<td>-90</td>
<td>54</td>
<td>-3.556 (-0.14)</td>
<td>0.4</td>
<td>-2.84 (-0.11)</td>
<td>0.1824 (0.0072)</td>
<td>0.2540 (0.0100)</td>
</tr>
<tr>
<td>SE</td>
<td>-90</td>
<td>100</td>
<td>-2.032 (-0.08)</td>
<td>0.6</td>
<td>-4.26 (-0.17)</td>
<td>0.2178 (0.0086)</td>
<td>0.4216 (0.0166)</td>
</tr>
</tbody>
</table>
4. Flanged Joint on Ultrasonic Measurements17: Results and Conclusions

• Results
 • Relative ultrasonic stretch ranged from -8\% to 40\%
 • More relative stretch in certain orientations
 • Distortion
 • More distortion in the signal for certain orientations
 • Counterbore echo has less distortion than end echo
 • The slot echo has the least distortion
 • Certain slot clocking orientations are more favorable for measurement
 • Slot measurement: -18 to 162 degrees gives 6.4 \% increase
 • End halves measurement: 72 to 108 degrees 2.8\% increase
 • Counterbore echo gives stronger echo but gives up to 15.6\% increase in the ultrasonic stretch

• Conclusions
 • Larger reflector gives higher amplitude echo but distortion and relative stretch are high
 • The end halves give different distortion and relative stretch depending upon the angular orientation
 • The distortion is relatively high because of the spacing between the halves and the size of the halves
 • The slot gives different distortion and relative stretch depending upon the angular orientation
 • The slot echo is weak compared to the end echo
 • The slot echo (8.6\% max) has less distortion and relative stretch compared to the end echo (11 \% max, some completely distorted)
This model assumes

No beam spread.
The bolt profile is an arc of a circle.
The bolt has a constant cross sectional area and square ends.
The bending is applied by two moments, one at each end of the bolt. The moments are equal in magnitude but opposite in rotation.
5. Simulation of Effect of Bending Stress on Ultrasonic Beam18: Ultrasonic Ray, Bolt Geometry and Analytical Model

Bending stress\hspace{1em} \sigma = \frac{M(r - R)}{I}

Radius, effective length and bending angle\hspace{1em} R = \frac{l}{\varphi}

Bending angle\hspace{1em} \varphi = \frac{Ml}{EI}

Hooke’s law\hspace{1em} \varepsilon = \frac{\sigma}{E}

Strain\hspace{1em} \varepsilon_f = \frac{(r - R)}{R}

Velocity\hspace{1em} V_s = V_0 \left(1 + c_1 \varepsilon_v \right)

Velocity\hspace{1em} V_s = V_0 \left(1 + b \left[r - R \left[1 - \left(\frac{dr}{ds} \right)^2 \right] \right) \right)

b = c_1 / R
5. Simulation of Effect of Bending Stress on Ultrasonic Beam: Ray, Orthogonal Curve, and Analytical Solution

Curvature \(\kappa \approx \frac{dV_s / dr}{V_s} \approx \frac{|b|}{1 + b(r - R)} \)

Ray equation – second order
\(r'' = \frac{(1 - r'^2)}{r} \left[\frac{1 + b(1 - r'^2)(R - 2r)}{1 + b(1 - r'^2)(r - R)} \right] \)

Coupled pair of first order equations - Runge-Kutta
\(r'_1 = \frac{(1 - r_1^2)}{r_2} \left[\frac{1 + b(1 - r_1^2)(R - 2r_2)}{1 + b(1 - r_1^2)(r_2 - R)} \right] \)
\(r'_2 = r_1 \)
5. Simulation of Effect of Bending Stress on Ultrasonic Beam18: Numerical Solution for Ray Path

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline
\textbf{s, cm} & \textbf{r', cm} & \textbf{r, cm} & \textbf{\(\theta' \)} & \textbf{\(\theta' \) Average} & \textbf{\(\Delta s \) cm} & \textbf{\(\theta' \cdot \Delta s \)} & \textbf{\(\theta \)} & \textbf{\(x, cm \)} & \textbf{\(y, cm \)} & \textbf{\(dy/dx \)} \\
\hline
0.00 & 0 & 4535.0000 & 0.000221 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0.1073 & 0.00008 & 4535.0000 & 0.000221 & 0.000221 & 0.107 & 2.37E-05 & 0.001117 & 0.001142 & 0.000109 & 0.107 & 39295 \\
0.644 & 0.00048 & 4535.0002 & 0.000221 & 0.000221 & 0.537 & 2.73E-05 & 0.000014 & 0.000014 & 0.000014 & 0.644 & 5037 \\
1.744 & 0.012998 & 4535.0011 & 0.000221 & 0.000221 & 1.1 & 0.000243 & 0.000385 & 0.000719 & 0.000719 & 1.744 & 1598 \\
2.844 & 0.021197 & 4535.0030 & 0.000221 & 0.000221 & 1.1 & 0.000243 & 0.000627 & 0.002122 & 0.002122 & 2.844 & 830 \\
3.944 & 0.029395 & 4535.0058 & 0.000221 & 0.000221 & 1.1 & 0.000243 & 0.001087 & 0.004082 & 0.004082 & 3.944 & 561 \\
5.044 & 0.037594 & 4535.0095 & 0.000221 & 0.000221 & 1.1 & 0.000243 & 0.001112 & 0.006677 & 0.006677 & 5.044 & 424 \\
6.144 & 0.045792 & 4535.0141 & 0.000221 & 0.000221 & 1.1 & 0.000243 & 0.001353 & 0.009205 & 0.009205 & 6.144 & 340 \\
7.244 & 0.053999 & 4535.0196 & 0.000221 & 0.000221 & 1.1 & 0.000243 & 0.001597 & 0.013769 & 0.013769 & 7.244 & 284 \\
8.344 & 0.062188 & 4535.0259 & 0.000221 & 0.000221 & 1.1 & 0.000243 & 0.00184 & 0.018266 & 0.018266 & 8.344 & 244 \\
9.444 & 0.070386 & 4535.0332 & 0.000221 & 0.000221 & 1.1 & 0.000243 & 0.002082 & 0.023405 & 0.023405 & 9.444 & 214 \\
10.544 & 0.078584 & 4535.0414 & 0.00022 & 0.00022 & 1.1 & 0.000243 & 0.002325 & 0.029173 & 0.029173 & 10.544 & 191 \\
11 & 0.081982 & 4535.0451 & 0.00022 & 0.00022 & 0.456 & 0.000101 & 0.002426 & 0.031751 & 0.031751 & 10.999 & 177 \\
\hline
\end{tabular}
5. Simulation of Effect of Bending Stress on Ultrasonic Beam18: Ray Path in Bent Bolt Without Ray Bending
5. Simulation of Effect of Bending Stress on Ultrasonic Beam18: Return Trip of Ray

\[\delta_1 = 0.012\text{cm} \]

\[\delta_2 = \alpha C \]

\[\delta_3 = (l + C)(\alpha + 2\varphi) \]

\[\delta_4 \cong \delta_1 \]

\[\delta_5 = 2A(\alpha + \varphi) \]

Ray shift

\[Q = \delta_1 + \delta_2 + \delta_3 + \delta_4 + \delta_5 \]
5. Simulation of Effect of Bending Stress on Ultrasonic Beam: Ray Shift

Without ray bending

<table>
<thead>
<tr>
<th>Effective length, l, cm</th>
<th>A, cm</th>
<th>C, cm</th>
<th>ϕ, rad</th>
<th>R, cm</th>
<th>$Stretch Slope$, mm/kg</th>
<th>% Difference from actual slope</th>
<th>Ray Shift, Q, cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>10.8</td>
<td>4.4</td>
<td>0.0014</td>
<td>4535</td>
<td>-8.0 x 10^-4</td>
<td>-55.9</td>
<td>0.0616</td>
</tr>
<tr>
<td>7.62</td>
<td>10.2</td>
<td>3.81</td>
<td>0.0021</td>
<td>3628</td>
<td>-1.17 x 10^-4</td>
<td>-38.2</td>
<td>0.0887</td>
</tr>
<tr>
<td>8.9</td>
<td>9.5</td>
<td>3.2</td>
<td>0.0028</td>
<td>3175</td>
<td>-1.6 x 10^-4</td>
<td>-14.7</td>
<td>0.1208</td>
</tr>
<tr>
<td>9.6</td>
<td>9.2</td>
<td>2.8</td>
<td>0.0032</td>
<td>2984</td>
<td>-1.9 x 10^-4</td>
<td>0</td>
<td>0.1394</td>
</tr>
</tbody>
</table>

With ray bending

<table>
<thead>
<tr>
<th>A, cm</th>
<th>C, cm</th>
<th>l, cm</th>
<th>ϕ</th>
<th>α</th>
<th>δ_ρ, cm</th>
<th>δ_ϕ, cm</th>
<th>δ_ρ, cm</th>
<th>δ_ϕ, cm</th>
<th>Ray Shift, Q, cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.8</td>
<td>4.4</td>
<td>6.4</td>
<td>0.0014</td>
<td>0.0029</td>
<td>0.012</td>
<td>0.0128</td>
<td>0.0616</td>
<td>0.012</td>
<td>0.0929</td>
</tr>
</tbody>
</table>
5. Simulation of Effect of Bending Stress on Ultrasonic Beam18: Conclusions

- The work provides an analytical model that describes the effect of bending stress on the path of an ultrasonic ray.
- The paper attempts to explain the effect of beam bending on the ultrasonic measurements of bending loads in a bolt.
- It is shown that the ray bending is a major contributor to the beam shift and therefore affects the stretch slope to some extent.
- The paper provides a numerical method to trace the path of incident (non-reflected) ray.
- The ray and therefore the beam bend in an opposite direction to the physical bending direction of bolt.
• Ultrasonic preload measurement applications for many bolt configurations are provided in author’s cited papers11-18.

• The first of the applications involves the ultrasonic measurement of preload in the \textbf{interference fit bolt or sleeve bolt}. The friction on the shank of the interference fit bolt affects the ultrasonic preload measurements. A theoretical model, which forms the basis for the application, is provided.

• A second application of bolts in \textbf{a shear joint} is considered. A theoretical model and results of simulation of the bending measurement are provided. The bending measurement theory and the simulation forms the basis for this application as well the flanged joint application.

• A bolt in \textbf{a flanged joint} experiences both the tensile and bending loads. The third application involves measurement of the bending and tensile preload in the flanged joint bolt.

• Ultrasonic beam in a bolt bends due to bending stress in the bolt, if under bending load. A theoretical model governing this phenomenon is given. A numerical technique to compute the ultrasonic beam profile for a beam passing through bending stress is presented.

• A procedure to \textbf{estimate accuracy} of the ultrasonic preload measurements in the original bolt configuration by the two makes of commercial ultrasonic extensometers is provided. The relationships between the corresponding parameters of the two makes are provided. A \textbf{precise analytical model} for computing the preload characteristic curve in the original configuration is also provided.