Disclosed are highly efficient multiphoton absorbing compounds and methods of their use. The compounds generally include a bridge of pi-conjugated bonds connecting electron donating groups or electron accepting groups. The bridge may be substituted with a variety of substituents as well. Solubility, lipophilicity, absorption maxima and other characteristics of the compounds may be tailored by changing the electron donating groups or electron accepting groups, the substituents attached to or the length of the pi-conjugated bridge. Numerous photophysical and photochemical methods are enabled by converting these compounds to electronically excited states upon simultaneous absorption of at least two photons of radiation. The compounds have large two-photon or higher-order absorptivities such that upon absorption, one or more Lewis acidic species, Lewis basic species, radical species or ionic species are formed.
FIGURE 1
FIGURE 2c

00 016 10.0kV X400 75.0μm

FIGURE 2d

00 010 10.0kV X600 50.0μm
FIGURE 3a
FIGURE 3b
FIGURE 4

- **Na-DMAS**
- **TPS-DMAS**

Fluorescence Intensity (arb. units) vs. Wavelength (nm)

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>450</th>
<th>500</th>
<th>550</th>
<th>600</th>
<th>650</th>
<th>700</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescence Intensity</td>
<td>250</td>
<td>200</td>
<td>150</td>
<td>100</td>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>

FIGURE 5

- **Pump @ 560**

Fluorescence Signal (arb. units) vs. Energy (mJ)

<table>
<thead>
<tr>
<th>Energy (mJ)</th>
<th>0</th>
<th>0.5</th>
<th>1</th>
<th>1.5</th>
<th>2</th>
<th>2.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fluorescence Signal</td>
<td>0</td>
<td>50</td>
<td>100</td>
<td>150</td>
<td>200</td>
<td>250</td>
</tr>
</tbody>
</table>

Equations

1. $y = m_2 + m_1 \cdot m_0^2$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>71.426</td>
<td>7.0156</td>
</tr>
<tr>
<td>m_2</td>
<td>21.534</td>
<td>8.2006</td>
</tr>
<tr>
<td>Chisq</td>
<td>808.95</td>
<td>NA</td>
</tr>
<tr>
<td>R</td>
<td>0.98125</td>
<td>NA</td>
</tr>
</tbody>
</table>

2. $y = m_2 + m_1 \cdot m_0^2$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Error</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_1</td>
<td>4.4422</td>
<td>0.2877</td>
</tr>
<tr>
<td>m_2</td>
<td>10.335</td>
<td>0.6631</td>
</tr>
<tr>
<td>Chisq</td>
<td>10.466</td>
<td>NA</td>
</tr>
<tr>
<td>R</td>
<td>0.98765</td>
<td>NA</td>
</tr>
</tbody>
</table>
FIGURE 6
FIGURE 7

FIGURE 8
FIGURE 9
S7179
Ag COATED ANILINE-ACRYLATE
40 031 10.0kV X450 66.7μm

FIGURE 10
TWO-PHOTON OR HIGHER-ORDER ABSORBING OPTICAL MATERIALS FOR GENERATION OF REACTIVE SPECIES

CROSS REFERENCE TO RELATED APPLICATIONS

ORIGIN OF INVENTION

The invention described herein relates generally to materials which exhibit nonlinear absorptive properties as described in U.S. patent application Ser. No. 08/965,945, now U.S. Pat. No. 6,267,913, which is incorporated herein by reference. More particularly, the present invention relates to structural variants of those materials which have high two-photon or higher-order absorptivities and which, due to absorption of multiple photons, undergo chemistry with high efficiency, including, but not limited to, the creation of Lewis acidic species, Lewis basic species, radical species and ionic species.

For years, the possible applications of using two-photon or higher-order absorption for a variety of applications including optical limiting, optical memory applications, microfabrication, and rational drug delivery have been considered. There are two key advantages of two-photon or higher-order induced processes relative to single-photon induced processes. 1) Whereas single-photon absorption scales linearly with the intensity of the incident radiation, two-photon absorption scales quadratically with incident intensity and higher-order absorptions will scale with yet higher powers of incident intensity. As a result, it is possible to perform multiphoton processes with three dimensional spatial resolution. 2) Because these processes involve as a first step the simultaneous absorption of two or more photons, the chromophore is excited with a number of photons whose total energy equals the energy of multi-photon absorption peak but where each photon is insufficient energy to excite the molecule individually. Because the exciting light is not attenuated by single-photon absorption in this case, it is possible to excite molecules at a depth within a material that would not be possible via single-photon excitation by use of a beam that is focused to that depth in the material. These two advantages also apply to, for example, excitation within tissue or other biological materials. In multiphoton lithography or stereolithography, the nonlinear scaling of absorption with intensity can lead to the ability to write features below the diffraction limit of light and the ability to write features in three dimensions, which is also of interest for holography.

It was discovered in accordance with an earlier invention (as described in U.S. application Ser. No. 08/965,945, which is incorporated herein by reference) that molecules that have two or more electron donors, such as amino groups or alkoxy groups, connected to aromatic or heteroaromatic groups as part of a π-electron bridge exhibit unexpectedly and unusually high two-photon or higher-order absorptivities in comparison to, for example dyes, such as stilbene, diphenyl polynes, phenylene vinylene oligomers and related molecules. In addition, it was found that the strength and position of the two-photon or higher-order absorption can be tuned and further enhanced by appropriate substitution of the π-electron bridge with accepting groups such as cyano. It was also discovered in accordance with the earlier invention that molecules that have two or more electron acceptors, such as formyl or dicyanomethylidene groups, connected to aromatic or heteroaromatic groups as part of a π-electron bridge exhibit unexpectedly and unusually high two-photon or higher-order absorptivities in comparison to, for example dyes, such as stilbene, diphenyl polynes, phenylene vinylene oligomers and related molecules. The strength and position of the two-photon or higher-order absorption can likewise be tuned and further enhanced by appropriate substitution of the π-electron bridge with donating groups such as methoxy.

Realization of many of the possible applications of two-photon or higher-order absorption by dyes rests on the availability of chromophores with both large two-photon or higher-order absorption cross sections and structural motifs conducive to excited state chemical reactivity.

Chemistry induced by the linear absorption of electromagnetic radiation (single photon) has been proposed and exploited for polymerization initiation, photocrosslinking of polymers, holography, computer memory storage, microfabrication, medicine, and biochemistry among many other applications. Chemistry induced by linear absorption, however, allows spatial control largely limited to two dimensions
(i.e., a surface). The invention described herein allows spatial control of photoinduced chemistry over three dimensions.

SUMMARY OF THE INVENTION

The present invention provides compositions of matter that have large two-photon or higher-order absorptivities and which upon two-photon or higher-order absorption lead to formation of one or more of Lewis acidic species, Lewis basic species, radical species and ionic species. It was discovered in accordance with the present invention that chromophores that include the specific structural motifs described below allow efficient and hitherto unexplored access via multiphoton absorption to species of great material engineering, biological, and medicinal importance.

For example, compositions of the present invention are useful when incorporated into solutions, prepolymer, polymers, Langmuir-Blodgett thin films, self-assembled monolayers, and cells. The compositions can be advantageously modified to allow for variation of ease of dissolution in a variety of host media, including liquids and polymeric hosts, by changing the nature of the substituents attached to the central π-conjugated framework of the molecule as well as either the donors or acceptors, or both. In addition, by controlling the length and composition of the π-electron bridge of the molecule, it is possible to control the position and strength of the two-photon or higher-order absorption and the two-photon or higher-order excited fluorescence.

Examples of compositions in accordance with the present invention have the general formulas as shown below.

BRIEF DESCRIPTION OF THE DRAWINGS

In order to ensure a complete understanding of the present invention, the following drawings are provided in which:

FIG. 1 is a graph showing the rate of polymerization of monomethyl-ether hydroquinone (MEHQ) inhibited Sartomer SR9008 initiated by bis-dibutylaminostibene (BDAS) and two-photon absorptivity as a function of initiation wavelength.

FIGS. 2a, b, c and 2d are SEM micrographs of cantilever and optical waveguide structures fabricated in solid films consisting of 30% w/w PSAN (75% polystyrene; 25% polycrystalinitriile copolymer), 69.9% w/w reactive monomer (50% inhibitor-free Sartomer SR9008 and 50% Sartomer SR368) and 0.1% w/w dye (1,4-bisbis(dibutylamino)styryl) 2,5-di-methoxybenzene.

FIGS. 3a and 3b show UV-visible light absorption spectra for TPS-HFA, Na-DMAS and TPS-DMAS.

FIG. 4 shows two-photon fluorescence excitation spectra of Na-DMAS and TPS-DMAS.

FIG. 5 shows two-photon fluorescence spectra of Na-DMAS and TPS-DMAS as a result of “pumping” at 560 nm. FIG. 6 illustrates the potential chemical structure of photocatalytic generator compounds having strong two-photon absorption according to the invention.

FIGS. 7 and 8 illustrate the chemical structure of aniline diacrylate (ADA), a composition according to the invention, and its absorption spectrum, respectively.

FIG. 9 shows fluorescence spectra of aniline and aniline diacrylate (ADA), after two-photon excitation at 300 nm.

FIGS. 10 and 11 show SEM micrograph and EDS spectrum of Ag-coated poly (ADA) column.

DETAILED DESCRIPTION

To ensure a complete understanding of the invention, the following definitions are provided:

Bridge: a molecular fragment that connects two or more chemical groups.

Donor: an atom or group of atoms with a low ionization potential that can be bonded to a π (π)-conjugated bridge.

Acceptor: an atom or group of atoms with a high electron affinity that can be bonded to a π (π)-conjugated bridge.

A more complete description of electron donors or donating groups and electron acceptors or electron accepting groups can be found in J. March, Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Fourth edition, Wiley-Interscience, New York, 1992, Chapter 9.

Aromatic group: a carbocyclic group that contains 4n+2 π electrons, where n is an integer.

Heteroaromatic group: a cyclic group of atoms, with at least one atom within the ring being an element other than carbon, that contains 4n+2 π electrons where n is an integer.

Chromophore: a molecule or aggregate of molecules that can absorb electromagnetic radiation.

Simultaneous: refers to two (or more) events that occur within the period of 10^{-14} sec.

Two-Photon Absorption: process wherein a molecule absorbs two quanta of electromagnetic radiation.

Multiphoton Absorption: process wherein a molecule absorbs two or more quanta of electromagnetic radiation.

Heterolytic cleavage: fragmentation of a two-electron chemical bond such that the two electrons that composed the bond both reside on one of the two fragments formed.

Homolytic cleavage: fragmentation of a two-electron chemical bond such that each of the two fragments formed has one of the two electrons that composed the bond.

Two-photon or higher-order absorption: phenomenon wherein a molecule simultaneously absorbs two or more photons (also referred to as multi-photon absorption) without the actual population of an excited state by the absorption of a single photon.

In many cases, as will be made clear below, the molecules we teach have large two-photon or higher-order absorptivities and are themselves novel compositions of matter. The general formulas below are not inclusive of all the structures which we teach for use as two-photon or higher-order absorbers that lead to formation of Lewis acidic species, Lewis basic species, radical species, and ionic species. Other compositions which have the characteristic electronic properties as well as other advantageous properties for a variety of applications will also become apparent to those with ordinary skill in the art, when one considers the examples described in the general structures below.

U.S. application Ser. No. 08/965,945 described, in part, four structural motifs for chromophores with high two-photon or multiphoton absorptivities in which the position of two-photon or multiphoton absorption bands may be con-
tors: Chemistry and Applications to Polymeric Materials”, *Prog. Polym. Sci.*, 21, 145 (1996). None of these disclosed molecules was, however, a strong two-photon absorber. In contrast, at least some of the compositions of the present invention have a structural framework having strong two-photon absorption and exhibit all of the advantageous characteristics of two-photon absorbers.

Synthesis of Sulfonium- and Iodonium-Containing Chromophores

Methods for the synthesis of iodonium salts are well documented in C. Herzig and S. Scheiding, German Patent 4,142,203, CA 119,250,162 and C. Herzig, European Patent 4,219,376, CA 120,298,975, which are incorporated herein by reference.

Structure of Sulfonium- and Iodonium-Containing Chromophores

In the structural formulae herein, an asterisk (*) identifies the atom of attachment to a functional group and implies that the atom is missing the equivalent of one hydrogen that would normally be implied by the structure in the absence of the asterisk, “—” indicates a single bond between 2 atoms, “—” indicates a double bond between 2 atoms, and “—” indicates a triple bond between 2 atoms.

One embodiment of the invention includes compounds with one of the four following general formulae

General Structure 1-I

General Structure 1-II

General Structure 1-III

Sulfonium- and Iodonium-Containing Chromophores

Chromophores of the present invention with large two-photon and multi-photon absorptivities containing the sulfonium or the iodonium moiety will, upon two-photon or multi-photon excitation, efficiently form protic acid. Photoacid generation using compounds containing sulfonium or iodonium moieties has been documented in R. S. Davidson, “The Chemistry of Photoinitiators—Some Recent Developments”, *J. Photochem. Photobiol. A: Chem.*, 73, 81-96 (1993) and M. Shiirai and M. Tsunooka, “Photoacid and Photobase Gener-
Aryl Group

When any of Rₐ, Rₔ, Rₖ, Rₚ, Rₜ, Rₖ, Rₚ, Rₜ, Rₖ, Rₚ, Rₜ, Rₖ, or Rₚ is an aryl group, they may be aryl groups of the formula

where B is —S— or —O—, and R₄₁, R₄₂, R₄₃, R₄₄, R₄₅, R₄₆, R₄₇, and R₄₈ are one of the following:

(i) H;
(ii) a linear or branched alkyl group with up to 25 carbons;
(iii) phenyl; and
(iv) —NRₐ₁Rₐ₂, —ORₐ₃, —SRₐ₄, —F, —Br, —Cl, —I, and phenyl, where Rₐ₁, Rₐ₂, Rₐ₃, Rₐ₄ are independently selected from the group consisting of

(a) vinyl, allyl, acryloyl, methacryloyl, epoxide (such as cyclohexene oxide), acrylonitrile, which may be polymerized by either a radical, cationic or anionic polymerization;
(b) isocyanate, isothiocyanate, epoxides such that the polymerizable functionality may be copolymerized with difunctional amines or alcohols such as HO(CH₂)₁OH, H₂N(CH₂)₁NH₂, where 1 ≤ y ≤ 25;
(c) strained ring olefins such as dicyclopentadienyl, norbornanyl, and cyclobutenyl where the chromophore is attached to any of the saturated carbon linkages in the strained ring olefins—in this case the monomer may be polymerized via ring opening metathesis polymerization using an appropriate metal catalyst as is known in the art; and

(d) \((-\mathrm{CH}_2)_n\mathrm{SiCl}_3, (-\mathrm{CH}_2)_n\mathrm{Si}(\mathrm{OCH}_3\mathrm{CH}_3)_a\), or \((-\mathrm{CH}_2)_n\mathrm{Si}(\mathrm{OCH}_3)_b\) where \(a\geq b\geq 25\)—in this case the monomers can be reacted with water under conditions known to those skilled in the art to form either thin film or monolithic organically modified sol-gel glasses, or modified silicatized surfaces.

Alkyl Groups

Unless otherwise indicated explicitly or by context, alkyl group as used in the above formulae means alkyl groups having up to 25 carbon atoms and includes both branched and straight chain alkyl groups. Exemplary alkyl groups include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, in the normal, secondary, iso and neo attachment isomers.

Aryl Groups

Unless otherwise indicated explicitly or by context, aryl group as used in the above formulae means aromatic hydrocarbons having up to 20 carbon atoms. Exemplary aryl groups include phenyl, naphthyl, furanyl, thiophenyl, pyrrolyl, selenophenyl, and tellurophenyl.

Fluorenyl- and Dibenzosubereryl-Containing Chromophores

Synthesis of Fluorenyl and Dibenzosubereryl Containing Chromophores

Methods for the synthesis of fluorenyl and dibenzosubereryl containing molecules are known to practitioners of the art. Exemplary synthetic procedures are given in the EXAMPLES section below.

Structure of Fluorenyl and Dibenzosubereryl Containing Chromophores

There are two classes of compounds of the present invention containing the fluorenyl or dibenzosubereryl groups: (1) compounds where the endgroups are electron donor groups, and (2) compounds where the endgroups are electron acceptor groups.

(1) Compounds where the Endgroups are Electron Donor Groups
In these formulae:

\[D_a \text{ and } D_b \]

are the same or different and are N, O, S, or P. To satisfy the proper bonding coordination, when \(D_a \) or \(D_b \) is an O group or S group, there is only one \(R \) group attached to the \(D_a \) or \(D_b \) group; that is, \(R_a \), \(R_b \), \(R_c \), or \(R_d \) may be nothing, as required.

\[I_g \]

is a homolytic or heterolytic leaving group and may be:

(i) H;

(ii) \(OR, \) —NR, R21 —NR2, —PR, R21 —PR2, —SR, —SR2, —CR31 CN, —CR21 CN, —CR, —CR21 Br, —CR31 Br, —CR21 Cl, —CR31 Cl, —CR, —CR21 I, or —CR31 I, where \(R_1 \), \(R_2 \), and \(R_3 \) are defined below.

Anionic Counterions

An electrically complex neutral. If, for example, the double positive charge, it will be accompanied by either two anionic species or by one doubly charged anionic species. may be used include, but are not limited to, Cl\(^-\); Br\(^-\); I\(^-\), and SbF\(_6^+\).

\(m, n, o \) and \(p \)

are integers and are independently selected such that 0:5\(m \):510, 0:5\(n \):510, 0:5\(o \):50, and 0:5\(p \):510.

\(U, V, X, \) and \(Y \)

may be the same or different and may be CR, CR, R, or N R m ,; \(R_1 \), \(R_2 \), and \(R_3 \) are defined below.

\(R_a \), \(R_b \), \(R_c \), and \(R_d \)

may be the same or different and may be:

(i) H;

(ii) \(OR, \) —NR, R21 —NR2, —PR, R21 —PR2, —SR, —SR2, —CR31 CN, —CR21 CN, —CR, —CR21 Br, —CR31 Br, —CR21 Cl, —CR31 Cl, —CR, —CR21 I, or —CR31 I, where \(R_1 \), \(R_2 \), and \(R_3 \) are independently selected from the group consisting of

(i) H;

(ii) a linear or branched alkyl group with up to 25 carbons;

(iii) \((CH_2)_a OR, \) —NR2, \((CH_2)_p Br, \) —CR31 CN, —CR21 CN, —CR, —CR21 Br, —CR31 Br, —CR21 Cl, —CR31 Cl, —CR, —CR21 I, or —CR31 I, where \(R_1 \), \(R_2 \), and \(R_3 \) are independently selected from the group consisting of

(1) H;

(2) a linear or branched alkyl group with up to 25 carbons;

(3) phenyl;

(4) a polymerizable functionality.

An aryl group

When any of \(R_a \), \(R_b \), \(R_c \), \(R_d \), \(R_e \), \(R_f \), \(R_g \), \(R_h \), \(R_i \), \(R_j \), \(R_x \), \(R_x \), \(R_m \), \(R_P \), \(R_q \), \(R_s \), or \(R_u \) is an aryl group, they may be aryl groups of the formula

\(R_a E R_b \) or \(R_a R_b \)

where \(E \) is —S or —O, and \(R_{11} \) or \(R_{12} \) are one of the following:

(i) H;

(ii) a linear or branched alkyl group with up to 25 carbons;

(iii) phenyl;

(iv) \(NR, R_21 OR, \) where \(R_{10} \) and \(R_{11} \) are independently selected from H, a linear or branched alkyl group with up to 25 carbons, and phenyl.

Aryl Group

An aryl group

When any of \(R_a \), \(R_b \), \(R_c \), \(R_d \), \(R_e \), \(R_f \), \(R_g \), \(R_h \), \(R_i \), \(R_j \), \(R_x \), \(R_x \), \(R_m \), \(R_P \), \(R_q \), \(R_s \), or \(R_u \) is an aryl group, they may be aryl groups of the formula

\(R_a E R_b \) or \(R_a R_b \)

where \(E \) is —S or —O, and \(R_{11} \) or \(R_{12} \) are one of the following:

(i) H;

(ii) a linear or branched alkyl group with up to 25 carbons;

(iii) phenyl;

(iv) \(NR, R_21 OR, \) where \(R_{10} \) and \(R_{11} \) are independently selected from H, a linear or branched alkyl group with up to 25 carbons, and phenyl.
Fused Aromatic Ring

When any of \(R_a, R_b, R_c, R_d, R_e, R_f, R_g, R_h, R_i, R_j, R_x, R_y, R_z \), or \(R_s \) are fused aromatic rings, they may be

where * indicates the atom through which the fused aromatic ring is attached.

Polymerizable Functionality

When any of \(R_a, R_b, R_c, R_d, R_e, R_f, R_g, R_h, R_i, R_j, R_x, R_y, R_z \), and \(R_s \) is a polymerizable functionality, they may be those which can be initiated by a strong Lewis acid group such as a proton and epoxides (such as cyclohexeneoxide).

Alkyl Groups

Unless otherwise indicated explicitly or by context, alkyl group as used in the above formulae means alkyl groups having up to 25 carbon atoms and includes both branched and straight chain alkyl groups. Exemplary alkyl groups include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, in the normal, secondary, iso and neo attachment isomers.

Aryl Groups

Unless otherwise indicated explicitly or by context, aryl group as used in the above formulae means aromatic hydrocarbons having up to 20 carbon atoms. Exemplary aryl groups include phenyl, naphthyl, furanyl, thiophenyl, pyrrolyl, selenophenyl, and tellurophenyl.

(2) Compounds where the Endgroups are Electron Acceptor Groups.
L is a homolytic or heterolytic leaving group and may be
(i) H;
—S°R,R,, —SR,, —S°R,R,, Cl, Br, I, —I°R,,
where R,, R,, and R,, are defined below;
(iii) a functional group derived essentially from an amino
acids selected from the group consisting of alanine;
valine; leucine; isoleucine; proline; tryptophan; phenyl-
alanine; methionine; glycine; serine; threonine;
tyrosine; cysteine; glutamine; asparagine; lysine; argin-
ine; histidine; aspartic acid; and glutamic acid;
(iv) a polypeptide;
(v) adenine, guanine, tyrosine, cytosine, uracil, biotin, fer-
ocene, ruthenocene, cyanuric chloride and derivatives
thereof; and
(vi) methacryloyl chloride.

Anionic Counterions

All cationic species are accompanied by counterions
appropriate to make an electrically neutral complex. If, for
example, the cationic species carries a double positive charge,
it will be accompanied by either two singly charged anionic
species or by one doubly charged anionic species. Anionic
species that may be used include, but are not limited to, Cl°,
Br°, I°, and Sb°°.

m, n, and o
are integers and are independently selected such that
0≤m≤10, 0≤n≤10, and 0≤o≤10.

U, V, X, and Y
may be the same or different and may be CR, —CR,, O,
S, or N—R,, R,, R,, and R,, are defined below.
R_a, R_b, R_c, and R_d may be the same or different and may be
(i) H;
(ii) a linear or branched alkyl group with up to 25 carbons;
(iii) $-\text{(CH}_2\text{)}\text{OR}_{\text{a}1}, -\text{(CH}_2\text{)}\text{NR}_{\text{a}2}\text{R}_{\text{a}3}$, $-\text{(CH}_2\text{)}\text{CN}$,
$-\text{(CH}_2\text{)}\text{Cl}$, $-\text{(CH}_2\text{)}\text{I}$, $-\text{(CH}_2\text{)}\text{-Phenyl}$, where $1 \leq a \leq 10$, $1 \leq b \leq 25$ and where R_{a1}, R_{a2}, and R_{a3} are the same or different and may be H or
a linear or branched alkyl group with up to 25 carbons;
(iv) an aryl group;
(v) a fused aromatic ring; and
(vi) a polymerizable functionality.

R_e, R_f, R_g, R_h, R_i, R_j, R_k, R_l, R_m, R_n, R_o, R_p, R_q, R_r, R_s, R_t, R_u, R_v, R_w
may be the same or different and may be
(a) H;
(b) a linear or branched alkyl group with up to 25 carbons;
(c) $-\text{(CH}_2\text{)}\text{OR}_{\text{e}1}, -\text{(CH}_2\text{)}\text{NR}_{\text{e}2}\text{R}_{\text{e}3}$, $-\text{(CH}_2\text{)}\text{CN}$,
$-\text{(CH}_2\text{)}\text{Cl}$, $-\text{(CH}_2\text{)}\text{I}$, $-\text{(CH}_2\text{)}\text{-Phenyl}$, where $1 \leq a \leq 10$, $1 \leq b \leq 25$ and where R_{e1}, R_{e2}, and R_{e3} are the same or different and may be H or
a linear or branched alkyl group with up to 25 carbons;
(d) an aryl group;
(e) a fused aromatic ring;
(f) a polymerizable functionality; or
(g) $-\text{NR}_{\text{e}1}\text{R}_{\text{e}2}, -\text{OR}_{\text{e}3}, -\text{SR}_{\text{e}4}$, or a phenyl, where R_{e1}, R_{e2}, R_{e3}, and R_{e4} are independently
selected from the group consisting of
(1) H;
(2) a linear or branched alkyl group with up to 25 carbons;
(3) phenyl; and
(4) a polymerizable functionality;
(5) $-\text{NR}_{\text{e}1}\text{R}_{\text{e}2}, -\text{OR}_{\text{e}3}, -\text{SR}_{\text{e}4}$, or a phenyl, where R_{e1}, R_{e2}, R_{e3}, and R_{e4} may be
the same or different and may be
(i) H;
(ii) a linear or branched alkyl group with up to 25 carbons;
(iii) phenyl; and
(iv) a polymerizable functionality.

Aryl Group

When any of $R_a, R_b, R_c, R_d, R_e, R_f, R_g, R_h, R_i, R_j, R_k, R_l, R_m, R_n, R_o, R_p, R_q, R_r, R_s, R_t, R_u, R_v, R_w$ are
aryl groups of the formula

where E is $-\text{S}$ or $-\text{O}$, and $R_{a41}, R_{a42}, R_{a43}, R_{a44}, R_{a45}, R_{a46}, R_{a47}$, and R_{a48} are one of the following:
(i) H;
(ii) a linear or branched alkyl group with up to 25 carbons;
(iii) phenyl; and
(iv) a polymerizable functionality.

Fused Aromatic Ring

When any of $R_a, R_b, R_c, R_d, R_e, R_f, R_g, R_h, R_i, R_j, R_k, R_l, R_m, R_n, R_o, R_p, R_q, R_r, R_s, R_t, R_u, R_v, R_w$, or
R_x is a fused aromatic ring, they may be

Polymerizable Functionality

When any of $R_a, R_b, R_c, R_d, R_e, R_f, R_g, R_h, R_i, R_j, R_k, R_l, R_m, R_n, R_o, R_p, R_q, R_r, R_s, R_t, R_u, R_v, R_w, R_x$, and
R_y are polymerizable functionalities, they may be those
which can be initiated by a strong Lewis acid group such as a
proton and epoxides (such as cyclohexene oxide).

Alkyl Groups

Unless otherwise indicated explicitly or by context, alkyl
group as used in the above formulae means alkyl groups
having up to 25 carbon atoms and includes both branched and
straight chain alkyl groups. Exemplary alkyl groups include
methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl,
onyln, in the normal, secondary, iso and neo attachment isomers.

Aryl Groups

Unless otherwise indicated explicitly or by context, aryl
group as used in the above formulae means aromatic hydro-
carbons having up to 25 carbon atoms. Exemplary aryl groups include
phenyl, naphthyl, furanyl, thiophenyl, pyrrolyl, selenophenyl, and tellurophenyl.
Examples 1-6

Exemplary Syntheses of Compounds V, VI, VIII, IX, X and XI
General Remarks.

1H and 13C spectra were recorded on a GE QE300 spectrometer (1H at 300 MHz; 13C at 75 MHz). Mass spectral data were acquired by MALDI-TOF. Elemental (CHN) analysis were performed by Analytical Microlabs.

Example 1

Preparation of Compound V

V was synthesized via the Pd(0) catalyzed coupling of 2,7-dibromofluorenone with bis-(4-n-butylphenyl)-amine under the conditions reported by Barlow and co-workers [Thayumanavan, S., Barlow, S., Marder, S. R., Chem. Mater., 9, 3231-3235 (1997)] and purified by silica chromatography (10% CH$_2$Cl$_2$/hexanes). Blue oil. 43% yield. 1H NMR (acetone-d$_6$, 300 MHz) δ 7.34 ppm (d, J=8.2 Hz, 2H), δ 7.13 ppm (m, I OH), δ 7.02 ppm (d, J=2.2 Hz, 2H), δ 6.98 ppm (d, J=8.4 Hz, 8H), δ 2.57 ppm (t, J=7.8 Hz, 8H), δ 1.60 ppm (m, 8H), δ 1.35 ppm (m, 8H), δ 0.92 ppm (t, J=7.3 Hz, 12H); 13C NMR (CD$_2$Cl$_2$, 75 MHz) δ 129.9 ppm (broad), δ 125.6 ppm, δ 125.4 ppm, δ 125.4 ppm, δ 125.3 ppm, δ 125.2 ppm, δ 118.3 ppm, δ 35.5 ppm, δ 34.2 ppm, δ 23.0 ppm, δ 14.2 ppm. MS yields M$^+$ with m/z=738. Elemental Analysis Calculated for C$_{53}$H$_{58}$N$_2$O: C, 86.13; H, 7.91; N, 3.79. Found: C, 85.53; H, 7.97; N, 3.76.

Preparation of 2,7-dibromofluorenone

2,7-dibromofluorenone was prepared from fluorenone by the method of Dewhurst and Shah [J. Chem. Soc. C, (Organic) 1737-1740 (1970)] in 66% yield. 2-bromofluorenone is the major impurity and may be removed by washing the yellow solid with acetone.

Preparation of N,N-bis-(4-n-butylphenyl)-amine

The preparation of bis-(4-n-butylphenyl)-amine has been reported previously [Thayumanavan, S., Barlow, S., Marder, S. R., Chem. Mater., 9, 3231-3235 (1997)].

Example 2

Preparation of Compound VI

VI was synthesized via the Pd(0) catalyzed Heck coupling of N,N-bis-(4-n-butylphenyl)-4-styrylamine with 2,7-dibromofluorenone in 25% yield. One equivalent of N,N-bis-(4-n-butylphenyl)-4-styrylamine was added to 0.45 equivalents 2,7-dibromofluorenone in dry dimethylformamide with 1.1 equivalents of triethylamine, 5 mole % Pd(OAc)$_2$, and 25 mole % P(o-tolyl)$_3$ and heated under argon atmosphere to 100°C for one week. Reaction was followed by TLC and fresh catalyst and triethylamine was added every second day. Quenched reaction with water, washed into methylene chloride, and removed solvent under reduced pressure. Purified by passage through silica (1% EtOAc in hexanes as eluent). Red solid. 1H NMR (CD$_2$Cl$_2$, 300 MHz) δ 7.84 ppm (d, J=1.1 Hz, 2H), δ 7.61 ppm (dd, J=7.9 Hz, 1.5 Hz, 2H), δ 7.54 ppm (d, J=7.8 Hz, 2H), δ 7.42 ppm (d, J=8.8 Hz, 4H), δ 7.18 ppm (d, J=16.4 Hz, 2H), δ 7.14 ppm (d, J=8.5 Hz, 8H), δ 7.0 ppm (m, 2H), δ 7.02 ppm (m, I OH), δ 7.02 ppm (m, I OH), δ 2.62 ppm (t, J=7.6 Hz, 8H), δ 1.62 ppm (m, 8H), δ 1.40 ppm (m, 8H), δ 0.97 ppm (t, J=7.3 Hz, 12H); 13C NMR (CD$_2$Cl$_2$, 75 MHz) δ 193.9 ppm, δ 148.9 ppm, δ 145.6 ppm, δ 143.2 ppm, δ 139.3 ppm, δ 138.7 ppm, δ 135.6 ppm, δ 133.2 ppm, δ 130.5 ppm, δ 129.8 ppm, δ 128.0 ppm, δ 125.6 ppm, δ 125.4 ppm, δ 122.4 ppm, δ 121.6 ppm, δ 121.0 ppm, δ 35.6 ppm, δ 34.3 ppm, δ 23.0 ppm, δ 14.3 ppm. MS yields M$^+$ with m/z=942.8 Elemental Analysis Calculated for C$_{69}$H$_{2O}$N$_2$O: C, 87.86; H, 7.48; N, 2.97. Found: C, 87.58; H, 7.41; N, 2.99.

Preparation of N,N-bis-(4-n-butylphenyl)-4-styrylamine

4-(N,N-Bis-(4-n-butylphenyl)amino)benzaldehyde [Thayumanavan, S., Barlow, S., Marder, S. R., Chem. Mater., 9, 3231-3235 (1997)] was stirred with 1.5 equivalents methyl triphenylphosphoniumbromide and 1.5 equivalents sodium t-butoxide in dry tetrahydrofuran under argon atmosphere overnight at RT before aqueous work-up to make the N,N-bis-(4-n-butylphenyl)-4-styrylamine. The product was purified by passage through a silica plug with hexanes and collected in 69% yield. 1H NMR (acetone-d$_6$, 300 MHz) δ 7.30 ppm (d, J=8.6 Hz, 2H), δ 7.12 ppm (d, J=8.6 Hz, 4H), δ 6.96 ppm (d, J=8.4 Hz, 4H), δ 6.92 ppm (d, J=8.4 Hz, 4H), δ 6.65 ppm (dd, J=16.4 Hz, 10.9 Hz, 1H), δ 5.56 ppm (dd, J=17.6 Hz, 10 Hz, 1H), δ 5.10 ppm (dd, J=10.9 Hz, 0.9 Hz, 1H), δ 2.58 ppm (t, J=7.5 Hz, 4H), δ 1.58 ppm (m, 4H), δ 1.36 ppm (m, 4H), δ 0.93 ppm (t, J=7.3 Hz, 6H).

Example 3

Preparation of Compound VIII

V was reduced quantitatively to VIII with sodium borohydride in THF/ethanol at room temperature under air at RT. The course of the reaction was easily followed by the disappearance of the deep blue color of V. Light brown solid. 1H NMR (acetone-d$_6$, 300 MHz) δ 7.52 ppm (d, J=8.2 Hz, 2H),
27

δ 7.24 ppm (d, J=1.6 Hz, 2H), δ 7.14 ppm (d, J=8.6 Hz, 8H), δ 7.00 ppm (m, 10H), δ 5.43 ppm (d, J=6.7 Hz, 1H), δ 4.75 ppm (d, J=7.3 Hz, 1H), δ 2.60 ppm (t, J=7.6 Hz, 8H), δ 1.60 ppm (m, 8H), δ 1.39 ppm (m, 8H), δ 0.94 ppm (t, J=7.3 Hz, 12H).

Example 4

Preparation of Compound IX

IX was synthesized via a Williamson Ether synthesis from VIII. 1.2 equivalents of NaH were added to a deoxygenated solution of 1 equivalent of VIII and 2 equivalents of methylliende in dry THF. Following aqueous work-up, IX was purified by silica column chromatography (0.5% EtOAc in hexanes as eluent). Brown oil, 60% yield.

1H NMR (acetone-d6, 300 MHz) δ 7.56 ppm (d, J=8.2 Hz, 2H), δ 7.16 ppm (m, 10H), δ 7.02 ppm (m, 10H), δ 5.39 ppm (s, 1H), δ 3.03 ppm (s, 3H), δ 2.60 ppm (t, J=7.6 Hz, 8H), δ 1.60 ppm (m, 8H), δ 1.38 ppm (m, 8H), δ 0.94 ppm (t, J=7.3 Hz, 12H).

Example 5

Preparation of Compound X

VIII was converted quantitatively to X by room temperature reaction with excess acetyl chloride in pyridine with N,N-dimethylpyridine. Solvent was removed under reduced pressure, product was taken up into hexanes, washed with water, and solvent was removed under reduced pressure.

1H NMR (acetone-d6, 300 MHz) δ 7.51 ppm (d, J=8.2 Hz, 2H), δ 7.12 ppm (d, J=8.4 Hz, 8H), δ 6.98 ppm (m, 10H), δ 6.57 ppm (s, 1H), δ 2.58 ppm (t, J=7.7 Hz, 8H), δ 1.98 ppm (s, 3H), 1.60 ppm (m, 8H), δ 1.39 ppm (m, 8H), δ 0.93 ppm (t, J=7.3 Hz, 12H).

Example 6

Preparation of Compound XI

XI was reduced quantitatively to X by room temperature reaction with excess acetyl chloride in pyridine with N,N-dimethylpyridine. Solvent was removed under reduced pressure, product was taken up into hexanes, washed with water, and solvent was removed under reduced pressure.

1H NMR (acetone-d6, 300 MHz) δ 7.84 ppm (s, 2H), δ 7.65 ppm (d, J=7.9 Hz, 2H), δ 7.54 ppm (d, J=7.9 Hz, 2H), δ 7.42 ppm (d, J=8.7 Hz, 4H), δ 7.08 ppm (m, 12H), δ 5.65 ppm (d, J=9.5 Hz, 1H), δ 2.62 ppm (t, J=7.6 Hz, 8H), δ 2.10 ppm (d, J=9.6 Hz, 11H), δ 1.61 ppm (m, 8H), δ 1.40 ppm (m, 8H), δ 0.98 ppm (t, J=7.3 Hz, 12H).

Example 7

Two-Photon Polymerization Using bis-dibutylaminostilbene (BDAS) as a Two-Photon Initiator

A two-photon "polymerization action spectrum" was investigated for bis-dibutylaminostilbene (BDAS). This spectrum shows that the rate of polymerization for monomethyl-ether hydroquinone (MEHQ)-inhibited Sartomer SR9008 initiated by BDAS roughly follows the two-photon absorptivity dispersion curve, but peaks at a slightly lower wavelength.

To obtain the "action spectrum" for BDAS polymerization in SR9008, a 2.5 mM solution was used. The monomer included MEHQ inhibitor as supplied by Sartomer since the rate of initiation by BDAS is quite high. The sample was irradiated from 540 nm to 635 nm in steps of 5 nm. The sample was exposed in a square array of time along one axis and wavelength along the other. Volumes of the resulting polymer columns were measured by SEM and the rate of polymerization taken as the slope of polymer volume versus time.

A dose array experiment was performed for BDAS (#1) in MEHQ-inhibited SR9008 triacrylate monomer to investigate the wavelength dependence of the polymerization rate, R. FIG. 1 shows a plot of R as a function of initiation wavelength. Also on this plot is the two-photon absorptivity, δ, obtained by ps (picosecond) non-linear fluorescence measurements of a 1 mM solution of BDAS in toluene. Values of R were determined using a 2.5 mM BDAS solution in SR9008. R is greatest at about 590 nm, 15 nm below the maximum value of δ at 605 nm. The discrepancy in wavelength may be due to linear absorption by the BDAS radical centered at 600 nm. Polymerization stopped entirely at 645 nm even though there was some two-photon absorption out to about 680 nm.

Example 8

Two-Photon Initiated Polymerization and 3D Microfabrication of Polymeric Microstructures

Microfabrication was performed in solid films consisting of 30% w/w polymer binder (PSAN) (75% polystyrene:25% polyacrylonitrile copolymer), 69.9% w/w reactive monomer, and 0.1% w/w dye 1,4-bis(bis(dibutylamino)styryl) 2,5-dimethoxybenzene (compound #41). The monomer portion was 50% inhibitor-free Sartomer SR9008 (chosen for its good adhesion properties) and 50% Sartomer SR368 (an isocyanurate triacrylate, chosen for its good mechanical stability).

Solutions of this composition were prepared in dioxane such that the PSAN concentration was 200 mg/ml to obtain the proper viscosity. A casting blade was used to prepare films from solution, with a wet thickness setting of 500-700 µm. Once the films dried, the thickness was about 120-180 µm. Exposure was performed using a two-photon microscope incorporating a Ti:Sapphire laser operating at 75 MHz with a pulsewidth of about 150 fs. The wavelength used was 730 µm, the two-photon absorption maximum of #41 (1,4-bis(dibutyl-amino)styryl-2,5-dimethoxybenzene, and the light was focused through an oil-immersion objective with NA≈1.4. X-Y-Z control of the sample was accomplished using a manipulator mounted on the microscope stage. After exposure, the unpolymerized film was washed away with dimethylformamide (DMF) and the features were characterized using SEM.

It was found that the linewidths polymerized at 730 nm (approx. 1.5 µm) were about 25% smaller than at 800 nm given the same intensity and scan rate. FIG. 2 shows cantilever and tapered waveguide structures fabricated using the procedures described above. Cantilevers with extended lengths of up to 50 µm were fabricated with no apparent sag of the unsupported arm. These cantilevers may be useful in the fabrication of optically-based chemical sensors. The waveguide structure was produced with a linespacing of 2 µm.

Example 9

Two-Photon Photodeposition of Silver Metal

In addition to using the two-photon process to initiate polymerization, it is also possible to perform metallization
using this technique. Swainson provided a method for depositing Ag or CuO using methylene blue as a sensitizer for one-photon photoreduction of a metal cation to its elemental form [W. K. Swainson and S. D. Kramer, “Method and Media for Accessing Data in Three Dimensions,” U.S. Pat. No. 4,471,470 (1984)]. This process is modified for simultaneous two-photon photoreduction by use of chromophores described in this disclosure. The ability to deposit metal by a two-photon process allows fabrication of complex three-dimensional metallic or polymer/metal composite structures.

A solution of 1 g AgNO₃ dissolved in 10 ml DI H₂O was titrated with NH₄OH until the initially formed, dark precipitate was dissolved. Two drops of triethanolamine (TEA) was added to this solution along with enough chromophore, either methylene blue (MB) or lysine-substituted BDAS (LBDAS), to form a 10⁻³ M solution of the dye. This solution was used as prepared for solution studies or was added to an 8% by weight solution of poly(vinyl alcohol) (PVA) in DI H₂O to form a castable, solid film.

Initial studies of Ag photodeposition were done using single-photon excitation in methylene blue solutions. Excitation was done at 600 nm using a 20 Hz Nd:YAG-pumped dye laser. Silver deposition was observed on the glass walls of the cell containing the silver nitrate solution. Also, a plume of silver particles could be seen in the solution, emanating from the focal point of the laser. Scanning electron microscopy (SEM) was used to examine the morphology of the deposited silver and showed that the deposited film consists of many small agglomerates. X-ray analysis confirmed that these small particles were indeed silver. Because of the roughness of these films, they are not useful for producing mirrored surfaces. The confined surface (against the glass wall of the cell), however, was a highly reflective mirror. The deposited lines were not conducting.

This technique for silver deposition from aqueous solutions was also attempted using LBDAS. This solution was pumped by two-photon excitation at 600 nm. Small amounts of Ag were deposited onto the walls of the cell and some Ag particulates were formed in solution and then settled to the bottom of the cuvette.

Initial attempts to fabricate solid or gel photopolymer films for Ag deposition were based on the aqueous silver nitrate chemistry and thus required a water soluble polymer. PVA was chosen but, because it is soluble only in boiling water, the silver salt cannot be prepared directly with the polymer solution or the reduction to Ag will occur thermally. Instead, the polymer solution was prepared and cooled and then mixed with the AgNO₃ solution. The combined solution was then poured into small polystyrene petri dishes and left under a halogen lamp. The photoreduction of the silver salt occurred as water evaporated from the film. The first film prepared by this method contained 17% Ag by weight. The film had good mechanical properties and was easily peeled away from the petri dish. It was dark-colored and transmitted only red light, indicating metallic appearance but the film was still strong and flexible. The resistance of this film dropped to 80 kΩ.

The next step was to search for a system that allows two-photon photoreduction of Ag. Qualitative two-photon fluorescence measurements indicated that because methylene blue had no significant two-photon absorption in the spectral region of interest, a different chromophore was needed. BDAS was chosen first and was incorporated into an aqueous solution of cellulose acetate hydroxyethyl ether and silver tetrafluoroborate (AgBF₄) by dissolving it in dioxane, which is completely miscible with water. In this case, AgBF₄ was soluble in water without the addition of NH₄OH and no TEA was necessary. Upon introducing the first drop of the BDAS solution into the silver salt solution, Ag precipitated out. Table 1 shows electrochemical data for the reduction of Ag⁺ in different solvents and free energies for electron transfer from different two-photon chromophores to Ag⁺. It is clear that in any solvent, BDAS is such a strong reducing agent that Ag⁺ will always be reduced thermally. The ideal situation is to use a chromophore that will not thermally reduce Ag⁺, but will upon exposure to light. Since the HOMO-LUMO (highest occupied molecular orbital-lowest unoccupied molecular orbital) gap of BDAS and 4,4'-bis(3-m-tolylphenylamino) biphenyl (TPD) molecules is on the order of 3000 meV, any of these molecules will photoreduce Ag⁺ in any solvent upon excitation.

<table>
<thead>
<tr>
<th>Solvent</th>
<th>Eox/Ag⁺(Ag) (mV)(a)</th>
<th>BDAS</th>
<th>TPD</th>
<th>p-CN TPD(b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MeCl₂</td>
<td>650</td>
<td>-685</td>
<td>-270</td>
<td>-75</td>
</tr>
<tr>
<td>DMF</td>
<td>490</td>
<td>-525</td>
<td>-110</td>
<td>85</td>
</tr>
<tr>
<td>H₂O</td>
<td>480</td>
<td>-515</td>
<td>-100</td>
<td>95</td>
</tr>
<tr>
<td>Pyridine</td>
<td>430</td>
<td>-465</td>
<td>-50</td>
<td>145</td>
</tr>
<tr>
<td>THF</td>
<td>410</td>
<td>-445</td>
<td>-30</td>
<td>165</td>
</tr>
<tr>
<td>Acetone</td>
<td>180</td>
<td>-215</td>
<td>200</td>
<td>395</td>
</tr>
<tr>
<td>CH₃CN</td>
<td>40</td>
<td>-75</td>
<td>340</td>
<td>535</td>
</tr>
</tbody>
</table>

(a) Values of Eox are given vs. FeCl₃/FeCl₂
(b)p-CN TPD = 4,4'-bis(p-cyanophenyl-m-tolylamino)biphenyl

TPD was tried in an aqueous solution of AgBF₄ since electron transfer is only slightly downhill in this system. Although some of the TPD precipitated out of solution, it was possible to cast a film of this material. A portion of the solution that was not used was placed in sunlight and, within minutes, Ag had formed in the solution. The film was kept in the dark for several days to allow the water to evaporate. After this time, the solution was mostly clear, containing white TPD precipitates and some regions where it appears that Ag began to form. The clear portion of the film was exposed to 532 nm laser pulses and fairly thick deposits of Ag quickly formed in the exposed regions. Lines and patterns of Ag were deposited in this manner.

Because of the limited solubility of TPD compounds in aqueous solutions and the slow evaporation rate of water when casting films, a system based upon a non-aqueous solvent is desirable. Bis(phenyl, 4-cyanophenylamino) biphienyl (#97) was selected as the two-photon chromophore because it has one of the highest oxidation potentials of any of the two-photon chromophores that have been studied in this group (575 mV vs. FcH/FcH). Solutions of #97 and AgBF₄ were prepared in methylene chloride, THF, acetone, toluene, and acetonitrile and the formation of Ag was observed in all solvents except acetonitrile. This result was somewhat surprising since the value of ΔG is positive for THF (165 meV) and acetone (395 meV). The value of ΔG in acetonitrile is quite high at 535 meV. Unfortunately, it is difficult to find a polymer that is soluble in acetonitrile—at this time cellulose acetate is the only polymer found. Photopolymer films made with #97 and AgBF₄ in cellulose acetate/acetonitrile solutions will be studied in the near future.
Two-Photon Excitable Photoacid Generators

The use of free-radical polymerization based on electron transfer from two-photon chromophores to acrylate monomers has proven very successful for the fabrication of microscale three-dimensional objects. Periodic structures suggestive of photonic crystals, tapered waveguide couplers, and cantilever-shaped objects have been reported in previous months. Also, high-density optical data storage based on acrylate polymerization has been demonstrated. While the size of the bits written by this method is sufficiently small to obtain storage densities of 1 terabit/cm², the speed of the recording process is too slow. Parallelization of the recording process can decrease the overall processing time, but it is also highly desirable to make the inherent response of the photopolymer material faster.

Researchers at IBM have developed chemistry for photore sist technology based on processes involving photoacid generators (PAG) — materials that produce acidic species upon exposure to light [H. Ito, “Chemical Amplification and Decrease of Shrinkage upon Polymerization Are All Possible Improvements to Be Made,” IBM Journal of Research & Development, 31, 3012 (1995)]. The driving force of this research is to develop PAGs that can be used at 193 nm, a wavelength necessary to increase the density of components in integrated circuits. The photoacid generator can initiate different chemical processes depending on the composition of the photopolymer material. For instance, the photoacid can be used to initiate cross-linking of epoxy groups [R. D. Allen, G. M. Wallraff, D. C. Hofer, and R. R. Kunz, “Photorefractive Polymers for Chemically Amplified Photoresist Applications,” IBM Journal of Research & Development, 41, 95 (1997); J. M. Shaw, J. D. Gelorme, N. C. Labinanca, W. E. Conley, and S. J. Holmes, “Negative Photoresists for Optical Lithography,” J. Vac. Sci. Technol. A, 15, 41, 81 (1997)]. The advantage of this second process is that it can be made to be catalytic, that is, for each functional group converted, a proton is formed which can then go on to convert another group.

In this example, we extend PAG chemistry discussed above to the realm of two-photon excitation. All of the advantages of the two-photon process that have been demonstrated in acrylate polymerization can be realized. At the same time, PAG chemistry may provide a better materials system for data storage or microfabrication than acrylates. Increased sensitivity due to catalytic processes, increased mechanical stability, and decreased shrinkage upon polymerization are all possible improvements to be made. In order to realize these benefits, PAG chromophores with large two-photon absorption coefficients must be developed.

To this end, sulfonium salts with a two-photon absorbing counterion or that have significant two-photon absorption themselves are being considered. First of these is triphenylsulfonium dimethoxyanthracenesulfonate (Na-DMAS) [K. Naitoh, T. Yamakoa, and A. Umehara, “Intra-ino-pair Electron Transfer Mechanism for Photolysis of Diphenyliodonium Salt Sensitive to 9,10-Dimethoxyanthracene-2-sulfonate Counterion,” Chem. Lett., 1869 (1991)]. 150 mg of sodium dimethoxyanthracene sulfonate (Na-DMAS) was dissolved in 50 ml of hot DI H₂O. To this hot solution was added 440 µL of a 50 wt % solution of triphenylsulfonium hexafluorantimonate (TPS-Shf₆⁻) (also referred to herein as TPS-HFA), giving equimolar amounts of the two salts. The solution was vigorously shaken and then cooled at 4°C for about 16 hours. A waxy solid precipitated onto the walls of the flask during this time. The solid was dried overnight under vacuum. At this point, a viscous liquid was present at the bottom of the flask, presumably propylene carbonate. The precipitate was dissolved into about 4 ml acetonitrile (CH₃CN) and re-precipitated from 350 ml DI H₂O at 4°C. This solution was vacuum filtered through a fine frit, scraped and dried overnight under vacuum.

This material is not commercially available but has been made by anion exchange between TPS-HFA and sodium dimethoxyanthracenesulfonate (Na-DMAS) [K. Naitoh, T. Yamakoa, and A. Umehara, “Intra-ino-pair Electron Transfer Mechanism for Photolysis of Diphenyliodonium Salt Sensitive to 9,10-Dimethoxyanthracene-2-sulfonate Counterion,” Chem. Lett., 1869 (1991)]. 150 mg of sodium dimethoxyanthracene sulfonate (Na-DMAS) was dissolved in 50 ml of hot DI H₂O. To this hot solution was added 440 µL of a 50 wt % solution of triphenylsulfonium hexafluorantimonate (TPS-Shf₆⁻) (also referred to herein as TPS-HFA), giving equimolar amounts of the two salts. The solution was vigorously shaken and then cooled at 4°C for about 16 hours. A waxy solid precipitated onto the walls of the flask during this time. The solid was dried overnight under vacuum. At this point, a viscous liquid was present at the bottom of the flask, presumably propylene carbonate. The precipitate was dissolved into about 4 ml acetonitrile (CH₃CN) and re-precipitated from 350 ml DI H₂O at 4°C. This solution was vacuum filtered through a fine frit, scraped and dried overnight under vacuum.

In this example, we extend PAG chemistry discussed above to the realm of two-photon excitation. All of the advantages of the two-photon process that have been demonstrated in acrylate polymerization can be realized. At the same time, PAG chemistry may provide a better materials system for data storage or microfabrication than acrylates. Increased sensitivity due to catalytic processes, increased mechanical stability, and decreased shrinkage upon polymerization are all possible improvements to be made. In order to realize these benefits, PAG chromophores with large two-photon absorption coefficients must be developed.

To this end, sulfonium salts with a two-photon absorbing counterion or that have significant two-photon absorption themselves are being considered. First of these is triphenylsulfonium dimethoxyanthracenesulfonate (TPS-DMAS). This material is not commercially available but has been made by anion exchange between TPS-HFA and sodium...
have high two-photon absorption cross-sections. The alkyl chains on the proposed structures are present to improve the solubility of the chromophores.

Example 11

Two-Photon Polymerization of an Aniline-Substituted Diacylate Monomer (ADA) and Subsequent Deposition of Silver Onto this Polymer

ADA is a difunctional monomer. The structure of ADA is given in FIG. 7. A neat solution of aniline diacrylate (ADA) was placed in a dose array cell and polymerized using a collimated beam of ns pulses at 600 nm. Unexposed monomer was then washed away using THF. The columns were then soaked in a concentrated solution of AgBF₄ in CH₃CN for 3 hours and analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray fluorescence spectroscopy (EDS).

A photopolymer film of ADA was prepared by dissolving 600 mg poly(styrene-co-acrylonitrile) (PSAN), 470 mg Sartomer SR368, 425 µL Sartomer SR9008, and 470 µL ADA in 3 ml of dioxane. This solution was cast onto a glass microscope slide using a casting knife set for a wet film thickness of 1 mm. Lines were polymerized using collimated light at 600 nm from a ns OPO laser. After polymerization, the unexposed material was removed using dimethylformamide (DMF) and the substrate was soaked for 3 hours in a concentrated solution of AgBF₄ in CH₃CN.

The aniline group in ADA is a sufficiently strong electron donor to thermally reduce Ag⁺ to metallic Ag. Initial attempts to polymerize this monomer were done in a dose array fashion. It was found that polymerization occurred in neat monomer at 600 nm without the addition of any other two-photon chromophore. The absorption spectrum of ADA is given in FIG. 8 and it is clear that there is no linear absorption at 600 nm. However, the aniline absorption at 300 nm is two-photon allowed since the molecule does not have a center of symmetry. This demonstrates that the polymerization at 600 nm is due to two-photon absorption.

Upon two-photon excitation at 600 nm, the polymerization appears to proceed by intramolecular charge transfer from the aniline group to the reactive acrylate centers. If this is the case, the fluorescence of ADA should be quenched relative to that of aniline alone. FIG. 9 shows that this is indeed the case.

After polymerization of columns from ADA, the polymer was soaked in AgBF₄ to test the ability of the ADA polymer, poly(ADA), to reduce the metal cations. Indeed, the columns were then soaked in a concentrated solution of AgBF₄ in CH₃CN for 3 hours and analyzed using scanning electron microscopy (SEM) and energy-dispersive X-ray fluorescence spectroscopy (EDS).

We claim:
1. A compound selected from the group consisting of

 (a) H;
 (b) a linear or branched alkyl group with up to 25 carbons;
 (c) (CH₂CH₂O)₅(CH₂)₅Phenyl, where 0 ≤ α ≤ 10 and 1 ≤ β ≤ 25;
 (iv) an aryl group;
 (v) a fused aromatic ring;
 (vi) a polymerizable functionality; and
 (vii) wherein one of Rₐ and R₇ is not present when Aₕ is 1',
 and one of Rₐ and R₇ is not present when Aₕ is 1';
 and
 Rₜ, Rₜ', Rₖ, Rₗ, Rₘ, Rₚ, and Rₕ are independently selected from the group consisting of

 (i) H;
 (ii) a linear or branched alkyl group with up to 25 carbons;
 (iii) (CH₂CH₂O)₅(CH₂)₅Phenyl, where 0 ≤ α ≤ 10 and 1 ≤ β ≤ 25;
 (iv) an aryl group;
 (v) a fused aromatic ring;
 (vi) a polymerizable functionality;
 (vii) wherein one of Rₕ and Rₜ is not present when Aₕ is 1',
 and one of Rₕ and Rₜ is not present when Aₕ is 1';
 and
 Rₜ, Rₗ, Rₜ', Rₖ, Rₘ, Rₚ, and Rₕ are independently selected from the group consisting of

 (a) H;
 (b) a linear or branched alkyl group with up to 25 carbons;
 (c) (CH₂CH₂O)₅(CH₂)₅ORₐ, (CH₂)₅ORₑ, (CH₂)₅OR₁;
 (d) (CH₂CH₂O)₅(CH₂)₅CN,
 (e) (CH₂CH₂O)₅(CH₂)₅Br;
 (f) a polymerizable functionality; and
 (g) an aryl group;
 (h) a fused aromatic ring;
 (i) a polymerizable functionality; and
(g) a group selected from the group consisting of —NR,R₂₋, —OR,R₃₋, —SR,R₄₋, —F, —Br, —Cl, —I, and phenyl, where R₁₋, R₂₋, R₃₋, R₄₋ are independently selected from the group consisting of
(i) H;
(ii) a linear or branched alkyl group with up to 25 carbons;
(iii) phenyl; and
(iv) a polymerizable functionality.

2. A compound according to claim 1, further comprising an anion selected from the group consisting of Cl⁻, Br⁻, I⁻, and SbF₆⁻.

3. A compound according to claim 1, wherein the R₁₋, R₂₋, R₃₋, and R₄₋ polymerizable functionalities are selected from the group consisting of vinyl, allyl, 4-styryl, acryloyl, methacryloyl, epoxides, acrylonitrile, isocyanate, thiocyanate, strained ring olefins, (—CH₂)₃SiCl₃, (—CH₂)₃Si(OCH₂CH₃)₃, and (—CH₂)₃Si(OCH₃)₃ where 0<δ<25.

4. A compound according to claim 3, wherein the polymerizable functionality strained ring olefins are selected from the group consisting of dicyclopentadienyl, norbornenyl, and cyclobutenyl.

5. A compound according to claim 1, wherein the R₁₋, R₂₋, R₃₋, R₄₋, R₅₋, R₆₋, R₇₋, R₈₋, R₉₋, R₁₀₋, or R₁₁₋ linear or branched alkyl groups are selected from the group consisting of methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, in the normal, secondary, iso and neo attachment isomers.

6. A compound according to claim 1, wherein the aryl groups are selected from the group consisting of phenyl, naphthyl, furanyl, thiophenyl, pyrrolyl, selenophenyl and tellurophenyl.

7. A compound according to claim 6, wherein the aryl groups are selected from the group consisting of phenyl, naphthyl, furanyl, thiophenyl, pyrrolyl, selenophenyl and tellurophenyl.

8. A compound according to claim 1, wherein the R₁₋, R₂₋, R₃₋, R₄₋, R₅₋, R₆₋, R₇₋, R₈₋, R₉₋, or R₁₀₋ fused aromatic ring is selected from the group consisting of

where * indicates the atom through which the fused aromatic ring is attached.
where

\(A_a \) and \(A_b \) are independently selected from the group consisting of \(S' \) and \(I' \);

\(m, n, o \) are independently selected from the range of integers greater than or equal to zero and less than or equal to ten, wherein \(m \) and/or \(o \) are at least 1;

\(X, Y, Z \) are independently selected from the group consisting of \(CR=CR, O, S, \) and \(N—R_{na} \)

where \(R_a, R_b, \) and \(R_c \) are defined below;

\(R_a, R_b, \) and \(R_c \) are independently selected from the group consisting of

(i) \(H \);

(ii) a linear or branched alkyl group with up to 25 carbons;

(iii) \((CH_2CH_2O)_a—(CH_2)_b—(CH_2)_c—Phenyl \), where \(0≤a≤10 \) and \(1≤b≤25 \);

(iv) an aryl group;

(v) a fused aromatic ring;

(vi) a polymerizable functionality; and

(vii) wherein one of \(R_a \) and \(R_b \) is not present when \(A_b \) is \(I' \), and one of \(R_a \) and \(R_c \) is not present when \(A_a \) is \(I' \); and

\(R_e, R_j, R_g, R_h, R_k, R_l \) and \(R_m \) are independently selected from the group consisting of

(a) \(H \);

(b) a linear or branched alkyl group with up to 25 carbons;

(c) \((CH_2CH_2O)_a—(CH_2)_b—OR_{na}, (CH_2)_b—(CH_2CH_2O)_a—(CH_2)_b—OR_{na}, (CH_2)_b—(CH_2CH_2O)_a—(CH_2)_b—CN, (CH_2CH_2O)_a—(CH_2)_b—Br, (CH_2CH_2O)_a—(CH_2)_b—I—(CH_2CH_2O)_a—(CH_2)_b—Phenyl \), where \(0≤a≤10 \) and \(1≤b≤25 \);

(d) an aryl group;

(e) a fused aromatic ring;

(f) a polymerizable functionality; and

(g) a group selected from the group consisting of

\(NR_1, OR_2, SR_3, —OR_{na}, —SR_{na}, —I, —Br, —Cl, —I, \) and phenyl, where \(R_1, R_2, R_3, R_4 \) are independently selected from the group consisting of

(1) \(H \);

(2) a linear or branched alkyl group with up to 25 carbons;

(3) phenyl; and

(4) a polymerizable functionality.

10. A compound according to claim 9, further comprising an anion selected from the group consisting of \(Cl, Br, I, \) and \(SbF_6^- \).

11. A compound according to claim 9, wherein the \(R_a, R_b, R_c, R_d, R_e, R_j, R_g, R_h, R_k, R_l, R_m \), or \(R_n \) aryl group is selected from the group consisting of

14. A compound according to claim 9, wherein the \(R_a, R_b, R_c, R_d, R_e, R_j, R_g, R_h, R_k, R_l, R_m, \) or \(R_n \) aryl group is selected from the group consisting of

where \(E \) is selected from the group consisting of \(S—, —O—, \) and \(R_{41}, R_{42}, R_{43}, R_{44}, R_{45}, R_{46}, R_{47}, \) and \(R_{48} \) are selected from the group consisting of

(i) \(H \);

(ii) a linear or branched alkyl group with up to 25 carbons;

(iii) phenyl; and

(iv) \(NR_1, OR_{41}, —OR_{41}, —OR_{41}, —OR_{41}, \) where \(R_{45}, R_{46}, R_{47}, \) and \(R_{48} \) are independently selected from the group consisting of \(—H, \) a linear or branched alkyl group with up to 25 carbons, and phenyl.

15. A compound according to claim 14, wherein the aryl groups are selected from the group consisting of phenyl, naphthyl, furanyl, thiophenyl, pyrrolyl, selenophenyl and telurophenyl.

16. A compound according to claim 9, wherein the \(R_a, R_b, R_c, R_d, R_e, R_j, R_g, R_h, R_k, R_l, R_m, \) or \(R_n \) fused aromatic ring is selected from the group consisting of

where * indicates the atom through which the fused aromatic ring is attached.
17. The compound of claim 9, wherein the compound has the formula

18. The compound of claim 9, wherein the compound has the formula

19. The compound of claim 9, wherein the compound has the formula