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(57) 	 ABSTRACT 

A wireless in-plane strain and displacement sensor includes 
an electrical conductor fixedly coupled to a substrate subject 
to strain conditions. The electrical conductor is shaped 
between its ends for storage of an electric field and a magnetic 
field, and remains electrically unconnected to define an 
unconnected open-circuit having inductance and capaci-
tance. In the presence of a time-varying magnetic field, the 
electrical conductor so-shaped resonates to generate har-
monic electric and magnetic field responses. The sensor also 
includes at least one electrically unconnected electrode hav-
ing an end and a free portion extending from the end thereof. 
The end of each electrode is fixedly coupled to the substrate 
and the free portion thereof remains unencumbered and 
spaced apart from a portion of the electrical conductor so-
shaped. More specifically, at least some of the free portion is 
disposed at a location lying within the magnetic field 
response generated by the electrical conductor. A motion 
guidance structure is slidingly engaged with each electrode's 
free portion in order to maintain each free portion parallel to 
the electrical conductor so-shaped. 
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WIRELESS OPEN-CIRCUIT IN-PLANE 
STRAIN AND DISPLACEMENT SENSOR 

REQUIRING NO ELECTRICAL 
CONNECTIONS 

ORIGIN OF THE INVENTION 

The invention was made by an employee of the United 
States Government and may be manufactured and used by or 
for the Government of the United States of America for gov-
ernmental purposes without the payment of any royalties 
thereon or therefore. 

BACKGROUND OF THE INVENTION 

1. Field of the Invention 
This invention relates to wireless electrical devices. More 

specifically, the invention is a wireless in-plane strain and 
displacement sensor requiring no electrical connections. 

2. Description of the Related Art 
Electrical devices typically utilize a plurality of circuit 

elements wired together to form a circuit. As is well under-
stood in the art, such electrical devices function for a designed 
purpose when electric current flows through the circuit. If an 
unwanted break occurs in the circuit, electric current ceases to 
flow and the circuit must be repaired or replaced to restore 
device function. Circuit repair or replacement causes down-
time, requires manpower, and can be expensive. 

In addition, electrical circuits typically use solder to con-
nect circuit elements to one another. The use of solder poses 
a number of problems. Solder increases the cost of electrical 
devices and requires the use of venting and air filtration sys-
tems during fabrication due to the toxic nature of solder. 
Further, the high heat required to melt solder can stress or 
damage circuit boards, and the presence of toxic solder also 
poses waste issues when old electrical circuits must be dis-
posed of or recycled. For all of these reasons, the typical 
electrical device has a number of inherent flaws. 

One type of electrical device used in monitoring the 
"health" of structures (e.g., dynamic structures such as air-
craft and other vehicles, static structures such as buildings and 
bridges, etc.) is known as an electrical strain sensor. An elec-
trical strain sensor directly or indirectly relates any mechani-
cal strain to a change in an electrical response. One of the 
earliest strain gauge designs used a foil of electrically con-
ductive material. When stretched within a material's elastic 
limits, the foil's resistance increases as the material's longer 
and narrower shape increases its electrical resistance. When 
the material is compressed, it becomes shorter and wider thus 
decreasing the electrical resistance. Strain is directly propor-
tional to the ratio of change in resistance as compared to the 
resistance of the sensor when it is not deformed. This property 
is used to make a strain gauge that requires the strain sensor 
(i.e., the foil) to be directly electrically connected to a resis-
tance measuring circuit such as a Wheatstone bridge. 

Other types of electrical strain sensors include capacitive 
strain sensors, fiber optic strain sensors, and piezoelectric 
strain sensors. Capacitive strain sensors the displacement 
between capacitive plates or between neighboring interdigital 
electrodes. Similar to resistive strain sensors, strain is directly 
proportional to the ratio of change in capacitance relative to 
the non-deformed-sensor capacitance. Fiber optics sensors 
use Bragg gratings that alter the wavelength at which light is 
reflected and/or transmitted through the fiber. During strain, 
the grating separation distance changes thus changing the 
Bragg wavelength (reflected wavelength). The change in 
wavelength is correlated to strain. The direct optical change 

2 
can be related to an electrical signal using optoelectronics. A 
piezoelectric strain sensor uses the changing resistivity of a 
semiconductor caused by applied strain. All of the above 
sensors require being part of closed electrical circuits for 

5  power and interrogation. Further, because solder and printed 
circuit boards are typically used to make closed circuits for 
the sensors discussed above, any reliability, hazardous mate-
rial, and waste issues associated with solder directly affect 
them. 

to 

SUMMARY OF THE INVENTION 

Accordingly, it is an object of the present invention to 
provide a strain sensor requiring no electrical connections. 

15  Other objects and advantages of the present invention will 
become more obvious hereinafter in the specification and 
drawings. 

In accordance with the present invention, a wireless in-
plane strain and displacement sensor includes an electrical 

20 conductor fixedly coupled to a substrate subject to strain 
conditions. The electrical conductor has first and second ends 
and is shaped between the first and second ends for storage of 
an electric field and a magnetic field. The first and second 
ends remain electrically unconnected such that the electrical 

25  conductor so-shaped defines an unconnected open-circuit 
having inductance and capacitance. In the presence of a time-
varying magnetic field, the electrical conductor so-shaped 
resonates to generate harmonic electric and magnetic field 
responses, each of which has a frequency, amplitude and 

30 bandwidth associated therewith. The sensor also includes at 
least one electrically unconnected electrode having an end 
and a free portion extending from the end thereof. The end of 
each electrode is fixedly coupled to the substrate and the free 
portion thereof remains unencumbered. The free portion is 

35 also parallel to and spaced apart from a portion of the elec-
trical conductor so-shaped. More specifically, at least some of 
the free portion is disposed at a location lying within the 
magnetic fieldresponse generatedby the electrical conductor. 
A motion guidance structure is slidingly engaged with each 

40 electrode's free portion in order to maintain each free portion 
parallel to the electrical conductor so-shaped. 

BRIEF DESCRIPTION OF THE DRAWINGS 

45 	FIG. lA is a plan view of a wireless in-plane strain and 
displacement sensor in accordance with an embodiment of 
the present invention; 

FIG. 1B is an end view of the wireless sensor taken along 
line 1-1 in FIG. 1A; 

50 	FIG. 2 is a schematic view of a magnetic field response 
recorder used in an embodiment of the present invention; and 

FIG. 3 is a plan view of a wireless in-plane strain and 
displacement sensor using multiple distributed electrodes in 
accordance with another embodiment of the present inven- 

55 tion. 

DETAILED DESCRIPTION OF THE INVENTION 

Referring now to the drawings and more particularly to 
6o FIGS. lA and 113, a wireless in-plane strain and displacement 

sensor in accordance with an embodiment of the present 
invention is shown and is referenced generally by numeral 
100. The illustrated sensor 100 is presented as an exemplary 
embodiment as there will be many possible embodiments that 

65 can be constructed based on the basic principles of the present 
invention without departing from the scope thereof. In the 
illustrated embodiment, sensor 100 includes a pattern 10 of 
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electrically conductive material and an electrically uncon- 	overlap each other and is inversely related to the spacing 
nected electrode 20 spaced apart from pattern 10. 	 between the adjacent conductive runs. The amount of resis- 

Electrical conductor pattern 10 is any electrical conductor 	tance along any portion of a conductive run of pattern 10 is 
(e.g., wire, run, thin-film trace, etc.) that can be shaped to 

	
directly related to the length and inversely related to the width 

form an open-circuit pattern that can store an electric field and 5 of the portion. Total capacitance, total inductance, and total 
a magnetic field. Pattern 10 is a single-component open- 	resistance for a spiral pattern are determined simply by add- 
circuit element with no electrical connections being made 

	
ing the effective contributions due to individual portions of 

thereto. The term "open-circuit pattern" as used herein means 	the pattern. For example, the effective inductance contribu- 
that the conductor has two ends that remain electrically 	tion of a trace portion is the resultant change in the total 
unconnected so that the resulting conductor pattern is an io inductance of pattern 10 due to the changes in the pattern's 
electrical open-circuit having inductance and capacitance 

	
distributed self-inductance and distributed mutual inductance 

attributes. 	 due to the addition of the trace. The effective capacitance 
Pattern 10 can be made from an electrically-conductive run 	contribution of a trace portion is the resulting change in the 

or thin-film trace that can be deposited directly onto or 	capacitance of pattern 10 due to the addition of the trace 
embedded within a substrate material 30 such that pattern 10 15 portion as a result of the charge in the portion creating electric 
is fixed to substrate 30. Dashed lines are used for substrate 30 

	
fields with the charges in other parts of pattern increasing the 

to indicate substrate 30 does not form part of the present 
	

total distributed capacitance. The geometries of the various 
invention. Generally, substrate 30 is an electrically insulating 	portions of the conductive runs of the pattern can be used to 
and non-conductive material. If not, some electrically non- 	define the pattern's resonant frequency. 
conductive material (e.g., anadhesive, amounting black, etc.) 20 	Pattern 10 with its distributed inductance operatively 
will be disposed between pattern 10 and substrate 30. In either 	coupled to its distributed capacitance defines a magnetic field 
case, substrate 30 is a material structure (e.g., dynamic struc- 	response sensor. In the presence of a time-varying magnetic 
ture, static structure, etc.) that is expected to undergo strain to 

	
field, pattern 10 electrically oscillates at a resonant frequency 

be sensed by sensor 100. Thus, the particular substrate/em- 	that is dependent upon the capacitance, inductance and resis- 
bedding material structure can vary without departing from 25 tance of pattern 10. This oscillation occurs as the energy in the 
the scope of the present invention. Although not a require- 	magnetic field along the length of pattern 10 is harmonically 
ment of the present invention, the portion of substrate 30 on 	transferred to the electric field between parallel portions of 
which pattern 10 is deposited is typically planar. Techniques 	pattern 10. That is, when excited by a time-varying magnetic 
used to deposit pattern 10 directly onto substrate 30 can be 

	
field, pattern 10 resonates a harmonic electric field and a 

any conventional, metal-conductor deposition process to 3o harmonic magnetic field with each field being defined by a 
include thin-film fabrication techniques. As will be explained 

	
frequency, amplitude, and bandwidth. 

further below, pattern 10 can be constructed to have a uniform 
	

The application of an oscillating magnetic field to pattern 
or non-uniform width, and/or uniform or non-uniform spac- 	10 as well as the reading of the induced harmonic response at 
ing between adjacent portions of the pattern's runs/traces. 	a resonant frequency can be accomplished by a magnetic field 

The basic features of pattern 10 and the principles of opera-  35 response recorder. The operating principles and construction 
tion for sensor 100 will be explained for a spiral-shaped 

	
details of such a recorder are provided in U.S. Pat. Nos. 

conductor pattern. However, it is to be understood that the 
	

7,086,593 and 7,159,774, the contents of which are hereby 
present invention could be practiced using other geometri- 	incorporated by reference in their entirety. Briefly, as shown 
cally-patterned conductors provided the pattern has the 

	
in FIG. 2, a magnetic field response recorder 50 includes a 

attributes described herein. The basic features of a spiral- 40 processor 52 and a broadband radio frequency (RE) antenna 
shaped conductor that can function as pattern 10 are 

	
54 capable of transmitting and receiving RE energy. Proces- 

described in detail in U.S. Patent Publication No. 2007/ 
	

sor includes algorithms embodied in software for controlling 
0181683, the contents of which are hereby incorporated by 	a antenna and for analyzing the RE signals received from the 
reference in their entirety. For purpose of a complete descrip- 	magnetic field response sensor defined by pattern 10. On the 
tion of the present invention, the relevant portions of this 45 transmission side, processor 52 modulates an input signal that 
publication will be repeated herein. 	 is then supplied to antenna 54 so that antenna 54 produces 

As is well known and accepted in the art, a spiral inductor 	either a broadband time-varying magnetic field or a single 
is ideally constructed/configured to minimize parasitic 

	
harmonic field. On the reception side, antenna 54 receives 

capacitance so as not to influence other electrical components 
	

harmonic magnetic responses produced by pattern 10. 
that will be electrically coupled thereto. This is typically 5o Antenna 54 can be realized by two separate antennas or a 
achieved by increasing the spacing between adjacent conduc- 	single antenna that is switched between transmission and 
tive portions or runs of the conductive spiral pattern. How- 	reception. 
ever, in the present invention, pattern 10 exploits parasitic 

	
Referring again to FIGS. 1A and 113, electrode 20 is rep- 

capacitance. The capacitance of pattern 10 is operatively 	resentative of one or more electrical conductors having no 
coupled with the pattern's inductance such that magnetic and 55 electrical connections made thereto (i.e., it is electrically 
electrical energy can be stored and exchanged by the pattern 	unconnected) and capable of supporting movement of elec- 
thereby creating a damped simple harmonic resonator. Since 	trical charges therein. In terms of the in-plane strain and 
other geometric patterns of a conductor could also provide 

	
displacement sensor of the present invention, electrode 20 has 

such a magnetic/electrical energy storage and exchange, it is 	one end 20A electrically insulated from and fixedly coupled 
to be understood that the present invention could be realized 60 (e.g., using a mounting block or adhesive as indicated by 
using any such geometrically-patterned conductor and is not 	reference numeral 22) to substrate 30 with the remaining part 
limited to a spiral-shaped pattern. 	 20B of electrode 20 being unencumbered to its opposing end 

The amount of inductance along any portion of a conduc- 	200. At least some of unencumbered part 20B overlaps and is 
tive run of pattern 10 is directly related to the length thereof 

	
spaced-apart from pattern 10 at a location that lies within the 

and inversely related to the width thereof. The amount of 65 magnetic field response (not shown) generated by pattern 10 
capacitance between portions of adjacent conductive runs of 

	
when pattern 10 is wirelessly excited by, for example, 

pattern 10 is directly related to the length by which the runs 	recorder 50 as explained above. That is, some of unencum- 
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bered part 20B of electrode 20 overlaps a portion of pattern 10 

	
this way, electrode 20 is electrically powered via oscillating 

at some non-zero angle (e.g., 90° in the illustrated embodi- 	harmonics from pattern 10. In addition, electrode 20 has a 
ment). To keep unencumbered part 20B properly coupled to 	magnetic field formed along its length due to the current 
the magnetic field response of pattern 10, unencumbered part 	created in the electrode 20 that is coupled to that of pattern 10. 
20B (and generally all of electrode 20) is maintained parallel 5 The charge on the electrode 20 will result in an electric field 
to pattern 10 at a selected distance therefrom. With just end 

	
between the charge on pattern 10 and electrode 20. Therefore, 

20A fixed to substrate 30, elongation or compression strain 	electrode 20 and the overlapped portions of pattern 10 will 
(indicated by two-headed arrow 40) experienced by substrate 

	
behave somewhat like capacitor plates in a closed electrical 

30 will cause electrode 20 to move relative to pattern 10. To 	circuit except electrode 20 also has a current that creates a 
insure that unencumbered part 20B remains spaced apart and io magnetic field that is also coupled to the magnetic field of 
parallel to pattern 10 during strain-induced movement of 

	
pattern 10. The magnetic field on electrode 20 increases as the 

electrode 20, an electrically non-conductive support housing 	spacing between electrode 20 and pattern 10 decreases 
24 cooperates with unencumbered part 20B. For example, 	because electrode 20 is exposed to a higher magnetic 
housing 24 can be fixedly coupled to substrate 30 and func- 	strength. 
tion as a sleeve with an opening 24A (FIG. 113) formed all the 15 	If the magnetic field of electrode 20 is oriented 90° with 
way through housing 24. Opening 24A would be sized for the 	respect to the overlapped portion of pattern 10, any destruc- 
sliding engagement of unencumbered part 203. Note that in 	tive interference between electrode 20 and pattern 10 should 
FIG. 1A, the top portion of housing 24 is not shown to more 	vanish. Accordingly, if the relative positions and orientations 
clearly illustrate unencumbered part 203. It is to be under- 	of pattern 10 with respect to electrode 20 remain fixed (i.e., 
stood that housing 24 could be replaced by any number of 20 there is no strain being experienced by substrate 30), then the 
support devices/mechanisms that allowed unencumbered 

	
magnetic field response of sensor 100 remains unchanged for 

part 203 to move as described above. 	 fixed excitation conditions. These fixed conditions and result- 
For purpose of the present invention, electrode 20 must 

	
ing magnetic field response of sensor 100 define a baseline 

support the hi-directional movement of electric charges the- 	frequency, amplitude, and bandwidth response for sensor 100 
realong. For a linear (or substantially linear) electrode such as 25 that is recorded prior to using sensor 100. 
electrode 20, the charges should move along the length of 

	
Changes in the baseline response of sensor 100 will occur 

electrode 20. The use of such charge movement in a wireless 	wherever linear charge flow 26 changes. This will happen if 
electrical device is disclosed in U.S. Patent Publication No. 	the amount of overlap between pattern 10 and electrode 20 
2010/0109818, the contents of which are hereby incorporated 

	
changes due to elongation or compression strain 40. The 

by reference in their entirety. In accordance with the teach-  30 change in charge flow 26 causes a change in at least one of the 
ings of this patent publication, electrode 20 should have a 

	
frequency, amplitude and bandwidth response of sensor 100 

length-to-width aspect ratio (i.e., length divided by width) 
	

with respect to the baseline response of sensor 100. The 
that is large enough such that the effects of linear movement 

	
frequency response w of pattern 10 changes with the amount 

of electric charges along the length of electrode 20 outweigh 
	

that electrode 20 overlaps pattern 10 in accordance with the 
the effects of eddy currents in electrode 20 when electrode 20 35 relationship w1/27t(sgrt(LC)) where the inductance L and 
is positioned in the magnetic field response of pattern 10. The 	capacitance C of pattern 10 are functions of the position of 
length-to-width aspect ratio of electrode 20 will typically be 	electrode 20. Accordingly, if electrode 20 shifts by an amount 
designed to satisfy a particular sensor's performance criteria. 	Ax and the overall length of sensor 100 is x, the frequency 
Accordingly, it is to be understood that the particular length- 	response w of pattern 10 will deviate from its baseline fre- 
to-width aspect ratio of electrode 20 is not a limitation of the 4o quency. Since strain is defined by Ax/x and x is known as a 
present invention. 	 baseline attribute of sensor 100, the frequency response of 

In operation, when Pattern 10 is exposed to a time-varying 	pattern 10 is indicative ofboth the amount of displacement Ax 
magnetic field (e.g., as generated by recorder 50, a moving 	as well as the in-plane strain experienced by substrate 30. 
magnet, or any other source/method that generates an oscil- 	Once the baseline response of sensor 100 is known and sensor 
lating magnetic field), pattern 10 resonates harmonic electric 45 100 is placed in use, interrogation or monitoring of electrical 
and magnetic fields. The generated magnetic field is generally 

	
device 100 (for changes in response relative to the baseline 

spatially larger than the generated electric field. At least some 	response) can be carried out continuously, periodically, on- 
of unencumbered part 20B of electrode 20 is positioned rela- 	demand, etc., without departing from the scope of the present 
tive to pattern 10 such that it will lie with at least the generated 

	
invention. 

magnetic field. 	 50 	As mentioned above, both the width of the pattern's con- 
In the presence of a time-varying magnetic field, pattern 10 

	
ductive runs/traces and the spacing between adj acent portions 

resonates to generate harmonic electric and magnetic field 
	

of the conductive runs/traces can be uniform as in the illus- 
responses. With electrode 20 configured and positioned as 	trated embodiment. However, the present invention is not so 
described above, the magnetic field response of pattern 10 

	
limited. For example, a spiral pattern's conductive trace 

generates an electromotive force in electrode 20 such that 55 width could be non-uniform while the spacing between adja- 
electric charges flow linearly in both directions along the 	cent portions of the conductive trace could be uniform. 
length of electrode 20 as indicated by two-headed arrow 26. 	Another possibility is that the spiral pattern's conductive 
Note that the current flow in electrode 20 by linear charge 	trace width could be uniform, but the spacing between adja- 
flow 26 is achieved without any electrical contact with (i) 

	
cent portions of the conductive trace could be non-uniform. 

pattern 10, (ii) electrode 20, or (iii) between pattern 10, elec-  60 Still, further, the spiral pattern's conductive trace width could 
trode 20 and antenna 54. 	 be non-uniform and the spacing between adjacent portions of 

In general, for fixed excitation conditions, the magnetic; 	the conductive trace could be non-uniform. 
field response frequency, amplitude, and bandwidth of pat- 	A variety of electrode configurations can also be used 
tern 10 are dependent upon the electric conductivity of any 	without departing from the scope of the present invention. For 
material placed within its magnetic field and electric field. As 65 example, although a single electrode has been shown in the 
mentioned above, the conductive material area of electrode 	above-described embodiment, the present invention is not so 
20 defines a relatively large length-to-width aspect ratio. In 

	
limited. Accordingly, the embodiment in FIG. 3 illustrates the 
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use of a number of electrodes 20 with at least some of their 
corresponding unencumbered parts 205 overlapping pattern 
10. Once again, the top portion of support housing 24 is not 
shown to more clearly illustrate unencumbered parts 205. The 
greater number of electrodes 20 produces a greater response 5 

sensitivity so that smaller amounts of in-plane strain and 
displacement can be discerned. 

The advantages of the present invention are numerous. The 
sensor is a passive open-circuit device that significantly 
reduces manufacturing cost. No solder connections are io 
needed to form the sensor. Therefore, the sensor can be com-
pletely recyclable. The sensor uses only two components and 
no physical or electrical connections between the compo-
nents are required thereby making the sensor inherently more 
reliable then any device that depends upon connections 15 

between components. For example, the sensor could be pow-
ered and interrogated after most damage events. The sensor 
can be placed on a system during any phase of fabrication or 
use. If placed on a component or in a mold of a non-conduc-
tive component, the sensor could also be used to track the 20 

component during manufacturing. 
The sensor could also be used as a human implanted sensor, 

e.g., incorporated into hip or joint replacements. This has 
many benefits over what is currently being done in that all the 
advantages above apply and the sensor could be wirelessly 25 

powered and interrogated external, to the body, i.e., no elec-
trical connections or leads are placed inside the body. Further, 
no surgery would be necessary to discern if there is any 
damage to the sensor. 

Although the invention has been described relative to spe- 30 

cific embodiments thereof, there are numerous variations and 
modifications that will be readily apparent to those skilled in 
the art in light of the above teachings. It is therefore to be 
understood that, within the scope of the appended claims, the 
invention may be practiced other than as specifically 35 

described. 
What is claimed as new and desired to be secured by 

Letters Patent of the United States is: 

The invention claimed is: 	 40 

1. A wireless in-plane strap and displacement sensor, com-
prising: 

an electrical conductor adapted to be fixedly coupled to a 
substrate subject to strain conditions, said electrical con-
ductor having first and second ends and shaped between 45 

said first and second ends for storage of an electric field 
and a magnetic field, said first and second ends remain-
ing electrically unconnected such that said electrical 
conductor so-shaped defines an unconnected open-cir-
cuit having inductance and capacitance wherein, in the 50 

presence of a time-varying magnetic field, said electrical 
conductor so-shaped resonates to generate harmonic 
electric and magnetic field responses, each of which has 
a frequency, amplitude and bandwidth associated there-
with; 55 

at least one electrically unconnected electrode having an 
end and a free portion extending from said end, wherein 
said end is adapted to be fixedly coupled to said substrate 
and said free portion is unencumbered, is parallel to, and 
is spaced apart from, a portion of said electrical conduc- 60 

for so-shaped, at least some of said free portion further 
being disposed at a location lying within said magnetic 
field response so-generated; and 

a motion guidance structure slidingly engaged with each 
said free portion for maintaining each said free portion 65 

parallel to said portion of said electrical conductor so-
shaped. 

8 
2. A wireless sensor as in claim 1, further comprising a 

magnetic field response recorder for wirelessly transmitting 
said time-varying magnetic field to said electrical conductor 
and for wirelessly detecting at least one of said frequency, 
amplitude, and bandwidth associated with said magnetic field 
response so-generated. 

3. A wireless sensor as in claim 1, wherein said electrical 
conductor comprises a thin-film trace. 

4. A wireless sensor as in claim 1, wherein said electrical 
conductor lies in a two-dimensional plane. 

5. A wireless sensor as in claim 1, wherein said electrical 
conductor forms a spiral between said first and second ends 
thereof. 

6. A wireless sensor as in claim 5, wherein each said free 
portion is at a non-zero angular orientation with respect to 
portions of said spiral. 

7. A wireless sensor as in claim 1, wherein said at least 
some of said free portion overlaps a portion of said electrical 
conductor so-shaped. 

8. A wireless sensor as in claim 1, wherein each said elec-
trode comprises a linear electrode. 

9. A wireless sensor as in claim 1, wherein said motion 
guidance structure is electrically non-conductive. 

10. A wireless sensor as in claim 1, wherein said motion 
guidance structure comprises a sleeve fitted over each said 
free portion. 

11. A wireless in-plane strain and displacement sensor, 
comprising: 

a thin-film electrical conductor adapted to be fixedly 
coupled to a substrate subject to strain conditions, said 
electrical conductor having first and second ends and 
shaped between said first and second ends for storage of 
an electric field and a magnetic field, said first and sec-
ond ends remaining electrically unconnected such that 
said electrical conductor so-shaped defines an uncon-
nected open-circuit having inductance and capacitance 
wherein, in the presence of a time-varying magnetic 
field, said electrical conductor so-shaped resonates to 
generate harmonic electric and magnetic field 
responses, each of which has a frequency, amplitude and 
bandwidth associated therewith; 

at least one electrically unconnected linear electrode hav-
ing an end and a free portion extending from said end, 
wherein said end is adapted to be fixedly coupled to said 
substrate and said free portion is unencumbered, is par-
allel to, and is spaced apart from, a portion of said 
electrical conductor so-shaped, at least some of said free 
portion overlapping a portion of said electrical conduc-
tor so-shaped; and 

a motion guidance structure slidingly engaged with each 
said free portion for maintaining each said free portion 
parallel to said portion of said electrical conductor so-
shaped. 

12. A wireless sensor as in claim 11, further comprising a 
magnetic field response recorder for wirelessly transmitting 
said time-varying magnetic field to said electrical conductor 
and for wirelessly detecting at least one of said frequency, 
amplitude and bandwidth associated with said magnetic field 
response so-generated. 

13. A wireless sensor as in claim 11, wherein said electrical 
conductor lies in a two-dimensional plane. 

14. A wireless sensor as in claim 11, wherein said electrical 
conductor forms a spiral between said first and second ends 
thereof. 

15. A wireless sensor as in claim 14, wherein each said free 
portion is at a non-zero angular orientation with respect to 
portions of said spiral. 
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16. A wireless sensor as in claim 11, wherein said motion 
guidance structure is electrically non-conductive. 

17. A wireless sensor as in claim 11, wherein said motion 
guidance structure comprises a sleeve fitted over each said 
free portion. 

18. A wireless in-plane strain and displacement sensor 
system, comprising: 

an electrical conductor adapted to be fixedly coupled to a 
substrate subject strain conditions, said electrical con-
ductor having first and second ends and shaped between 
said first and second ends for storage of an electric field 
and a magnetic field, said first and second ends remain-
ing electrically unconnected such that said electrical 
conductor so-shaped defines an unconnected open-cir-
cuit having inductance and capacitance wherein, in the 
presence of a time-varying magnetic field, said electrical 
conductor so-shaped resonates to generate harmonic 
electric and magnetic field responses, each of which has 
a frequency, amplitude and bandwidth associated there-
with; 

at least one electrically unconnected linear electrode hav-
ing an end and a free portion extending from said end, 
wherein said end is adapted to be fixedly coupled to said 
substrate and said free portion is unencumbered, is par-
allel to, and is spaced apart from, a portion of said 
electrical conductor so-shaped, at least some of said free 
portion further being disposed at a location lying within 
said magnetic field response so-generated; 

10 
a motion guidance structure slidingly engaged with each 

said free portion for maintaining each said free portion 
parallel to said portion of said electrical conductor so-
shaped; and 

5 	a magnetic field response recorder for wirelessly transmit- 
ting said time-varying magnetic field to said electrical 
conductor and for wirelessly detecting at least one of 
said frequency, amplitude and bandwidth associated 
with said magnetic field response so-generated. 

i0 	19. A system as claim 18, wherein said electrical conductor 
comprises a thin-film trace. 

20. A system as in claim 18, wherein said electrical con-
ductor lies in a two-dimensional plane. 

21. A system as in claim 18, wherein said electrical con-
15  ductor forms a spiral between said first and second ends 

thereof. 
22. A system as in claim 21, wherein each said free portion 

is at a non-zero angular orientation with respect to portions of 
20  said spiral. 

23. A system as in claim 18, wherein said at least some of 
said free portion overlaps a portion of said electrical conduc-
tor so-shaped. 

24. A system as in claim 18, wherein said motion guidance 

25 
structure is electrically non-conductive. 

25. A system as in claim 18, wherein said motion guidance 
structure comprises a sleeve fitted over each said free portion. 
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