SYSTEMS AND METHODS FOR X-RAY BACKSCATTER RADIOGRAPHY

Inventors: Daniel Shedlock, Oak Ridge, TN (US); Christopher Meng, Gainesville, FL (US); Nissia Sabri, Gainesville, FL (US); Edward T. Dugan, Gainesville, FL (US); Alan M. Jacobs, Gainesville, FL (US); Sharon Auerbach Jacobs, legal representative, Gainesville, FL (US)

Assignees: University of Florida Research Foundation, Inc., Gainesville, FL (US); NuSAFE, inc., Oak Ridge, TN (US)

Notice: Subject to any disclaimer, the term of this patent is extended or adjusted under 35 U.S.C. 154(b) by 160 days.

Prior Publication Data
US 2011/0200172 A1 Aug. 18, 2011

Related U.S. Application Data
Provisional application No. 61/045,823, filed on Apr. 17, 2008.

ABSTRACT
Systems and methods of x-ray backscatter radiography are provided. A single-sided, non-destructive imaging technique utilizing x-ray radiation to image subsurface features is disclosed, capable of scanning a region using a fan beam aperture and gathering data with rotational motion.

48 Claims, 9 Drawing Sheets
References Cited

U.S. PATENT DOCUMENTS

7,162,005 B2 1/2007 Bjorkholm
2001/0038680 A1 11/2001 Davidson
2008/0219404 A1 9/2008 Moore

OTHER PUBLICATIONS

FIG. 3B
METHOD AND APPARATUS FOR COMPUTED IMAGING BACKSCATTER RADIOGRAPHY

BACKGROUND OF INVENTION

X-ray backscatter imaging devices detect radiation coming back from a target. It is typically used for non-destructive examination applications where only one side of the target is available. The backscatter image can be used to “see” through walls or other barriers. The typical x-ray backscatter imaging utilizes Compton scattering. Compton scattering is a phenomenon of elastic scattering of photons and electrons. Compton x-ray backscatter images are formed by scanning a pencil-shaped beam and detecting the backscatter. A current backscatter technology primarily uses Radiography by Selective Detection (RSD) to generate images. RSD utilizes pencil beam Compton backscatter imaging that falls between highly collimated techniques and detecting the backscatter. It is typically used for non-destructive examination applications including non-destructive examination, medical imaging, military, and security purposes.

Embodiments of the present invention pertain to a method and apparatus for a single-sided, non-destructive imaging technique utilizing the penetrating power of x-ray radiation to image subsurface features. Embodiments can be referred to as Computed Imaging Backscatter Radiography (CIBR). Embodiments of the invention can be used for a variety of applications including non-destructive examination, medical imaging, military, and security purposes. Embodiments can provide an improved x-ray backscatter technology, and can provide a technique to speed up the creation of images from existing x-ray backscatter technology.

Applications of embodiments of the present invention include, but are not limited to scanner/imaging systems for detecting flaws and defects in materials and structures, scanners for detecting target objects and/or foreign object debris (FOD) inside of walls and structures, devices for security purposes to identify objects hidden in walls, containers or on individuals, portal scanning, law enforcement and Homeland Security applications, and medical imaging.

Advantageously, certain embodiments of the invention can significantly improve imaging speed. In addition, by using image reconstruction, three-dimensional images can be readily provided.

Specific embodiments of the subject method differ from Radiography by Selective Detection (RSD) primarily in the method of image acquisition. A fan beam aperture can be used rather than a pencil beam. Embodiments of the subject invention can gather discrete data over the desired area, utilizing rotational motion, as shown for example in FIG. 1B. Referring to FIG. 1B, a fan beam extending for at least a portion, and preferably the entire, width from the left edge of the field of view to the right edge of the field of view is scanned along vector 1 from the bottom of the field of view to the top of the field of view. The fan beam can then be rotated and then scanned along vector 2 from the bottom right corner of the field of view to the upper left corner of the field of view, then scanned along vector 3 from the right of the field of view to the left of the field of view, and finally scanned along vector 4 from the upper right corner of the field of view to the lower left corner of the field of view. Of course, the directions of one or
more of the vectors 1, 2, 3, and 4, can be reversed and the beam scanned in the opposite direction, the scans can be done as partial scans of the vectors, the order of the scans can be changed, the number of scans can be increased or decreased, and the angles between the vectors can be modified such that the vectors are not symmetrically distributed. The width of the fan beam can set a limit on the resolution of the image. The aspect ratio, i.e., the ratio of the length to the width of the beam, can impact the amount of time that can be saved versus pencil beam scanning. The detector detecting the backscattered radiation can be gated at certain intervals over each scan with the detected backscattered radiation put in bins corresponding to the portion of the object scanned during the time interval for the bin. The rate of scanning can be constant or can vary depending on the application. A non-symmetrical distribution of the scanning vectors can allow particular portions of the field of view to be emphasized and the resolution of certain portions of the field of view to be increased or decreased. Using rotational motion to gather the data is in contrast to the strictly Cartesian rastering movement shown in FIG. 1A. Fan beam scanning can provide several advantages over the pencil-beam scanning method. The use of varying shaped beams, such as oval, trapezoidal, or other non-rectangular shapes can allow adjustment of the resolution in portions of the field of view. In a specific embodiment, at least two fan beam scans are performed corresponding to vector at an angle to each other. In a further specific embodiment, the vectors for the two fan beam scans are at a 90 degree angle to each other. In further embodiments, n scans are performed having vector at 180/n degree increments with respect to each other. Of course the angles between nearest neighbor vectors do not have to be the same. In a preferred embodiment, the aspect ratio of the fan beam, i.e., the ratio of the length to the width is at least 5. In further embodiments, the aspect ratio can be at least 10, at least 30 (as shown in FIG. 4), at least 100, at least 1,000, at least 10,000, and at least 100,000. For an aspect ratio of 100,000, a field of view of 100 meters can be scanned by a beam 100 meters long and 1 mm wide, where such scanning could occur from, for example, a plane or helicopter. Using rotational motion to gather the data is in contrast to the strictly Cartesian rastering movement shown in FIG. 1A. Fan beam scanning can provide several advantages over the pencil-beam scanning method. The use of varying shaped beams, such as oval, trapezoidal, or other non-rectangular shapes can allow adjustment of the resolution in portions of the field of view. In a specific embodiment, at least two fan beam scans are performed corresponding to vector at an angle to each other. In a preferred embodiment, the aspect ratio of the fan beam, i.e., the ratio of the length to the width is at least 5. In further embodiments, the aspect ratio can be at least 10, at least 30 (as shown in FIG. 4), at least 100, at least 1,000, at least 10,000, and at least 100,000. For an aspect ratio of 100,000, a field of view of 100 meters can be scanned by a beam 100 meters long and 1 mm wide, where such scanning could occur from, for example, a plane or helicopter. According to an embodiment of the present invention, the scanning speed can be significantly increased by utilizing a line instead of a spot for illumination. The fan beam can create a higher intensity backscatter field, which allows the scanning speed to increase. In an embodiment, the total amount of motion can be decreased, because back-projection or algebraic reconstruction can be used generate and interpolate the image. Of course the scan speed can influence contrast. The data collected in a certain bin during the fan beam scan only provides one dimensional data, where combining the data from two scans at the portion of the field of view that the two scans intersect can provide two-dimensional data, and the data from all of the scans can provide pixel values at pixels on the field of view where scans intersect. FIGS. 2A and 2B show the image from a backscatter surface scan of a dime. FIGS. 3A and 3B show the image from a backscatter surface scan of a centered dime and an off-centered nut. Both the dime and the nut are seen clearly, as is the hole in the nut. For both of these scans, 10 degree increments were used for the fan beam rotational movement. In both FIGS. 2A-2B and FIGS. 3A-3B, the area scanned was 100 mm x 100 mm and the only difference between the left and right images in both of these two figures is contrast adjustment. The images in FIGS. 2A-2B and 3A-3B were constructed from the data taken via fan beam scans and reconstructed using a back projection technique used for CT image reconstruction. FIG. 4 shows three fan beam slit apertures. The fan beam aperture on the left was used in an initial experiment, the fan beam aperture in the center was used to obtain the results presented in FIGS. 2A-2B, 3A-3B, and 5A-5B, and the fan beam aperture on the right is a further embodiment. FIGS. 5A and 5B show the CIBR image from a backscatter surface scan of lead letters on a nylon backing. FIG. 6 shows a photograph of the lead letters on the nylon that were imaged in FIGS. 5A and 5B. The area scanned was 100 mm x 100 mm and the only difference between the image in FIG. 5A and the image in FIG. 5B is contrast adjustment. Tests implemented in accordance with embodiments of the invention using a fan beam aperture rotated during illumination have shown the ability to generate high-complexity images utilizing high-contrast objects at speeds greater than 3 times faster than current RSD scanning capabilities. Other means to rotate the fan beam can be used, including the combination of the x-ray head and slit aperture and/or the slit aperture. Of course, if the fan beam exits the radiation source, then rotation of the radiation source head rotates the fan beam. Further, the x-ray generator can be rocked back and forth in a direction perpendicular to the length of the fan beam in combination with rotation of the collimator. These images have been generated utilizing image reconstruction methods designed for computed tomography (CT) systems, which do not correlate directly to the method of scanning in accordance with embodiments of the subject method. In further embodiments, image reconstruction methods specifically geared to CIBR can be utilized. When reconstruction techniques directed to the embodiments implemented are used, image acquisition time can be further decreased and image quality can be improved. Image reconstruction methods directed to specific embodiments of the subject technique can provide three-dimensional backscatter images. All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety, including all figures and tables, to the extent they are not inconsistent with the explicit teachings of this specification. It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application. What is claimed is:

1. A method of imaging, comprising:
 a. illuminating an object with a fan beam of radiation, wherein the fan beam of radiation has a length to width aspect ratio of at least 5;
 b. receiving back scattered radiation from the object;
 c. rotating the fan beam of radiation with respect to the object, wherein the fan beam of radiation is rotated about an axis that is perpendicular to the length of the fan beam of radiation and perpendicular to the width of the fan beam of radiation;
 d. re-illuminating the object with the fan beam of radiation;
 e. receiving additional back scattered radiation from the object;
 f. reconstructing an image of at least a portion of the object from the received back scattered radiation and the received additional back scattered radiation.

2. The method according to claim 1, wherein illuminating the object with a fan beam of radiation comprises scanning the fan beam of radiation across the object in a direction perpendicular to the length of the fan beam.

3. The method according to claim 2, wherein the aspect ratio is at least 10.
4. The method according to claim 2, wherein the aspect ratio is at least 30.
5. The method according to claim 2, wherein the aspect ratio is at least 100.
6. The method according to claim 2, wherein the aspect ratio is at least 1,000.
7. The method according to claim 2, wherein the aspect ratio is at least 10,000.
8. The method according to claim 2, wherein the aspect ratio is at least 100,000.
9. The method according to claim 1, wherein the fan beam of radiation is a fan beam of x-ray radiation.
10. The method according to claim 1, wherein the fan beam of radiation is a fan beam of penetrating radiation.
11. The method according to claim 1, wherein the fan beam of radiation is formed by passing radiation through a slit aperture combination.
12. The method according to claim 11, wherein the slit aperture is substantially rectangular-shaped.
13. The method according to claim 11, wherein the slit aperture is positioned on an x-ray head, wherein rotating the fan beam of radiation comprises rotating the fan beam of radiation with respect to the object, wherein the fan beam of radiation has a length to width aspect ratio of at least 5, wherein the fan beam of radiation is rotated about an axis that is perpendicular to the length of the fan beam of radiation and perpendicular to the width of the fan beam of radiation; a detector positioned to detect back scattered radiation from the object; a processor, wherein upon receipt of detected back scattered radiation from the object corresponding to at least two rotation positions of the fan beam of radiation with respect to the object, the processor reconstructs an image of at least a portion of the object from the detected back scattered radiation from the object corresponding to the at least two rotation positions of the fan beam of radiation with respect to the object.
26. The apparatus according to claim 25, wherein the fan beam of radiation is scanned across the object in a direction perpendicular to the length of the fan beam.
27. The apparatus according to claim 26 wherein the aspect ratio is at least 10.
28. The apparatus according to claim 26 wherein the aspect ratio is at least 30.
29. The apparatus according to claim 26 wherein the aspect ratio is at least 100.
30. The apparatus according to claim 26 wherein the aspect ratio is at least 1,000.
31. The apparatus according to claim 26 wherein the aspect ratio is at least 10,000.
32. The apparatus according to claim 26, wherein the aspect ratio is at least 100,000.
33. The apparatus according to claim 25, wherein the fan beam of radiation is a fan beam of x-ray radiation.
34. The apparatus according to claim 25, wherein the fan beam of radiation is a fan beam of penetrating radiation.
35. The apparatus according to claim 25, wherein the fan beam of radiation is formed by passing radiation through a slit aperture.
36. The apparatus according to claim 25, wherein the slit aperture is substantially rectangular-shaped.
37. The apparatus according to claim 25, wherein the slit aperture is positioned on an x-ray head, wherein rotation of the fan beam of radiation with respect to the object comprises rotation of an x-ray head-slit aperture combination.
38. The apparatus according to claim 25, wherein the fan beam of radiation is scanned across the object in a direction perpendicular to the length of the fan beam.
39. The apparatus according to claim 25, wherein the fan beam of radiation is rotated about an axis that is perpendicular to the length of the fan beam of radiation and perpendicular to the width of the fan beam of radiation by 180°/n between each of the n rotation positions.
40. The apparatus according to claim 25, wherein the detected back scattered radiation corresponding to the at least two rotation positions of the fan beam of radiation with respect to the object is received on the same side of the object as the radiation source directed the fan beam of radiation at the object to be imaged.
41. The apparatus according to claim 25, wherein the processor reconstructs the image of at least a portion of the object via back-projection reconstruction.
42. The apparatus according to claim 25, wherein the processor reconstructs the image of at least a portion of the object via algebraic reconstruction.
43. The apparatus according to claim 25, wherein the width of the fan beam of radiation is less than or equal to 1 mm.
45. The apparatus according to claim 25, wherein rotation of the fan beam of radiation with respect to the object comprises rotation of the fan beam of radiation.

46. The apparatus according to claim 25, wherein rotation of the fan beam of radiation with respect to the object comprises rotation of the object.

47. The apparatus according to claim 25, wherein the processor reconstructs a 2D image of at least a portion of the object.

48. The apparatus according to claim 25, wherein the processor reconstructs a 3D image of at least a portion of the object.