Two classes of hybrid/thermochemical water splitting processes for the production of hydrogen and oxygen have been proposed based on (1) metal sulfate-ammonia cycles (2) metal pyrosulfate-ammonia cycles. Methods and systems for a metal sulfate MSO, NH₃ cycle for producing H₂ and O₂ from a closed system including feeding an aqueous (NH₃),SO₄ solution into a photoctalytic reactor to oxidize the aqueous (NH₃),SO₄ into aqueous (NH₄)₂SO₄ and reduce water to hydrogen, mixing the resulting aqueous (NH₄)₂SO₄ with metal oxide (e.g. ZnO) to form a slurry, heating the slurry of aqueous (NH₄)₂SO₄ and ZnO(s) in the low temperature reactor to produce a gaseous mixture of NH₃ and H₂O and solid ZnSO₄(s), heating solid ZnSO₄ at a high temperature reactor to produce a gaseous mixture of SO₂ and O₂ and solid product ZnO, mixing the gaseous mixture of SO₂ and O₂ with an NH₃ and H₂O stream in an absorber to form aqueous (NH₄)₂SO₄, solution and separate O₂ for aqueous solution, recycling the resultant solution back to the photoreactor and sending ZnO to mix with aqueous (NH₄)₂SO₄ solution to close the water splitting cycle wherein gaseous H₂ and O₂ are the only products output from the closed ZnSO₄—NH₃ cycle.
References Cited

U.S. PATENT DOCUMENTS

4,180,550 A * 12/1979 Deschamps et al. 423/244.1
4,484,992 A * 11/1984 Buhler et al. 204/157.52
7,332,146 B1 2/2008 Huang et al.

OTHER PUBLICATIONS

Huang, C., T-Raissi, A., A Perspective on Thermodynamics and Thermal Efficiency Calculations for Hydrogen Production via Thermochemical Water Splitting Cycles.

* cited by examiner
Fig. 1

Fig. 2
Fig. 3
SOLAR METAL SULFATE-AMMONIA BASED THERMOCHEMICAL WATER SPLITTING CYCLE FOR HYDROGEN PRODUCTION

CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority to U.S. Provisional Application No. 60/986,820 filed on Nov. 9, 2007, the entire disclosure of which is incorporated by reference in its entirety.

GOVERNMENT LICENSE RIGHTS

This invention was made with Government support under National Aeronautics and Space Administration (NASA) Glenn Research Center contract NAG3-2751 awarded by the National Aeronautics and Space Administration (NASA). The government has certain rights in this invention.

FIELD OF THE INVENTION

This invention relates to hydrogen production and, in particular, to methods and systems for hybrid photothermal water splitting cycles that employ the quantum portion of the solar spectrum for the production of hydrogen and the thermal energy portion of solar radiation for generating oxygen.

BACKGROUND AND PRIOR ART

Production of hydrogen can be considered eco-friendly only if it is produced from a noncarbonaceous feedstock using a renewable energy source. Hydrogen production by means of water splitting using solar energy is considered the "Holy Grail" of the hydrogen economy. Water splitting can be accomplished either directly in a single step or indirectly by multiple steps. Direct thermal decomposition of water is an energy intensive process that requires temperatures over 2500°C. The main obstacle to this approach is that hydrogen and oxygen (O2) evolved simultaneously in one reactor can readily recombine to form water—i.e. by back reaction. Combination of photovoltaic (PV) cells coupled to water electrolysis often serves as the benchmark solar hydrogen production process with which the performance of the other solar based hydrogen generation processes are appraised. PV cell efficiencies vary from 6% for amorphous silicon solar cells to more than 40% with multiple-junction research lab PV cells.

Solar cell energy conversion efficiencies for commercially available mono-crystalline silicon PV cells are around 14-16%. The highest efficiency PV cells such as multi junction cell based on gallium arsenide or indium selenide are still too expensive and not yet economical to use. On the other hand, water electrolysis is a well-developed technology with energy conversion efficiencies in the range of approximately 70-75%. Therefore the total solar to hydrogen efficiency of a PV-electrolysis system is in the range of 10-12%. The most commonly used PV cells only employ a portion of the solar energy (10 to 12%) while most of the solar thermal heat (88 to 90%) goes unutilized.

Unlike PV-electrolysis, water splitting processes based on the photocatalytic and photoelectrochemical methods provide a single step direct conversion of solar energy into the chemical energy of hydrogen. In the photocatalytic process, a photocatalyst converts the high-energy photons in solar spectrum into electron-hole pairs that promote redox reactions involving water to produce hydrogen and oxygen. In 1998, Khaselev and Turner reported that the hydrogen production efficiency of 12.4% for a monolithic photoelectrochemical-photovoltaic device based on the short-circuit current and the lower heating value of hydrogen as described in Khaselev O. and Turner J. A., “A Monolithic Photovoltaic-Photoelectrochemical Device for Hydrogen Production Via Water Splitting,” Science, 280(17), pp. 425-7, 1998. The electrolyte used by Khaselev and Turner was 3 M sulfuric acid aqueous solution and the high cell output could only be maintained for less than 34 minutes after which the efficiency began to drop precipitously. According to Licht, S., Wang, B., Mukerji, S., Soga, T., Umemo, M. and Tributsch, H., “Over 18% Solar Energy Conversion for Generation of Hydrogen Fuel; Theory and Experiment for Efficient Solar Water Splitting,” Int. J. of Hydrogen Energy, 26, pp. 653-659, 2001, Licht and co-workers reported a solar to hydrogen energy conversion efficiency of more than 18% using a multi-junction photoelectrode in 1M HClO4 electrolyte and an artificial light source with Air Mass 0 (AM0) filter radiating with an intensity of 135 mW/cm2. However, no information was given with regard to the photo-electrode life in their work.

Thermodynamically, water splitting requires a minimum Gibbs free energy of 237.1 kJ per mole of water decomposed at 25°C and 1 atm of pressure corresponding to 1.229 eV. Considering prevailing over potentials, water splitting requires upwards of 2.0 V or above. In a solar photocatalytic process, this implies the requirement for a wide band gap of greater than 2.0 eV photocatalyst. There are conflicting requirements for what makes a suitable photocatalyst in conducting water splitting reactions. In order to utilize the solar spectrum as broadly as possible, a semiconductor with narrow band gap energy is needed, however, electron-hole pairs generated by a low band gap semiconductor do not possess sufficient redox potential to engender water splitting that normally requires at least 2.0 eV of energy.

In case of a wide band gap semiconductor such as TiO2 (band gap energy of 3.0 eV) only a small portion of solar spectrum would be absorbed. Thus, for a semiconductor photocatalyst to be useful for water splitting, it must have several attributes as follows 1) its band gap must be wider than about 1.7 eV; 2) it must have a suitable minority band edge and Fermi level that cover both H2 and O2 evolution potentials; 3) it must be stable in very acidic or very alkaline solutions; 4) it must possess high efficiency for conversion of photons to electron-hole pairs; and 5) electron-hole pairs must be able to rapidly migrate to the semiconductor surface where redox reactions can readily occur thwarting charge recombination as described in Deutsch, T. G., Koval, C. A. and Turner J. A., “III-V Nitride Epilayers for Photocatalytic Water Splitting: GaPN and GaAsPN,” J. Phys. Chem. B, 110, pp. 25297-307, 2006. Moreover, these conditions have to be met simultaneously. To date, no such catalyst has been found.

Another approach to direct water splitting involves the use of sacrificial reagents—see, for example, the review by Liu and co-workers as described in Liu, H., Yuan, J., and Shangg anu, W., “Photochemical Reduction and Oxidation of Water Including Sacrificial Reagents and Pt/TiO2 Catalyst,” Energy & Fuels, 20(6), pp. 2289-92, 2006. The central premise in this approach is that lower potentials would be necessary to evolve hydrogen if a sacrificial reagent is present as opposed to that required for direct unassisted water splitting. Therefore, the efficiency of H2 or O2 production from such systems can be significantly higher than direct water splitting. Several redox systems have been extensively investigated including electron donor systems such as: CH3OH or C2H5OH, Na2EDTA, Na2SO3, Na2S and NaI or KI, as well as the electron scavenger systems, e.g. AgNO3 and Fe(NO3)3.
Although sacrificial reagent redox systems require lesser energy and can be carried out under milder conditions, a consumable reagent is required to produce hydrogen (or oxygen) from water. Only H_2SO_4-H_2SO_4 system can form a closed cycle if the problem with sulfur formation during H_2SO_4 oxidation can be satisfactorily addressed.

Thermochemical water splitting cycles (TCWSCs) utilize two or more chemical reactions (steps) that together form a closed loop with an overall reaction being the splitting of water and co-production of hydrogen and oxygen. Energy is typically input into one or more steps constituting a TCWSC. The basic concept behind the use of TCWSCs is to partition the total energy required for splitting water into several smaller and more manageable quantities input into the various steps within the cycle so that each step requires a portion of the total water splitting energy needed $(\Delta H^\text{w, liquid}) = 285.9 \text{kJ/mol and } \Delta H^\text{w, gas} = 241.83 \text{kJ/mol at 25^\circ C, 1 atm}).$ FIG. 1 illustrates a three-step TCWSC in which the total energy (ΔH_total) required for water splitting is segmented as follows:

$$\Delta H_\text{total} = \Delta H_1 + \Delta H_2 + \Delta H_3$$

(1)

Each step requires lesser amount of energy than the total water splitting energy as follows:

$$\Delta H_1 < \Delta H_\text{total}, \Delta H_2 < \Delta H_\text{total}, \Delta H_3 < \Delta H_\text{total}$$

(2)

At least two steps are needed to form a TCWSC: H_2 evolution step and O_2 production step. If the energy required for one step of a TCWSC (typically the oxygen evolving step) becomes greater than that needed to carry out direct water splitting, it is typically stored in the products from oxygen generation step, hydrogen production step of the cycle can be considerably less energy intensive or even exothermic. Pseudo TCWSCs constitute a highly endothermic process for absorbing and storing the solar thermal heat at very high temperatures by use of solar cavity-receivers operating at temperatures above 2000° C. and mean solar flux concentration ratios, $C_p > 5000$ as described in T-Raissi, A., et al., “Screening of Water-Splitting Thermochemical Cycles Potentially Attractive for Hydrogen Production by Concentrated Solar Energy”, chemical energy to total energy consumed by the cycle.

The above two cycles use heavy metals Hg and Cd and generally viewed as not environmentally friendly cycles.

Metal Oxide/Metal Oxide TCWSCs:

$$\text{M}_2\text{O}_3 + x\text{M}(y/2)\text{O}_2 (\text{endothermic}), \Delta H^\text{F} = \Delta H^\text{F}_\text{M}_2\text{O}_3$$

$$x\text{M} + y\text{H}_2\text{O} = \text{M}_2\text{O}_3 + y\text{H}_2 (\text{exothermic}), \Delta G < 0$$

(8)

Some metal and metal oxide based pseudo TCWSCs described in Abanades et al. are given below:

$$\text{M}_2\text{O}_3(s) \rightarrow \text{M}_2\text{O}_3(s) + 3\text{O}_2(g), 25^\circ C.$$ (9)

$$\text{M}_2\text{O}_3(s) + 2\text{H}_2\text{O} \rightarrow \text{M}_2\text{O}_3(s) + 2\text{H}_2(g) + 3\text{O}_2(g), 1543^\circ C.$$ (10)

$$\text{WO}_3(s) \rightarrow \text{WO}_3(s) + \text{O}_2(g), 3910^\circ C.$$ (11)

$$\text{W} + 3\text{H}_2\text{O} \rightarrow \text{WO}_3(s) + 3\text{H}_2(g), 884^\circ C.$$ (12)

Some low temperature metal/metal oxide cycles do not belong to pseudo TCWSCs described in Abanades et al. include:

$$\text{Hg}(g) + \text{H}_2\text{O} \rightarrow \text{HgO}(s) + \text{H}_2(g), 360^\circ C.$$ (17)

$$\text{Hg}(g) + \text{H}_2\text{O} \rightarrow \text{HgO}(s) + \text{H}_2(g), 600^\circ C.$$ (18)

$$\text{Cd}(s) + \text{H}_2\text{O} \rightarrow \text{CdO}(s) + \text{H}_2(g), 25^\circ C.$$ (19)

$$\text{Cd}(s) + \text{H}_2\text{O} \rightarrow \text{CdO}(s) + \text{H}_2(g), 1400^\circ C.$$ (20)

The overall thermal efficiency (η_{overall}) (or 1st law efficiency) of a TCWSC is defined as the ratio of hydrogen chemical energy to total energy consumed by the cycle.

$$\eta_{\text{overall}} = \frac{n \cdot \Delta H_F^H}{\Delta H_{\text{total}}}$$

(29)

Nonmetal Oxide Cycles:

$$\text{CO}_2(g) + \text{CO}(g) \rightarrow 2\text{CO}_2(g), \Delta H = -283.0 \text{kJ/mol, 1700° C.}$$ (3)

$$\text{CO}_2(g) + \text{H}_2\text{O}(g) \rightarrow \text{H}_2(g) + \text{CO}_2(g), \Delta H = -412.0 \text{kJ/mol, 700° C.}$$ (4)
Where \(n \) is the total mole of hydrogen generated by the cycle, \(\Delta H_r \) is enthalpy of water formation and \(\Delta H_{\text{total}} \) is the total energy input to the cycle to produce \(n \) moles of hydrogen. If the enthalpy of formation of water in liquid state is used (at 298 K, \(\Delta H_f \approx -68.32 \text{ kcal/mol} = -285.9 \text{ kJ/mol} \)), the efficiency thus calculated is called high heating value (HHV) efficiency, \(\eta_{\text{HHV}} \). Some argue that the latent heat of condensation cannot be economically recovered and prefer using the lower heating value (LHV) efficiency \(\eta_{\text{LHV}} \). \(\Delta H_{\text{f,liq}} \) is the enthalphy of formation of water vapor at 298 K \((\Delta H_f = 57.41 \text{ kcal/mol} = 240.2 \text{ kJ/mol}) \). The ratio \(\Delta H_{\text{f,liq}}/\Delta H_{\text{f,liq}} = 54.74 = 1.19 \). The figure of merit or Carnot efficiency (also, work or 2nd law efficiency) is defined as:

\[
\eta_{\text{2nd}} = \frac{n \cdot \Delta G_f}{\Delta H_{\text{f,liq}}} = \frac{237.2 \cdot n}{\Delta H_{\text{f,liq}}} \tag{30}
\]

Where, \(\Delta G_f \) is the Gibbs free energy of water formation \(237.2 \text{ kJ/mol} \). Since early 1970s, when the concept of TCWSCs was introduced, much effort has been devoted to defining their efficiencies.

However, due to the fact that TCWSCs often contain several reaction steps as well as processes for the material transport and separation, precise determination of the efficiencies has been difficult. Inventors, Huang and Raisi have shown that efficiency determination for a TCWSC must be calculated based on the chemical process simulation in which a detailed flow sheet that takes into account for the material and energy balance as well as precise values of the chemical and physical properties of reactants and products as described in Huang, C., and T-Raisi, A., “A Perspective on Thermodynamics and Thermal Efficiency Calculations for Hydrogen Production via Thermochemical Water Splitting Cycles,” manuscript to be submitted for publication.

FIG. 3 shows a simple flow diagram for a model TCWSC. Water is fed into the cycle and hydrogen and oxygen are the only output of the cycle. The hydrogen and oxygen production steps are connected by process steps involving chemical separation and recycling thus forming a closed cycle with an overall reaction of water decomposition into \(H_2 \) and \(O_2 \). Total energy needed to perform water splitting consists of four parts: energies required to generate \(H_2 \) and \(O_2 \) (i.e. \(\Delta H_1 \) and \(\Delta H_2 \)), separation of reactant from products \(\Delta H_3 \) and recycling of the reactants \(\Delta E \). Then,

\[
\Delta H_{\text{total}} \approx \Delta H_1 + \Delta H_2 + \Delta H_3 + \Delta E \tag{30}
\]

The efficiency of a TCWSC depends upon if energy input to the cycle is maximally used for carrying out chemical reactions at same time minimizing the energy losses. There are a number of types of energy losses for TCWSCs leading to a wide range of efficiency loss. In order to develop an innovative TCWSC, it is important to analyze and evaluate the existing TCWSCs in terms of energy losses. The energy losses in a TCWSC can be separated into four major categories as follows:

1. Kinetic energy loss: this includes reaction activation energy, mass transportation energy and energy to overcome reverse reactions.
2. Heating energy loss: 100% heat recovery can not be achieved. Low temperature heating energy is not recoverable.
3. Separation energy loss: energy required to separate one product from another or from reactants is not recoverable. Separation of gas from gas or liquid from liquid is an energy intensive process. While separating a solid from another solid is extremely difficult or almost impossible.
4. Transport energy loss which is electrical energy used to pump and move species.

It should be pointed out that heating energy can be recovered. From a viewpoint of chemical reactions, the efficiency of a TCWSC can also be expressed as:

\[
\eta = \frac{\Delta H_{\text{reaction}} / \Delta H_{\text{total}} \times 100}{\Delta H_{\text{heat}} + \Delta H_{\text{separation}} / \Delta H_{\text{total}} \times 100}
\]

Transportation energy requirements for a TCWSC consists a small portion of the total energy needed. On the other hand, heating energy loss can be minimized using a heat exchanger network. Pinch analysis can provide an optimization technique for heat exchange network with which heating loss can be minimized. Therefore, in most TCWSCs, kinetic energy and separation energy represent major portions of the energy loss. If chemical reactions in a TCWSC can be approximately reach their thermodynamic equilibria, the kinetic energy loss can be neglected. However, the major issues for most high temperature reactions are reverse reactions that require a quenching step to cool temperature rapidly to avoid this reaction, for example:

\[
\begin{align*}
CO_2(g) &= CO(g) + \frac{1}{2} O_2(g) \\
ZnO(s) &= Zn(g) + \frac{1}{2} O_2(g) \\
SnO_2 &= Sn + O_2
\end{align*}
\]

Apparently, separating one gas from a gas mixture and a liquid from a solution is not only an energy intensive process it also can cause material losses. For example, separation of \(SO_2 \) from \(O_2 \) requires a compression process to liquefy \(SO_2 \) so that \(O_2 \) can be separated. The \(O_2 \) separated in this method can contain small amounts of \(SO_2 \), indicating the loss of sulfur component. To separate \(H_2 \) from \(CO_2 \) in \(CO_2 \)—\(CO \) cycle (Reaction (4)) may need a Pressure Swing Adsorption process that can cause hydrogen loss. Separating \(H_2 \) from \(H_2SO_4 \) is another typical example of liquid and liquid separation that involves in all the sulfuric acid decomposition based TCWSCs. The separation represents a major energy loss and determines the efficiency of the entire cycle. Some TCWSCs comprise a step of separating a solid from a solid mixture indicating that the operation is complicated and the cycle efficiency is low. Based upon the energy loss analyses, the cycle efficiency can be estimated as:

\[
\eta = \frac{\Delta H_{\text{reaction}} / \Delta H_{\text{total}} \times 100}{\Delta H_{\text{heat}} + \Delta H_{\text{separation}} / \Delta H_{\text{total}} \times 100}
\]

As reported in the literature, since the decomposition of \(H_2SO_4 \) and \(MSO_4 \) at higher temperatures can reach thermodynamic equilibria, the kinetic energy loss can be neglected, therefore, the efficiency of \(H_2SO_4 \) and \(MSO_4 \) based TCWSCs can be simplified as:

\[
\eta = \frac{\Delta H_{\text{reaction}} / \Delta H_{\text{total}} \times 100}{\Delta H_{\text{heat}} / \Delta H_{\text{total}} \times 100}
\]

This partially shows why \(H_2SO_4 \) and \(MSO_4 \) based TCWSCs are high efficiency processes and therefore are widely studied.
been made to improve the efficiency of the electrolytic process based cycles, to date, more than 20 sulfuric acid and/or metal reflectors in the form of trough, tower, or dish systems. These applications involving solar thermochemical water splitting for which the overall reaction is:

\[
H_2SO_4 + H_2O + SO_2 \quad \Delta H^\circ 298K = 87.1 \text{kJ/mol}
\]

\[
SO_3 = SO_2 + \frac{1}{2}O_2 \quad \Delta H^\circ 298K = 144.2 \text{kJ/mol}
\]

The remaining 19.1% of the energy required to split water is then used for the H\textsubscript{2} production step. Note that about 80.9% of the total solar irradiance comprising of mostly thermal energy with wavelengths above 520 nm can be utilized for the decomposition of sulfuric acid in the oxygen generation step of the sulfur-family cycles. The remaining 19.1% of the total solar irradiance which is photonic energy at wavelengths less than about 520 nm will be used for the hydrogen production step of the cycle. In other words, for optimum overall cycle efficiency, it is necessary that the oxygen step be used to 80.9% of the solar irradiance as mostly thermal radiation above a wavelength of approximately 520 nm and the hydrogen generation step to consume the remaining 19.1% of solar power, at wavelengths shorter than 520 nm—preferably, within a photolytic and/or photocatalytic reactor. Large-scale solar concentrators typically utilize parabolic reflectors in the form of trough, tower, or dish systems. These solar concentrators are characterized in terms of their mean flux concentration ratio \(C_R\) over an area \(S_a\) at the receiving focal plane as follows:

\[
C_R = \frac{q_s}{q_s^0}
\]

where \(q_s\) (W/m\(^2\)) refers to the solar flux intercepted by unit area of the receiver at the focal plane and 1 (W/m\(^2\)) is the incident normal beam isolation. \(C_R\) is often expressed in units of “sun” when normalized to 1=1000 W/m\(^2\) as described in Steinfield, A., “Solar Thermochemical Production of Hydrogen—A Review,” Solar Energy, 78, pp. 603-15, 2005. The solar flux concentration ratio typically obtained is at the level of 100, 1000, and 10,000 suns for trough, tower, and dish systems, respectively. The most suitable concentrators for applications involving solar thermochemical water splitting cycles include tower and dish systems. Due to the high 1st and 2nd law efficiencies of sulfuric acid based cycles, to date, more than 20 sulfuric acid and/or metal sulfate decomposition based TCWSCs have been reported in the literature. Despite difficulties that challenge efficient electrolytic oxidation of sulfur dioxide (SO\(_2\)), the Westinghouse hybrid cycle still remains as one of the most studied TCWSCs conceived for the production of hydrogen from water. The Westinghouse cycle described in Brecher, L. E., Spewock, S., et al., “Westinghouse Sulfur Cycle for the Thermochemical Decomposition of Water,” Proceedings of the 1st World Hydrogen Energy Conf., 19A, 1-16, 1976 is as follows:

\[\text{SO}_2(g) + 2\text{H}_2\text{O}(l) \rightarrow \text{H}_2 + \text{H}_2\text{SO}_4(aq) \quad 77^\circ \text{C. (electrolysis)}\]

\[\text{H}_2\text{SO}_4(g) \rightarrow \text{SO}_2(g) + \text{H}_2\text{O}(l) + \frac{1}{2}\text{O}_2 \quad 850^\circ \text{C. (thermolysis)}\]

The many advantages of the Westinghouse cycle have been widely reported and discussed in the literature. Westinghouse cycle is known to be hampered by the low solubility of SO\(_2\) in water and challenges presented by the acidity of the SO\(_2\) electrolytic oxidation process. To date, many efforts have been made to improve the efficiency of the electrolytic process for oxidation of SO\(_2\). Past activities have involved the use of a depolarized electrolyzer as well as addition of a third process step—examples include S—I, S—Br and S—Fe cycles given below:

Ispra Mark 13 Sulfur-Bromine Cycle:

\[\text{Br}_2(g)+\text{SO}_2(g)+2\text{H}_2\text{O}(l) \rightarrow 2\text{HBr}(aq)+\text{H}_2\text{SO}_4(aq) \quad 77^\circ \text{C.} \]

\[\text{H}_2\text{SO}_4(g) \rightarrow \text{SO}_2(g) + \text{H}_2\text{O}(l) + \frac{1}{2}\text{O}_2 \quad 850^\circ \text{C.} \]

Sulfur-Iodine Cycle:

\[\text{I}_2+\text{SO}_2(g)+2\text{H}_2\text{O}(l) \rightarrow 2\text{HI}(g)+\text{H}_2\text{SO}_4(aq) \quad 110^\circ \text{C.} \]

\[\text{H}_2\text{SO}_4(g) \rightarrow \text{SO}_2(g) + \text{H}_2\text{O}(l) + \frac{1}{2}\text{O}_2 \quad 850^\circ \text{C.} \]

General Atomics' Sulfur-Iodine Cycle:

\[\text{I}_2+\text{SO}_2(g)+2\text{H}_2\text{O}(l) \rightarrow 2\text{HI}(g)+\text{H}_2\text{SO}_4(aq) \quad 450^\circ \text{C.} \]

Sulfur-Iron Cycle:

\[\text{Fe}_2\text{SO}_4(aq)+\text{2H}_2\text{O}(l) \rightarrow \text{Fe}_2\text{SO}_4(aq)+2\text{H}_2\text{SO}_4(aq)+2\text{H}_2 \quad 25^\circ \text{C.} \]

\[\text{H}_2\text{SO}_4(l) \rightarrow \text{SO}_2(g) + \text{H}_2\text{O}(l) + \frac{1}{2}\text{O}_2 \quad 850^\circ \text{C.} \]

\[2\text{FeSO}_4(aq)+\text{H}_2\text{SO}_4(aq) \rightarrow 2\text{Fe}_2\text{SO}_4(aq) + \text{H}_2(g) \quad 25^\circ \text{C.} \]

Although these cycles address some of the challenges associated with water splitting, especially with regard to the solubility of SO\(_2\) in water, they have issues of their own. For example, efficient separation of sulfuric acid from reaction products such as HI, HBr or FeSO\(_4\) presents a challenge. Additionally, the pH of the solutions remains problematic. In fact, this problem becomes more acute due to the generation of other acids such as HI and HBr.

The second approach is to introduce a metal oxide as a catalyst to convert low concentration sulfuric acid to metal sulfate that can be decomposed for the production of oxygen and sulfur dioxide, metal oxide. Sulfur dioxide and water are send back to sulfur decomposition based TCWSPCs for the production of hydrogen and sulfuric acid to close a cycle. Introducing ZnO into the Westinghouse TCWSPC a new modified ZnSO\(_4\) decomposition based Westinghouse cycle can be written as:

\[\text{SO}_2(g) + 2\text{H}_2\text{O}(l) \rightarrow \text{H}_2 + \text{H}_2\text{SO}_4(aq) \quad 77^\circ \text{C. (electrolysis)}\]

\[\text{H}_2\text{SO}_4(aq, 50 \text{ wt }\%)+\text{ZnO}(s) = \text{ZnSO}_4\cdot\text{H}_2\text{O}(s) \quad 80-350^\circ \text{C.} \]

\[\text{ZnSO}_4\cdot\text{H}_2\text{O}(s) = \text{ZnSO}_4(s) + \text{H}_2\text{O}(g) \quad 450^\circ \text{C.} \]

\[\text{ZnSO}_4(s) \rightarrow \text{SO}_2(g) + \text{H}_2\text{O}(g) + \frac{1}{2}\text{O}_2 \quad 850^\circ \text{C.} \]

Similarly, by adding metal oxide catalysts to the Ispra Mark 13 sulfur-bromine cycle, General Atomics' sulfur-iodine cycle and sulfur-iron cycle, a number of new, modified metal sulfate based TCWSCs can be devised. However, if solar energy is used to drive these cycles, only solar thermal energy can be utilized resulting in degrading the photonic portion of solar spectrum to lower grade heat. Secondly, although metal sulfate cycles have overcome some difficulties associated with the sulfuric acid based TCWSPCs, they have some other issues that need to be addressed. A fundamental difficulty of this type of TCWSPCs is that the hydrogen production step:

\[\text{MO}(s)+\text{H}_2\text{O}+\text{SO}_2(g) \rightarrow \text{MSO}_4(s) + \text{H}_2(g)\]

is thermodynamically unfavorable. Besides that, the separation of H\(_2\) from unreacted SO\(_2\)(g) is an energy intensive process.
For solar driven water splitting, Abanades and co-workers screened 280 TCWSCs as disclosed in Abanades, S., Charvin, P., Flamant, G., and Neven, P., “Screening of Water-Splitting Thermochemical Cycles Potentially Attractive for Hydrogen Production by Concentrated Solar Energy”, Energy, 31, 2805-22, 2006. They selected 30 TCWSCs as promising solar driven cycles for further investigation. Among these cycles, there were nine metal sulfate based TCWSCs — almost ½ of all selected cycles. This implies that the decomposition of H₂SO₄ or MSO₄ presents an effective method for heat absorbing step of the TCWSCs. The General Atomics’ S-I cycle was not among the selected candidates.

Among these cycles, there were nine metal sulfate based cycles that considered suitable for solar interface by Abanades et al due to the difficulties in separating H₂ from water. Three examples of metal sulfates cycles are given below:

- MnSO₄ → MnO₂SO₄ + ½O₂ 1100°C. (42)
- MnO₂H₂SO₄ → MnSO₄ + H₂ 250°C. (43)
- FeSO₄ → FeO + SO₃ 2300°C. (51)
- Fe₂O₃ + H₂SO₄ → Fe₂O₃ + SO₂ + H₂O 200°C. (52)
- Fe₂O₃ + SO₂ → Fe₂O₃ + SO₃ 2300°C. (53)
- Fe₂O₃ + 2SO₂ → Fe₂O₃ + SO₃ + O₂ 700°C. (55)
- SO₃ → SO₂ + ½O₂ 2300°C. (56)
- 6Cu(s) + 3H₂O → 3Cu₂O(s) + 3H₂ 500°C. (57)
- Cu₂O₃ + 2SO₂(g) → 2CuSO₄ + O₂ 300°C. (58)
- Cu₂O₃ + 2CuSO₄ → 2Cu₂O + 2SO₃ 1750°C. (59)
- Cu₂O₃ + H₂O → Cu₂O + CuOH₂ 1500°C. (60)
- Cu(OH)₂ + SO₂(g) → CuSO₄ + H₂O 100°C. (61)
- CuSO₄ + Cu + H₂SO₄ → CuSO₄ + H₂O 1500°C. (62)
- SO₃ + H₂O + BaMoO₄ → BaSO₄ + Mo₂O₇ + H₂O 300°C. (63)
- BaSO₄ + H₂O → BaSO₄ + H₂ 200°C. (64)
- BaSO₄ + Mo₂O₇ → BaMoO₄ + SO₃ + O₂ 1300°C. (65)

The methods and systems of the present invention provide a class of new thermochemical water splitting cycles that utilize solar photonic energy for the production of hydrogen and solar thermal heat for oxygen production.

SUMMARY OF THE INVENTION

A primary objective of the present invention is to introduce the concept of a new type of solar thermochemical water splitting cycles for hydrogen production. In these cycles, both solar photonic energy and solar thermal energy are utilized ensuring higher cycle efficiencies. The cycles match the energy content of solar spectrum to the energy requirements of these cycles.

A secondary objective of the invention is to provide methods and systems for a hybrid photo/thermochemical water splitting cycle that employs the quantum portion of the solar spectrum for the production of H₂ and the thermal portion (i.e., IR) portion of solar radiation for O₂ evolution.

A third objective of the invention is to provide methods and systems for using the full solar spectrum allows the cycle to reach potentially a higher overall efficiency than is possible with the purely thermochemical water splitting cycles of the past.

A fourth objective of the invention is to provide methods and systems for a hybrid photo/thermochemical water splitting cycle using the metal sulfate-ammonia (MSO₄-NH₃) hybrid photo/thermochemical cycle represented by the following four reactions:

SO₃(g) + 2NH₃(g) + H₂O(l) → (NH₄)₂SO₃(aq) 25°C. (a) (chemical absorption)
(NH₄)₂SO₃(aq) + H₂O(l) → (NH₄)₂SO₄(aq) + H₂ 30-80°C. (b) (solar photocatalytic and/or electrolytic step)
(NH₄)₂SO₄(aq) + MoO₃ → 2NH₃(g) + MSO₄(aq) + H₂O(g) 460°C. C. (thermocatalysis) (c)
MSO₄(aq) → SO₃(g) + MoO₄ + ½O₂ 850-1100°C. (thermocatalysis) (d)

Where, M is preferably Zn and Mn. Additionally, M can also be selected from the group consisting of Mg, Ca, Ba, Fe, Co, Ni, Cu and Pb. Also, oxides Fe₂O₃ and Cu₂O can be included for by slightly modifying Reactions (d) and (d). One main feature of the new MSO₄-NH₃ cycles is that no separation unit operations are needed. It is obvious that for the H₂ production step, gaseous H₂ is generated from the aqueous solution and no separation is required. In a low temperature reaction, gaseous products, NH₃ gas and water vapor, can be separated automatically from solid product ZnSO₄, which decomposes at temperatures above 600°C. A gaseous mixture containing SO₂ and O₂ is generated from solid ZnSO₄ at temperatures higher than 800°C, and they can be easily separated from solid product ZnO.

The separation of SO₂ from O₂ is accomplished by a chemical absorption step, where SO₂ reducts with NH₃ and H₂O to form aqueous (NH₄)₂SO₃ solution, and therefore O₂ is separated.
an absorber to form aqueous (NH₄)₂SO₃ solution and separate O₂ from the solution. The aqueous (NH₄)₂SO₃ is sent back to the photoreactor to close the water splitting cycle wherein gaseous H₂ and O₂ are the only output products from the closed ZnSO₄—NH₃ cycle. This process can also be done by an electrolytic process to oxidize aqueous (NH₄)₂SO₃ solution to (NH₄)₂SO₄ solution and reduce water to produce hydrogen.

In an embodiment, the method also includes introducing a cold water stream into the closed system to recover heat from the high temperature reactor to generate a hot steam, and using the hot steam to drive a microturbine to produce electricity.

A second embodiment provides a closed system for producing H₂ and O₂ via M₄SO₄—NH₃ water splitting cycles. Just as metal oxides can be used as catalysts for converting ammonium sulfate to metal sulfate, metal sulfates can also be employed for converting ammonium sulfate to ammonium pyrosulfate ((NH₄)₂S₂O₇). Sulfur dioxide and oxygen are products of ammonium pyrosulfate decomposition. Thus, a second class of modified S—NH₃ TCWSCs based on the M₄SO₄—NH₃ can be devised as follows:

\[\text{SO}_2(g) + 2\text{NH}_3(g) + \text{H}_2\text{O}(l) \rightarrow (\text{NH}_4)_2\text{SO}_4(aq) \] 20°C C. (chemical absorption)

\[((\text{NH}_4)_2\text{SO}_4(aq) + \text{H}_2\text{O}(g) \rightarrow \text{NH}_3(g) + \text{SO}_3(g) + \text{H}_2(g) \] C. (solar photocatalytic and/or electrolytic step)

\[(\text{NH}_4)_2\text{SO}_3(aq) + \text{M}_4\text{SO}_4(aq) \rightarrow 2\text{NH}_3(g) + \text{M}_4\text{SO}_4(s) + \text{H}_2(g) \] C. (solar thermocatalysis)

\[\text{M}_4\text{SO}_4(aq) + \text{SO}_3(g) + \text{H}_2\text{O}(g) \rightarrow \text{SO}_4(aq) + \text{M}_4\text{SO}_4(s) \] 850–1100°C C. (solar thermocatalysis)

Where, M is preferably K, Rb, and Cs.

This system includes a photocatalytic reactor for receiving an aqueous (NH₄)₂SO₃ solution to oxidize the aqueous (NH₄)₂SO₃ into aqueous (NH₄)₂SO₄ and reduce water to hydrogen, a mixer for mixing the resulting aqueous (NH₄)₂SO₄ with an aqueous metal sulfate M₄SO₄ to form an aqueous solution that is heated up in a low temperature reactor to produce a gaseous mixture of NH₃ and H₂O and solid product, M₄SO₄, a high temperature reactor for heating solid M₄SO₄ to produce a gaseous mixture of SO₂ and O₂ and solid product, M₄SO₄ that is separated as a catalyst and reused in Reaction (g). The SO₂ and O₂ mixture is mixed with an NH₃+H₂O stream in an absorber to form aqueous (NH₄)₂SO₃ solution while O₂ is separated. The aqueous (NH₄)₂SO₃ solution is then sent back to the photocatalytic reactor for the production of H₂ to close the water splitting cycle wherein gaseous H₂ and O₂ are the only products from the M₄SO₄—NH₃ cycles. This can also be realized by electrolytic process to oxidize aqueous (NH₄)₂SO₃ solution to (NH₄)₂SO₄ solution and reduce water to produce hydrogen.

Further objects and advantages of this invention will be apparent from the following detailed description of preferred embodiments which are illustrated schematically in the accompanying drawings.

BRIEF DESCRIPTION OF THE FIGURES

FIG. 1 illustrates the energy requirements for a three-step thermochemical water splitting cycle.

FIG. 2 shows the concept of pseudo thermochemical water splitting cycles having one step that consumes more energy than that needed for direct water splitting.

FIG. 3 is a simple flow diagram showing energies of a thermochemical water splitting cycle.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

Before explaining the disclosed embodiments of the present invention in detail it is to be understood that the invention is not limited in its application to the details of the particular arrangements shown since the invention is capable of other embodiments. Also, the terminology used herein is for the purpose of description and not of limitation.

As previously discussed, thermochemical water splitting cycle (TCWSC) efficiency is a function of efficiencies of both hydrogen and oxygen production steps according to equation (j). Solar energy consists of both photonic and thermal energies. The efficacy of any solar driven water splitting cycle depends upon the ability of the cycle to utilize as broad range of solar spectrum as possible—i.e. being able to exploit both the photonic (UV/visible) and thermal components of the solar radiation. Degradation (or thermalization) of the high energy portion of solar radiation to thermal heat, as is the case with purely thermochemical water splitting cycles, leads to lower cycle efficiencies. Solar spectrum is comprised of approximately one-third photonic energy with wavelengths less than 585 nm, and two-thirds mostly thermal heat with wavelengths greater than 585 nm. Thermodynamically, the total energy (∆H) required to produce H₂ by water splitting is ∆H=ΔG+TΔS. At a given temperature T, a process will be more efficient if it can utilize the 33% photonic energy of solar radiation as Gibbs free energy, AG, and the remaining 67% solar thermal component as TAS.

Present technologies for the solar production of H₂ via direct water splitting use either the photonic energy or the thermal energy portion of solar spectrum, but not both. These processes are not efficient for the following reasons. Direct thermal decomposition of water degrades solar photonic energy to lower grade thermal heat, resulting in an energy loss. In addition, direct thermal processing requires temperatures in excess of 2500°C. and recombination of H₂ and O₂ is problematic. Photoelectrochemical (PEC) water splitting has merits over the photovoltaic (PV) plus water electrolysis as it combines photochemical and electrochemical steps into one single process for direct hydrogen production. However, in the PEC process, only about one-third of entire solar spec-
Solar thermal energy is used to drive Reactions (72) and (73) for the production of O\textsubscript{2} via decomposition of ammonium sulfate (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4} and sulfuric acid H\textsubscript{2}SO\textsubscript{4}. Reaction (71) is a photocatalytic process in which SO\textsubscript{4}2- ions are oxidized to SO\textsubscript{4}2- in the presence of UV-visible light, a photocatalyst and water, generating hydrogen. Solar thermal, i.e., near infrared (NIR) and infrared (IR), and UV-visible portions of solar radiation are resolved using a spectral splitting mirror. The thermal part of the sunlight is then concentrated into a high temperature thermocatalytic reactor/receiver and used for oxygen production, while the photonic (UV and visible light) portion passes through a coating layer driving the photocatalytic hydrogen generation reaction.

Reaction (71) requires approximately 0.52 V potential (vs. NHE) in a 1 M aqueous (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{3} solution with a pH of 7.8. This potential is about 1/3 of that needed for water splitting (approximately 1.5V). Furthermore, as noted before, Reaction (73) requires 80.9% of the total solar irradiance that is comprised of mostly thermal energy with wavelengths above 520 nm. The remaining 19.1% of the solar irradiance which is comprised of photonic energy at wavelengths less than about 520 nm are available to carry out hydrogen production step of the cycle.

It was previously shown that this partitioning of solar irradiance was necessary for achieving the optimum overall cycle efficiency—i.e. the oxygen production step consumes 80.9% of the solar thermal energy at wavelengths of approximately 520 nm or above and the hydrogen generation step utilizing the remaining 19.1% of solar light having wavelengths shorter than 520 nm. The hydrogen generation step of would preferably occur within a photocatalytic or photothermal reactor. A suitable photocatalyst for carrying out the hydrogen generation step was identified as cadmium sulfide with the optical absorption edge (hedge) of 512 nm for bulk CdS.

Reaction (70) in the S—NH\textsubscript{3} cycle is a chemical adsorption process. An acid gas (SO\textsubscript{2}) and an alkaline gas (NH\textsubscript{3}) react and readily form the aqueous (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{3} solution. Reaction (91) is a photocatalytic hydrogen production step in which photonic energy is converted to chemical energy of hydrogen. Reaction (91) can occur via either a visible light photocatalytic process or a UV light photolytic route. Experimental data obtained to date show it is possible to carry out Reaction (91) with an energy conversion efficiency of about 12% using CdS as the photocatalyst. FIG. 7 depicts the relative of H\textsubscript{2} production from an aqueous (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4} solution using a 1000 W solar simulator fitted with an AM 1.5 global filter. Data of FIG. 7 show an increased rate of hydrogen production if the platinum doped CdS used was polymer-stabilized.

It should be possible to combine Reactions (72) and (73) into one single step. In fact, Reaction (72) is an intermediate step in which NH\textsubscript{3} is recovered used for converting SO\textsubscript{2} to (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4} needed for the next reaction step.

A preliminary thermogravimetric/differential thermal analyses (TG/DTA) instrument coupled to a mass spectrometer has been used to study decomposition of (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4}. Results obtained show that the decomposition of (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4} occurs in two separate stages at 250° C. and 340° C. depending upon the heating rate and material of the sample holder. There were no sulfur or nitrogen gases evolving during the thermolysis process. This suggests that the S—NH\textsubscript{3} cycle as shown below:

\begin{align*}
\text{(NH}_4\text{)}_2\text{SO}_2\text{(aq)}&=\text{(NH}_4\text{)}_2\text{SO}_4(\text{aq}) + \text{N}_2(\text{g}) + \text{H}_2(\text{g}) \\
\text{(NH}_4\text{)}_2\text{SO}_4(\text{aq})&=\text{NH}_3(\text{g}) + \text{H}_2\text{O}(\text{g})
\end{align*}

can be indeed a closed TCWSC with net reaction being that of water splitting:

\begin{align*}
2\text{(NH}_4\text{)}_2\text{SO}_4(\text{g}) &= 2\text{(NH}_4\text{)}_2\text{SO}_2(\text{g}) + \text{O}_2(\text{g}) \\
2\text{NH}_3(\text{g}) + \text{H}_2\text{O}(\text{g}) &= 2\text{H}_2\text{SO}_4(\text{g}) + \text{SO}_2(\text{g})
\end{align*}

Since most of the energy input into the cycle is used to accomplish Reaction (76), the overall cycle efficiency is strongly influenced by the efficiency of the H\textsubscript{2}SO\textsubscript{4} decomposition step. Thermocatalytic decomposition of H\textsubscript{2}SO\textsubscript{4} has been investigated extensively and very high process efficiencies have been reported. Splitting the solar irradiance so that it can be input into two separate processes eases the requirement for high process efficiency for the photochemical reaction step of the S—NH\textsubscript{3} cycle.

As noted in the previous section, for C\textsubscript{p} = 1500, at 1125 K, a maximum theoretical efficiency (or the 1st law efficiency, \(\eta_1\)) of about 73.33% is possible for the H\textsubscript{2}SO\textsubscript{4} decomposition step. In other words, the portion of solar energy that could be captured to conduct acid decomposition and generate oxygen is 73.33%. We also note that at temperature higher than 1000° C., H\textsubscript{2}SO\textsubscript{4} decomposition is no longer kinetically limiting step, rather, thermodynamics controls the extent of the conversion.

The co-inventors’ previous S—NH\textsubscript{3} cycle utilizes decomposition of sulfuric acid as the endothermic step for the absorption of solar thermal heat for the production of oxygen. However, decomposition of higher concentrated sulfur acid presents daunting matters of construction issues. Additionally, separation of gaseous NH\textsubscript{3} from H\textsubscript{2}SO\textsubscript{4} (Reaction 72) gas involves a separation difficulty. Like the metal sulfate based TCWSCs, it is possible to modify the S—NH\textsubscript{3} cycle eliminating the step of the decomposition of H\textsubscript{2}SO\textsubscript{4}. There are two ways to accomplish this. The first approach is to introduce a metal oxide (MO) as a mediate to promote the decomposition of ammonium sulfate (NH\textsubscript{4})\textsubscript{2}SO\textsubscript{4} produced in the hydrogen production step of the S—NH\textsubscript{3} cycle (Reaction 70). This process replaces the decomposition of H\textsubscript{2}SO\textsubscript{4} with metal sulfate (MSO\textsubscript{4}) decomposition. The second approach is to convert ammonium sulfate to metal pyrosulfate (e.g., K\textsubscript{2}S\textsubscript{2}O\textsubscript{4}). When a two valance metal oxide MO (e.g., ZnO) is introduced into the S—NH\textsubscript{3} TCWSC, a new family of MSO\textsubscript{4}—NH\textsubscript{3} based cycles is devised as follows:
The products of decomposition of ammonium pyrosulfate are sulfur dioxide and oxygen. Reactions involving ammonium hydrogen sulfate and zinc oxide can be devised as follows:

\[(NH_4)_2SO_4(aq)+ZnO(s)=2NH_3(g)+H_2O(g) \quad (93)\]

Decomposition of metal sulfates, especially ZnSO₄, has been reported by a number of researchers. For example, the co-inventors have conducted a series of ZnSO₄ decomposition experiments at very rapid heating rates in a concentrating solar simulator. Their findings revealed that ZnSO₄ can be completely decomposed into SO₂, O₂, and ZnO. Depending on the magnitude of sample heating rates, a small amount of SO₃ can also be formed. At rapid heating rates (approximately 1–2⁰ C/s) prevailing within concentrating solar furnaces, formation of SO₃ can be minimized, eliminating a needed separation of SO₃ from SO₂. Unlike the sulfur-ammonia cycles, the new MSO₄–NH₃ cycles rely on the Reaction (88), indicating that there is no NH₃ oxidation products, such as N₂O and NO are found, and no sulfur value products are wasted in this reaction. Besides, no NH₃ oxidation products such as N₂O and NO are found, indicating no NH₃ loss in the reaction.

Experimental results have shown that, in ZnSO₄–NH₃ cycle, NH₃(g) and H₂O(g) are the only products of the low temperature reaction \((\text{ZnSO}_4(s)+\text{NH}_3(g)+\text{H}_2\text{O}(g))\), indicating that there is no sulfur value products are wasted in this reaction. Besides, no NH₃ oxidation products such as N₂O and NO are found, indicating no NH₃ loss in the reaction.

The reactions involving ammonium sulfates and metal oxides can be used as catalysts for converting ammonium pyrosulfate to metal sulfate, metal sulfates can also be employed for converting ammonium sulfate to metal sulfate, metal sulfates can also be used for converting metal sulfates to metal sulfate, metal sulfates can also be used for converting metal sulfates to metal oxide (e.g., Reaction (89)). The new MSO₄–NH₃ cycles are sulfur dioxide and oxygen. The major sulfur species formed at low temperature stage. The major products of the MS measures are NH₃, H₂O, and small amount of SO₂ and NO. Experimental results have shown that, in ZnSO₄–NH₃ cycle, NH₃(g) and H₂O(g) are the only products of the low temperature reaction \((\text{ZnSO}_4(s)+\text{NH}_3(g)+\text{H}_2\text{O}(g))\), indicating that there is no sulfur value products are wasted in this reaction. Besides, no NH₃ oxidation products such as N₂O and NO are found, indicating no NH₃ loss in the reaction.

Just as metal oxides can be used as catalysts for converting ammonium pyrosulfate to metal sulfates, metal sulfates can also be employed for converting ammonium sulfate to metal sulfate, metal sulfates can also be employed for converting ammonium sulfate to metal oxide. The new MSO₄–NH₃ cycles are sulfur dioxide and oxygen. The major sulfur species formed at low temperature stage. The major products of the MS measures are NH₃, H₂O, and small amount of SO₂ and NO. Experimental results have shown that, in ZnSO₄–NH₃ cycle, NH₃(g) and H₂O(g) are the only products of the low temperature reaction \((\text{ZnSO}_4(s)+\text{NH}_3(g)+\text{H}_2\text{O}(g))\), indicating that there is no sulfur value products are wasted in this reaction. Besides, no NH₃ oxidation products such as N₂O and NO are found, indicating no NH₃ loss in the reaction.

It is therefore clear that Reaction (80) can be the basis of the new MSO₄–NH₃ TCWSCs. Experimental results have shown that, in ZnSO₄–NH₃ cycle, NH₃(g) and H₂O(g) are the only products of the low temperature reaction \((\text{ZnSO}_4(s)+\text{NH}_3(g)+\text{H}_2\text{O}(g))\), indicating that there is no sulfur value products are wasted in this reaction. Besides, no NH₃ oxidation products such as N₂O and NO are found, indicating no NH₃ loss in the reaction.

Just as metal oxides can be used as catalysts for converting ammonium pyrosulfate to metal sulfates, metal sulfates can also be employed for converting ammonium sulfate to metal sulfate, metal sulfates can also be employed for converting ammonium sulfate to metal oxide. The new MSO₄–NH₃ cycles are sulfur dioxide and oxygen. The major sulfur species formed at low temperature stage. The major products of the MS measures are NH₃, H₂O, and small amount of SO₂ and NO. Experimental results have shown that, in ZnSO₄–NH₃ cycle, NH₃(g) and H₂O(g) are the only products of the low temperature reaction \((\text{ZnSO}_4(s)+\text{NH}_3(g)+\text{H}_2\text{O}(g))\), indicating that there is no sulfur value products are wasted in this reaction. Besides, no NH₃ oxidation products such as N₂O and NO are found, indicating no NH₃ loss in the reaction.

It is therefore clear that Reaction (80) can be the basis of the new MSO₄–NH₃ TCWSCs. Experimental results have shown that, in ZnSO₄–NH₃ cycle, NH₃(g) and H₂O(g) are the only products of the low temperature reaction \((\text{ZnSO}_4(s)+\text{NH}_3(g)+\text{H}_2\text{O}(g))\), indicating that there is no sulfur value products are wasted in this reaction. Besides, no NH₃ oxidation products such as N₂O and NO are found, indicating no NH₃ loss in the reaction.

Just as metal oxides can be used as catalysts for converting ammonium pyrosulfate to metal sulfates, metal sulfates can also be employed for converting ammonium sulfate to metal sulfate, metal sulfates can also be employed for converting ammonium sulfate to metal oxide. The new MSO₄–NH₃ cycles are sulfur dioxide and oxygen. The major sulfur species formed at low temperature stage. The major products of the MS measures are NH₃, H₂O, and small amount of SO₂ and NO. Experimental results have shown that, in ZnSO₄–NH₃ cycle, NH₃(g) and H₂O(g) are the only products of the low temperature reaction \((\text{ZnSO}_4(s)+\text{NH}_3(g)+\text{H}_2\text{O}(g))\), indicating that there is no sulfur value products are wasted in this reaction. Besides, no NH₃ oxidation products such as N₂O and NO are found, indicating no NH₃ loss in the reaction.

It is therefore clear that Reaction (80) can be the basis of the new MSO₄–NH₃ TCWSCs. Experimental results have shown that, in ZnSO₄–NH₃ cycle, NH₃(g) and H₂O(g) are the only products of the low temperature reaction \((\text{ZnSO}_4(s)+\text{NH}_3(g)+\text{H}_2\text{O}(g))\), indicating that there is no sulfur value products are wasted in this reaction. Besides, no NH₃ oxidation products such as N₂O and NO are found, indicating no NH₃ loss in the reaction.

Just as metal oxides can be used as catalysts for converting ammonium pyrosulfate to metal sulfates, metal sulfates can also be employed for converting ammonium sulfate to metal sulfate, metal sulfates can also be employed for converting ammonium sulfate to metal oxide. The new MSO₄–NH₃ cycles are sulfur dioxide and oxygen. The major sulfur species formed at low temperature stage. The major products of the MS measures are NH₃, H₂O, and small amount of SO₂ and NO. Experimental results have shown that, in ZnSO₄–NH₃ cycle, NH₃(g) and H₂O(g) are the only products of the low temperature reaction \((\text{ZnSO}_4(s)+\text{NH}_3(g)+\text{H}_2\text{O}(g))\), indicating that there is no sulfur value products are wasted in this reaction. Besides, no NH₃ oxidation products such as N₂O and NO are found, indicating no NH₃ loss in the reaction.

It is therefore clear that Reaction (80) can be the basis of the new MSO₄–NH₃ TCWSCs. Experimental results have shown that, in ZnSO₄–NH₃ cycle, NH₃(g) and H₂O(g) are the only products of the low temperature reaction \((\text{ZnSO}_4(s)+\text{NH}_3(g)+\text{H}_2\text{O}(g))\), indicating that there is no sulfur value products are wasted in this reaction. Besides, no NH₃ oxidation products such as N₂O and NO are found, indicating no NH₃ loss in the reaction.

Just as metal oxides can be used as catalysts for converting ammonium pyrosulfate to metal sulfates, metal sulfates can also be employed for converting ammonium sulfate to metal sulfate, metal sulfates can also be employed for converting ammonium sulfate to metal oxide. The new MSO₄–NH₃ cycles are sulfur dioxide and oxygen. The major sulfur species formed at low temperature stage. The major products of the MS measures are NH₃, H₂O, and small amount of SO₂ and NO. Experimental results have shown that, in ZnSO₄–NH₃ cycle, NH₃(g) and H₂O(g) are the only products of the low temperature reaction \((\text{ZnSO}_4(s)+\text{NH}_3(g)+\text{H}_2\text{O}(g))\), indicating that there is no sulfur value products are wasted in this reaction. Besides, no NH₃ oxidation products such as N₂O and NO are found, indicating no NH₃ loss in the reaction.
As indicated in MS spectra, less SO₂ is released at lower temperature range (300 to 400°C). Changing the heating method, for example, holding temperature at 200°C for 45 minutes. Both SO₂ and NO peaks are significantly reduced as shown in FIGS. 10a and 10b.

As discussed above, the MSO₄—NH₃ and M₂S₂O₇—NH₃ cycles of the present invention is that separation unit operations are not necessary. It is obvious that for H₂ production step, gaseous H₂ is generated from aqueous solution and no separation is required. In a low temperature reaction, gaseous products, NH₃ gas and water vapor can be separated automatically from solid product ZnSO₄, which starts decomposition at temperature above approximately 600°C. A gaseous mixture containing SO₂ and O₂ is generated from solid ZnSO₄ at temperatures higher than approximately 800°C and they can be separated easily from solid product ZnO. The separation of SO₂ from O₂ is accomplished by a chemical absorption step where SO₂ reacts with NH₃ and H₂O to form aqueous (NH₄)₂SO₄ solution and therefore O₂ is therefore separated.

As shown in FIGS. 10a and 10b, the slurry of ZnO and the aqueous (NH₄)₂SO₄ is heated to reaction temperature of approximately 300°C in the low temperature reactor where a gaseous mixture of NH₃ and H₂O are produced and separated from solid product ZnSO₄. Solid ZnSO₄ is then heated to approximately 850 to 1100°C at high temperature reaction for the production of a gaseous mixture of SO₂ and O₂ that is separated from solid product ZnO. The gaseous mixture of SO₂ and O₂ is mixed with NH₃, H₂O stream in an Absorber where SO₂ and NH₃ are absorbed to form aqueous (NH₄)₂SO₄ solution at the same time O₂ is separated the aqueous solution. The aqueous (NH₄)₂SO₄ solution is then recycled back to the Photoreactor to close the entire water splitting cycle with H₂ and O₂ as the only products. FIG. 4 also shows a cold water stream introduced into the system to recover heat from any possible high temperature sources for the generation of hot stream that can be used to drive a microturbine to produce electricity.

As shown in FIG. 4, no separators are required for the separation of either a gas from a gas mixture or a liquid from an aqueous solution. Therefore the TCWSCPs of the present invention can be a high efficiency process with low capital cost. A preliminary AspenPlus™ chemical engineering simulation has been carried out and shown that higher than 45% of efficiency (HHV) is achievable.

In summary, any thermochemical water splitting cycle consists of at least two main steps: hydrogen and oxygen production steps. A two-step water splitting cycle can not be efficient if energy requirements for the two steps is significantly greater than that of direct thermal water splitting. Due to the intrinsic difficulties of sulfuric acid decomposition, the present invention provides two new classes of solar driven TCWSCs by modifying the original S—NH₃ cycle. They include: (I) 12 metal sulfate-ammonia (MSO₄—NH₃) based TCWSCPs and (II) 3 metal pyrosulfate-amonia (M₂S₂O₇—NH₃) based TCWSCPs. Based on the experimental data presented, it has been shown that these TCWSCPs can attain a high efficiency by splitting the solar spectrum into two sections and using the shorter wavelength photonic portion for photocatalytic H₂ production and the longer wavelength and IR portions of the sunlight for the thermocatalytic O₂ production from MSO₄ or M₂S₂O₇ decomposition. Preliminary experimental results of the ammonia released from the ZnO+(NH₄)₂SO₄ mixtures show the feasibility of these new cycles.

A first preferred embodiment of the invention provides a method for a ZnSO₄—NH₃ cycle for producing H₂ and O₂ from a closed water splitting system that includes feeding an aqueous (NH₄)₂SO₄ solution into a photocatalytic reactor where the aqueous (NH₄)₂SO₄ is oxidized into aqueous (NH₄)₂SO₄ and reduce water to produce hydrogen. The resulting aqueous (NH₄)₂SO₄ is mixed with ZnO powder to a slurry of ZnO and (NH₄)₂SO₄. The slurry is heated in a low temperature reactor to produce a gaseous mixture of NH₃ and H₂O and solid product ZnSO₄ that is decomposed at a high temperature reactor to produce a gaseous mixture of SO₂ and O₂ and solid ZnO. The gaseous mixture of SO₂ and O₂ is mixed with the NH₃ and H₂O stream in an absorber to generate aqueous (NH₄)₂SO₄ solution and, at the same time, O₂ is separated. The aqueous (NH₄)₂SO₄ solution is then recycled back to the photoreactor to close the water splitting cycle wherein gaseous H₂ and O₂ are the only products from the closed ZnSO₄—NH₃ cycle.

In an embodiment, the method also includes introducing a cold water stream into the closed system to recover heat from the high temperature reactor to generate a hot stream; and using the hot steam to drive a microturbine to produce electricity.

A second embodiment provides a closed system for producing H₂ and O₂. The system includes a photocatalytic reactor for converting an aqueous (NH₄)₂SO₄ solution to aqueous (NH₄)₂SO₄ and reduce water to hydrogen, a mixer for mixing the result aqueous (NH₄)₂SO₄ with K₂SO₄ to form a solution containing aqueous K₂SO₄ and (NH₄)₂SO₄. The solution is heated in a low temperature reactor to produce a gaseous mixture of NH₃ and H₂O and a solid product of K₂S₂O₇. K₂S₂O₇ is decomposed in a high temperature reactor to produce a gaseous mixture of SO₂ and O₂ and solid K₂SO₄. The gaseous mixture of SO₂ and O₂ is combined with NH₃ and H₂O stream in an absorber where SO₂ reacts with NH₃ to form aqueous (NH₄)₂SO₄ solution and separate O₂ at the same time. Aqueous (NH₄)₂SO₄ solution is then recycled back to the photocatalytic reactor to close the K₂S₂O₇—NH₃ based water splitting cycle wherein gaseous H₂ and O₂ are the only products from the closed K₂S₂O₇—NH₃ cycle. This embodiment is further described in the summary of the invention.

The photocatalytic process can also be realized by an electrolytic process to oxidize aqueous (NH₄)₂SO₄ solution to (NH₄)₂SO₄ and reduce water to produce hydrogen.

While the invention has been described, disclosed, illustrated and shown in various terms of certain embodiments or modifications which it has presumed in practice, the scope of the invention is not intended to be, nor should it be deemed to be, limited thereby and such other modifications or embodiments as may be suggested by the teachings herein are particularly reserved especially as they fall within the breadth and scope of the claims here appended.

We claim:

1. A hybrid continuous and closed photo and thermochemical water splitting cycle method consisting essentially of the steps of:

 - receiving a solar radiation;
 - using only the quantum portion of a solar spectrum in a photoreactor for the simultaneous production of hydrogen and ammonium sulfate via photochemical oxidation of aqueous ammonium sulfite solution;
 - reacting the ammonium sulfate with one of a metal oxide selected from a group consisting of ZnO, MgO, CaO,
9. The method of claim 1, wherein the production of oxygen step comprises the steps of:

- a first thermochemical step for the reaction of ammonium sulfate with metal oxide or a metal sulfate; and
- a second thermochemical step for producing oxygen from decomposition of one of the metal sulfate and the metal pyrosulfate using a concentrated solar radiation.

10. The method of claim 1, wherein the solar radiation comprises the steps of:

- the first thermochemical step according to \((\text{NH}_4)_2\text{SO}_4 + \text{ZnO} \rightarrow 2\text{NH}_3(g)+\text{H}_2\text{O}(g)\ \text{ZnSO}_4(s)\) at approximately 252°C; and
- the second thermochemical step according to \(\text{ZnSO}_4(s) \rightarrow \text{SO}_3(g)+\text{ZnO}(s)+\frac{1}{2}\text{O}_2(g)\) at approximately 852°C; and
- driving the first and second thermochemical steps using a concentrated thermal energy receiver for receiving solar radiation for production of \(\text{O}_2\) via decomposition of metal sulfate \(\text{MSO}_4\).

11. The method of claim 10, wherein the solar radiation is from a continuous and closed system consisting essentially of the steps of:

- feeding a 1 M aqueous \((\text{NH}_4)_2\text{SO}_4\) solution into a photocatalytic reactor or electrochemical reactor to oxidize the aqueous \((\text{NH}_4)_2\text{SO}_4\) into aqueous \((\text{NH}_4)_2\text{SO}_4\) and reduce water to hydrogen;
- mixing the resulting aqueous \((\text{NH}_4)_2\text{SO}_4\) with metal oxide to form a slurry, wherein the ratio of metal oxide to ammonium sulfate is maintained at 1.5 to 1;
- heating the slurry of aqueous \((\text{NH}_4)_2\text{SO}_4\) and metal oxide in the low temperature reactor to produce a gaseous mixture of \(\text{NH}_3\) and \(\text{H}_2\text{O}\) and metal sulfate;
- heating solid \(\text{ZnSO}_4\) at a high temperature reactor to produce a gaseous mixture of \(\text{SO}_2\) and \(\text{O}_2\) and solid \(\text{ZnO}\), wherein the heating rate is maintained at 5°C/min to 50°C/min; and
- recycling \(\text{ZnO}\) back to mix with aqueous \((\text{NH}_4)_2\text{SO}_4\) solution to a slurry that is fed into a low temperature reactor;
- mixing the gaseous mixture of \(\text{SO}_2\) and \(\text{O}_2\) with \(\text{NH}_3\) and \(\text{H}_2\text{O}\) in an absorber to separate \(\text{O}_2\) from aqueous \((\text{NH}_4)_2\text{SO}_4\) solution to produce \(\text{O}_2\);
- recycling the ammonium sulfite back to the photoreactor to close the water splitting cycle to produce both gaseous \(\text{H}_2\) and gaseous \(\text{O}_2\) as the only products output from the continuous and closed \(\text{ZnSO}_4\)--\(\text{NH}_3\) cycle; and
- wherein the method implements a closed water splitting cycle, and wherein only the water is consumed by the closed water splitting cycle.

12. A M\(_2\)S\(_2\)O\(_4\)--\(\text{NH}_3\) cycle method for producing \(\text{H}_2\) and \(\text{O}_2\) from a continuous and closed system consisting essentially of the steps of:

- introducing a cold water stream into the closed system to recover heat from the high temperature reactor to generate a hot steam; and
- using the hot steam to drive a microturbine to produce electricity.

13. The method of claim 12, further comprising the step of:

- introducing a cold water stream into the closed system to recover heat from the high temperature reactor to generate a hot steam; and
- using the hot steam to drive a microturbine to produce electricity.

14. The method of claim 12, wherein the slurry of aqueous \((\text{NH}_4)_2\text{SO}_4\) and \(\text{ZnO}(s)\) is heated in a low temperature reactor at temperature of approximately 300°C to produce the gaseous mixture of \(\text{NH}_3\) and \(\text{H}_2\text{O}\) and solid product of \(\text{ZnSO}_4\).

15. The method of claim 12 wherein the solid \(\text{ZnSO}_4\) is heated to approximately 1000°C at the high temperature reactor to produce the gaseous mixture of \(\text{SO}_2\) and \(\text{O}_2\) and \(\text{ZnO}(s)\).

16. A \(\text{M}_2\text{S}_2\text{O}_4\)--\(\text{NH}_3\) hybrid continuous and closed photo and thermo-chemical water splitting cycle method consisting essentially of the steps of:

- receiving a solar radiation;
using the solar radiation for the production of hydrogen in a photoreactor via photochemical oxidation of aqueous ammonium sulfite solution to produce hydrogen;

using the solar radiation for the production of oxygen including introducing a metal sulfate (K$_2$SO$_4$, Rb$_2$SO$_4$, and Cs$_2$SO$_4$) to convert ammonium sulfate into metal pyrosulfate (K$_2$S$_2$O$_7$, Rb$_2$S$_2$O$_7$ and Cs$_2$S$_2$O$_7$), wherein the ratio of metal oxide or metal sulfate to ammonium sulfate is maintained at 1.5 to 1;

decomposing the metal pyrosulfate for the production of O$_2$, wherein the heating rate is maintained at 5° C./min to 50° C./min;

supplying the regenerated ammonium sulfite to the photoreactor, and

wherein the method implements a closed water splitting cycle, and wherein only the water is consumed by the closed water splitting cycle.

* * * * *