
1111111111111111111inuun1111111111u ~

(12) United States Patent
Malekpour

(54) FAULT-TOLERANT SELF-STABILIZING
DISTRIBUTED CLOCK SYNCHRONIZATION
PROTOCOL FOR ARBITRARY DIGRAPHS

(75) Inventor: Mahyar R. Malekpour, Hampton, VA
(US)

(73) Assignee: The United States of America as
represented by the Administrator of
the National Aeronautics and Space
Administration, Washington, DC (US)

(*) Notice: 	Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 449 days.

(21) Appl. No.: 13/364,814

(22) Filed: 	Feb. 2, 2012

(65) 	 Prior Publication Data

US 2012/0207258 Al 	Aug. 16, 2012

Related U.S. Application Data

(60) Provisional application No. 61/442,826, filed on Feb.
15, 2011.

(51) Int. Cl.
H04J 3106 	 (2006.01)
G06F 1112 	 (2006.01)

(52) U.S. Cl.
CPC .. G06F 1112 (2013.01)
USPC 370/503; 370/464; 370/498; 370/501

(58) Field of Classification Search
None
See application file for complete search history.

(56) 	 References Cited

U.S. PATENT DOCUMENTS

	

4,979,191 A 	12/1990 Bond et al.

	

5,775,996 A * 	7/1998 Othmer et al 463/40

	

6,671,821 B1 	12/2003 Castro et al.

1ao~

102

LocalTimer<0 Yes

No
104

Valid 	No
Sync 	—

Yes i

105

ocalTimer<D No

Yes

i

(1o) Patent No.: 	US 8,861,552 B2
(45) Date of Patent : 	 Oct. 14 9 2014

	

7,792,015 B2 	9/2010 Malekpour

	

7,996,714 B2 	8/2011 O'Connell et al
8,255,732 B2 * 8/2012 Malekpour 713/400

2002/0129296 Al 9/2002 Kwiat et al.
2008/0084833 Al* 4/2008 Picard 370/280
2009/0102534 Al 4/2009 Schmid et al.
2009/0122812 Al 5/2009 Steiner et al.
2010/0019811 Al 1/2010 Malekpour
2012/0207183 Al * 8/2012 Bobrek et al 370/511
2012/0243438 Al* 9/2012 Steiner et al 370/254

OTHER PUBLICATIONS

T. K. Srikanth et al., "Optimal Clock Synchronization," Journal ofthe

Association for Computing Machinery, Jul. 1987, pp. 626-645, vol.

34, No. 3, Cornell University, Ithaca, NewYork.

(Continued)

Primary Examiner Hassan Phillips
Assistant Examiner Gautam Sharma
(74) Attorney, Agent, or Firm Andrea Z. Warmbier

(57) 	 ABSTRACT

A self-stabilizing network in the form of an arbitrary, non-
partitioned digraph includes K nodes having a synchronizer
executing a protocol. K-1 monitors of each node may receive
a Sync message transmitted from a directly connected node.
When the Sync message is received, the logical clock value
for the receiving node is set to between 0 and a communica-
tion latency value (y) if the clock value is less than a minimum
event-response delay (D). A new Sync message is also trans-
mitted to any directly connected nodes if the clock value is
greater than or equal to both D and a graph threshold (T S).
When the Sync message is not received the synchronizer
increments the clock value if the clock value is less than a
resynchronization period (P), and resets the clock value and
transmits a new Sync message to all directly connected nodes
when the clock value equals or exceeds P.

19 Claims, 3 Drawing Sheets

T 	 I 	Its

Rese 	,1L3 	ncrement
LocalTima 	 LocalTimer

No

No
Ts

LocalTh
ansm

me; ='Y ~ 1+ w 	Resef LocalTimer,

Trit Sync 	 Transmit Sync

US 8,861,552 B2
Page 2

(56) 	 References Cited

OTHER PUBLICATIONS

Arenas, Alex, et al., "Synchronization in complex networks," Physics
Reports, pp. 93-153, Dec. 2008, vol. 469, Issue 3.
Daliot, Ariel, et al., "Linear Time Byzantine Self-Stabilizing Clock
Synchronization," Proceedings of 7th International Conference on
Principles of Distributed Systems, Dec. 2003, pp. 1-12, La
Martinique, France.
Davies, Daniel, et al., "Synchronization and matching in redundant
systems," IEEE Transactions on Computers, Jun. 1978, pp. 531-539,
vol. C-72, No. 6.
Dijkstra, Edsger W., "Self-stabilizing Systems in Spite of Distributed
Control," Communications ofthe ACM, Nov. 1974, pp. 643-644, vol.
17, No. 11.
Dolev, Shlomi, et al., "Self-Stabilizing Clock Synchronization in the
Presence of Byzantine Faults," Journal of the ACM, Sep. 2004, pp.
780-799, vol. 51, No. 5.
Kopetz, Hermann, "Real-Time Systems, Design Principles for Dis-
tributed Embedded Applications," 1997, p. 47, Kluwar Academic
Publishers, Boston, Massachusetts.
Lamport, Leslie, et al., "Synchronizing Clocks in the Presence of
Faults," Journal of the ACM, Jan. 1985, pp. 52-78, vol. 32, No. 1.
Malekpour, Mahyar R., "Comments on the `Byzantine Self-Stabiliz-
ing Pulse Synchronization" Protocol: Counterexamples," NASA/
TM-2006-213951, Feb. 2006.
Malekpour, Mahyar R., "A Byzantine-Fault Tolerant Self-Stabilizing
Protocol for Distributed Clock Synchronization Systems," Eighth

International Symposium on Stabilization, Safety, and Security of
Distributed Systems, Nov. 2006, pp. 1-17.
Malekpour, Mahyar R., "Verification of a Byzantine-Fault-Tolerant
Self-Stabilizing Protocol for Clock Synchronization," IEEE Aero-
space Conference, Mar. 1-8, 2008, pp. 1-13, Big Sky, Montana.
Malekpour, Mahyar R., "A Self-Stabilizing Byzantine-Fault-Toler-
ant Clock Synchronization Protocol," NASA/TM-2009-215758, Jun.
2009.
Mirollo, Renato E., et al., "Synchronization of Pulse-Coupled Bio-
logical Oscillators," SIAM Journal on Applied Mathematics, Dec.
1990, pp. 1645-1662, vol. 50, No. 6.
Peskin, Charles S., "Mathematical Aspects of Heart Physiology,"
1975, pp. 241-278, Courant Institute of Mathematical Sciences, New
York, New York.
Srikanth, T. K., et al., "Optimal Clock Synchronization," Journal of
the ACM, Jul. 1987, pp. 626-645, vol. 34, No. 3.
Welch, Jennifer L., et al., "ANew Fault-Tolerant Algorithm for Clock
Synchronization," Information and Computation, Apr. 1988, pp.
1-36, vol. 77, No. 1, Academic Press, Inc.
Daliot, Ariel, et al., "Self-stabilizing Pulse Synchronization Inspired
by Biological Pacemaker Networks," http://arxiv.org/pdf/0803 .
0241v2.pdf, Mar. 4, 2008, pp. 1-45.
Daliot, Ariel, et al., "Linear-time Self-stabilizing Byzantine Clock
Synchronization," http://arxiv.org/pdf/cs/0608096vl.pdf, Aug. 25,
2006, pp. 1-31.
Daliot, Ariel, et al., "Linear Time Byzantine Self-Stabilizing Clock
Synchronization," http://www.cs.huji.ac.il/-dolev/pubs/byz-ss-
clock-synch-TR.pdf, Aug. 7, 2004, pp. 1-18.

* cited by examiner

U.S. Patent 	Oct. 14 9 2014 	Sheet 1 of 3
	

US 8,861,552 B2

P

24 	 25~ 1 f
12 	t 	I 	1 	f l

3 14 15 	17 ' 1& 19 	i

x--33

10

20 20

21 22 23

t
0
	

P
32B

32B

. t
t o 	 t o +D 	 t o +D+d

	

D 	 d

	

29 	Ni 	 30
From N 1

Monitor l
32

From Ni -1
Monitor i -1 	 28 	To Other Nodes (30)

From Ni +1 	 ..,,,
Monitor ; +1

132
From N k

----- 	Monitor k
IFrg 4

116

Increment
LocalTimer 103

Timer < p No
	

LocalTimer ? Ts
No

Yes
	

Yes

106-- 	LocalTimer =Y 1110 LocalTimer -Y 	114
Transmit Sync

U.S. Patent 	Oct. 14 9 2014 	Sheet 2 of 3 	 US 8,861,552 B2

102 	 ^ 	1

	

LocalTimer <0 Yes
	Reset

? 	 LocalTimer

No
104

Valid 	No
Sync

Yes
105 -~ 	 108 —~ 112 	No

LocalTimer>_ P

Yes

Reset LocalTimer,
I Transmit Sync

206 	LocalTimer = 0 	210 	
LocalTimer = 0.
Transmit Sync

To 102 	 To 102

Fig --5A

U.S. Patent 	Oct. 14 9 2014 	Sheet 3 of 3
	

US 8,861,552 B2

306 	 310
	

314

LocalTimer = 	 LocalTimer =
LocalTimerin +7 	 LocalTimerin +Y, I 	Transmit Sync & LocalTimer

I 	Reset LocalTimer,
Transmit Sync
and LocalTimer

To 102 	 To 102
	

To 102

Fig -5B

60

IFIg - 6

US 8,861,552 B2
2

FAULT-TOLERANT SELF-STABILIZING
DISTRIBUTED CLOCK SYNCHRONIZATION

PROTOCOL FOR ARBITRARY DIGRAPHS

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims the benefit of U.S. Provisional
Patent Application No. 61/442,826 filed on Feb. 15, 2011,
which is hereby incorporated by reference in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

The present invention was made by an employee of the
United States Government and may be manufactured and
used by or for the Government of the United States for gov-
ernmental purposes without the payment of any royalties
thereon or therefor.

TECHNICAL FIELD

The present disclosure relates to a fault-tolerant protocol
and system for synchronizing local logical time clocks in an
arbitrary, non-partitioned digraph.

BACKGROUND

Distributed systems typically require the accurate, coordi-
nated timing of process steps and task sequences to facilitate
overall event synchronization and data correlation. Even
when initially set accurately, clocks used in the various
devices of the distributed system will differ over time due to
inherent clock drift. Each clock frequency source, typically a
crystal oscillator, can run at slightly different rates. Error can
thus accumulate over time. Operating environment, age, and
other factors affect each physical clock somewhat differently,
and thus can affect the rate of change and accumulated error
within the distributed system as a whole.

Clock synchronization algorithms are therefore essential
for managing system resources and controlling communica-
tion between nodes of the system. For proper clock synchro-
nization, each node either accesses timing signals originating
from a common time source, for instance global positioning
satellite signals, or the nodes synchronize their individual
local logical time clocks in a distributed way using knowl-
edge from the other nodes.

SUMMARY

A distributed clock synchronization method or protocol is
disclosed herein, along with a distributed system that uses the
presently disclosed protocol to achieve and maintain clock
synchrony. The present approach provides a fault-tolerant
solution for a network of K nodes in the form of an arbitrary,
non-partitioned directed graph, i.e., a digraph. "True syn-
chrony" is defined as operating and exchanging messages
between system nodes in perfect unison, a process that is only
possible under the strictest assumptions and under ideal con-
ditions. `Bounded-synchrony", on the other hand, is a more
general term that encompasses certain imperfections in the
network. Bounded-synchrony refers to the exchange of local
time information by nodes of a network in unison but within
a given bound. Thus, the term "synchrony" as used herein
means "bounded-synchrony".

The networks/digraphs considered in the present disclo-
sure range from fully-connected to 1-connected networks of

nodes while also allowing for differences in the network
elements. Example networks that may be synchronized via
the presently disclosed protocol include grid, ring, fully-con-
nected, bipartite, and star (hub). Other networks may be envi-

5 sioned, and therefore this list of examples is non-limiting.
The present protocol does not require a particular informa-

tion flow, nor does it impose changes to the network in order
to achieve the desired synchrony. The approach only consid-
ers distributed systems in the absence of non-detectable

io faults. This departure from the Byzantine extreme of the fault
spectrum is taken in part because of the niche use and extra
cost associated with Byzantine faults. Also, using authenti-
cation and error detection techniques it is possible to substan-
tially reduce the effects of a variety of faults in the system.

15 In particular, a self-stabilizing network is disclosed herein
which includes K nodes. Each node communicates with other
neighbor nodes, i.e., any nodes that are directly connected to
each other, via the transmission or broadcast of low-overhead
Sync messages as described in detail herein. The Sync mes-

20 sage is the only type of message used to self-stabilize the
network. Each of the K nodes includes a synchronizer such as
but not limited to a state machine. K-1 monitors in commu-
nication with the synchronizer, a local physical oscillator/
physical clock, and a logical time clock. The logical time

25 clock has a variable integer clock value that is represented
herein as the clock value LocalTimer. The clock value Local-
Timer can vary from 0 to a maximum allowable value of P as
described herein. Such a logical time clock may be embodied
as an integer counter.

30 	The logical time clock is in communication with the syn-
chronizer, is driven by the local physical oscillator, and
locally keeps track of the passage of clock time for a given
node as the clock value LocalTimer. Each monitor in a given
node can receive a Sync message transmitted by another node

35 that is directly connected to or in direct communication with
the node in which the monitor resides.

The synchronizer continuously executes the present proto-
col, with the term "continuously" as used herein meaning
truly continuously in an analog embodiment and once per

40 logical clock tick in a digital embodiment. Upon receiving a
valid Sync message from one or more of the monitors, the
synchronizer executes the steps of the present protocol in
accordance with the results of certain threshold comparisons
as set forth herein.

45 	An example self-stabilizing network in the form of an
arbitrary, non-partitioned digraph, without using a central
clock or a centrally generated signal, pulse, or message of any
type for self-stabilization, includes K nodes configured to
selectively transmit a Sync message. K at all times is at least

50 1. That is, as few as one node can run the present protocol and
operate properly, e.g., a given node may wake up before the
others, or a network may temporarily downgrade to one active
node, whether or not other nodes are present. The other nodes
can integrate into the system/network by joining the only

55 actively present node. Such a scenario is more prevalent in a
dynamic network and also when the communication medium
is not hard wired between the nodes.

Upon commencing execution of the present protocol, the
synchronizer checks the current clock value LocalTimer for

60 its node. If the clock value LocalTimer is less than 0, the
LocalTimer is reset, i.e., set equal to 0.

When the clock value LocalTimer is greater than or equal
to 0 and a valid Sync message has been received, appropriate
steps are taken with respect to the value LocalTimer and/or

65 transmitting of new Sync messages as set forth below. If the
valid Sync message is not received, the clock value Local-
Timer is compared to P. If LocalTimer equals or exceeds P,

US 8,861,552 B2
3

LocalTimer is reset and a new Sync message is transmitted to
all nodes that are directly connected to the node in which the
synchronizer resides. If LocalTimer is less than P in this
comparison, LocalTimer is incremented.

If a valid Sync message received, the synchronizer instead
performs a set of threshold comparisons. First, if the clock
value LocalTimer is less than a minimum event-response
delay (D), the clock value LocalTimer is set to between 0 and
a communication latency value (y) depending on the embodi-
ment. That is, the value may be 0, y, or anything in between.

When a valid Sync message is received and the clock value
LocalTimer is greater or equal to both D and a calibrated
graph threshold (T,), the synchronizer still sets the clock
value LocalTimer equal to between 0 and y, again depending
on the embodiment, but also transmits a new Sync message to
all nodes that are directly connected to the node in which the
synchronizer resides.

In another embodiment, instead of setting the LocalTimer
to between 0 and y, the clock value LocalTimer is set instead
to the sum of an incoming LocalTimer, i.e., LocalTimerIn,
value plus y to compensate for the worst-case message delay.

The above features and advantages and other features and
advantages of the present invention are readily apparent from
the following detailed description of the best modes for car-
rying out the invention when taken in connection with the
accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG.1 is a schematic illustration of an example distributed
system having local logical time clocks that may be synchro-
nized according to the present protocol.

FIG. 2 is a time plot of the variable clock value, Local-
Timer, of an example logical time clock.

FIG. 3 is schematic illustration of Sync message flow
between connected nodes in real time within an example
network or digraph.

FIG. 4 is a schematic block diagram of the ith node, N,, of
an example self-stabilizing network or digraph.

FIG. 5 is a flow chart illustrating one possible embodiment
of the present protocol.

FIG. 5A shows two alternative steps that can be used in a
first variation of the protocol shown in FIG. 5.

FIG. 5B shows three alternative steps that can be used in a
second variation of the protocol shown in FIG. 5.

FIG. 6 is a schematic block diagram of an example logic
circuit for implementing the ith node of FIG. 4 according to
the protocol embodiment of FIG. 5.

DETAILED DESCRIPTION

The present invention is described herein with reference to
the accompanying drawings. The invention, however, may be
embodied in many different forms, and therefore should not
be construed as being limited to the particular embodiments
set forth herein. Further discussion of the present invention is
provided in Mahyar R. Malekpour, A Self-Stabilizing Syn-
chronization Protocol for Arbitrary Digraphs", NASA/TM-
2011-217054, February 2011, Mahyar R. Malekpour,
"Model Checking a Self-Stabilizing Distributed Clock Syn-
chronization Protocol For Arbitrary Digraphs", NASA/TM-
20110217152, May 2011, and Mahyar R. Malekpour, "Cor-
rectness Proof for a Self-Stabilizing Distributed Clock
Synchronization Protocol For Arbitrary Digraphs". NASA/
TM-217184, October 2011, all of which are hereby incorpo-
rated by reference in their entireties.

4
Referring to the drawings, wherein like reference numbers

correspond to like or similar components throughout the sev-
eral figures, an example distributed system 10 is shown in
FIG. 1 that includes a plurality of networked devices 12, 16,

5 and 20. For illustrative simplicity only three devices are
shown in FIG. 1. However, any other plurality may be used
with the present approach.

Each of the networked devices 12, 16, and 20 includes a
respective logical time clock 13, 17, and 21, a respective

10 physical oscillator 14, 18, and 22, e.g., an oscillating crystal,
a pacemaker cell, or any other oscillating device, and respec-
tive logic circuit 15, 19, and 23 for implementing the present
clock synchronization protocol. An example of this protocol

15 is described below with reference to FIG. 5, with variations
described with additional reference to FIGS. 5A and 5B.

The networked devices 12, 16, and 20 of FIG. 1 form a
system of pulse-coupled entities each pulsating at regular
time intervals via their respective oscillators 14, 18, and 22.

20 The devices 12,16, and 20 are coupled through some physical
connection 24, e.g., wires, fiber optic cables, a chemical pro-
cess, etc., or wirelessly through air or a vacuum as indicated
by waves 25.

The underlying system 10 can be modeled as a network 11
25 comprised of a set of communication nodes, for instance

nodes 30A, 30B, 30C as shown in FIG. 3 and discussed below.
The devices 12, 16, and 20 communicate with each other by
exchanging Sync messages, e.g., 1-bit messages in one par-
ticularly low overhead embodiment, although other Sync

30 messages such as 8-bit messages or 16-bit messages may be
used. The broadcast or transmission of a Sync message by a
given device 12, 16, 20 is realized by transmitting the Sync
message at the same time to all devices/nodes that are directly
connected to that node. This concept is described in further

35 detail below with reference to the node diagram of FIG. 3.
The various networked devices 12, 16, and 20 of FIG. 1

execute instructions embodying the present protocol 100, an
example of which is shown in FIG. 5, thereby providing a
fault-tolerant method for self-stabilization and time synchro-

4o nization within the distributed system 10. A "fault' is defined
herein as a defect or flaw in a component resulting in an
incorrect state. The present protocol 100 provides a solution
for the synchronization of an arbitrary, non-partitioned net-
work (digraph) in the absence of non-detectable faults. It

45 tolerates well any detectable faults, and thus is fault-tolerant
to this extent. The protocol also tolerates node and link drop-
outs, i.e., failures, as long as the network stays faithful to the
definition of the digraph. In other words, provided that the
failure of nodes and/or links does not partition the digraph.

50 Continuous execution of the protocol 100ofFIG. 5, suchas
once per clock tick in a digital embodiment, and its various
alternative embodiments of FIGS. 5A and 5B by the various
devices, for instance the networked devices 12, 16, and 20 of
FIG. 1, provides a self-stabilizing solution for a network in

55 the form of an arbitrary, non-partitioned digraph. The distrib-
uted system 10 of FIG. 1 is "self-stabilizing" if from an
arbitrary state it is guaranteed to reach a "legitimate" state in
a finite amount of time and remain in that legitimate state
thereafter. The protocol 100 can self-stabilize from any initial

60 state, i.e., it does not rely on assumptions about the initial state
of the network other than the presence of at least one node,
which in turn may be anonymous. That is, a node may have no
identifier at all, e.g., an IP address, or it may have an identifier
that is not unique with respect to identifiers of other nodes

65 used within the network. A legitimate state is defined as a state
in which all parts in the distributed system 10 are in bounded
synchrony.

US 8,861,552 B2
5

The Logical Clock (LocalTimer)
Referring to FIG. 2, the various logical time clocks 13, 17,

and 21 of FIG. 1 are driven by the respective physical oscil-
lators 14, 18, and 22 shown in the same Figure. Each logical
time clock 13, 17, and 21 emits a respective local time signal
over real time (t), with that signal referred to hereinafter as the
clock value LocalTimer. In one embodiment, the value of
LocalTimer may be an integer. If the LocalTimer is defined as
an integer, it can take on +/- values, with negative values
being rare, e.g., potentially occurring during power on and/or
severe upset or malicious scenarios. The LocalTimer may not
be an integer in another embodiment, but such an embodi-
ment may not adequately prevent the worst case scenarios.

An example trace 33 of the clock value LocalTimer is
shown in FIG. 2. Trace 33 is a monotonic linear function
increasing from an initial value, e.g., 0, to a calibrated maxi-
mum value of P. As noted above, rare cases may occur in
which the integer value is negative, and thus the protocol
handles this possibility in a preliminary step as set forth
below.

If uninterrupted, i.e. when a given node does not receive
any Sync messages from other directly connected nodes, the
clock value LocalTimer for a given node periodically takes on
integer values from an initial value to a maximum value of P,
linearly increasing within each period as shown. That is, the
clock value LocalTimer is typically bounded by
0:5LocalTimer 5l?.

Referring to FIG. 3, the distributed system 10 of FIG.1 can
be modeled as an example network 11 in the form of a digraph
having a set of communications nodes 30A, 308, 30C, which
are collectively referred to as the nodes 30. Communication
between the nodes 30 occurs via transmission/broadcast of
messages (arrows 32A, 3213, 32C) over communication chan-
nels as is well understood in the art, with the various commu-
nications channels collectively representing the available
connectivity within the distributed system 10 of FIG. 1.

The underlying topology T is an arbitrary, non-partitioned
digraph of K>-1 nodes 30. The nodes 30 may be anonymous in
that sense that they may lack a unique identity, even if some of
the nodes have an identifier such as an IP address. All of the
nodes 30 are considered to be good, that is, to actively par-
ticipate in the synchronization process and to be able to cor-
rectly execute the protocol 100 of FIG. 5 and its various
embodiments as disclosed herein.

As used herein, the term "source node" refers to a particu-
lar node 30 from which a Sync message (arrows 32A, 3213, or
32C) originates. Likewise, the term "destination node" refers
to a node 30 which receives a Sync message. Thus, a source
node may also act as a destination node and vice versa. The
communications channels, like the various nodes 30, are also
assumed to be good, i.e., to reliably transfer data between
source and destination nodes. As noted above, each of the
nodes 30 communicates with other nodes 30 by transmitting
messages (arrows 32A, 3213, or 32C) to any nodes 30 directly
connected to that source node. For instance, in FIG. 3 node
30A, a source node, may transmit a Sync message (arrow
32A) to nodes 30B and 30C, with the nodes 30B and 30C in
this instance acting as destination nodes.

The example network 11 of FIG. 3 does not guarantee a
relative order of arrival of a given transmitted message at any
particular receiving node. Additionally, as noted above the
network 11 is characterized by an absence of a central system
clock or any centrally-generated signal, pulse, or message of
any kind at the network level, i.e., central with respect to the
network or global with respect to a particular node 30 and its
associated synchronizer 28 (see FIG. 4). The communica-

6
tions channels and nodes 30 can behave arbitrarily provided
that, eventually, the network 11 adheres to various protocol
assumptions noted below.
Drift Rate (p)

5 	Each node 30 is driven by a respective independent, free-
running local physical oscillator 14, 18, or 22 as shown in
FIG. 1, whose phase is not controlled in any way, and by the
corresponding logical clocks 13, 17, or 21. The logical clocks
13, 17, and 21 of FIG. 1 locally track the passage of time for

io their respective node. A single oscillator tick is a discrete
value that forms the basic unit of time within the network 11
of FIG. 3.

An ideal oscillator has zero drift rate, p, withrespectto real
time t, thus perfectly marking the passage of time. However,

15 real oscillators are characterized by non-zero drift rates with
respect to real time. The oscillators 14, 18, and 22 of the
various nodes 30 shown in FIG. 3 are assumed to have a
known bounded drift rate p which is a small constant with
respect to real time, where p is a unitless, non-negative real

20 value expressed as 0:5p:51.
The maximum drift of the fastest LocalTimer used in the

network 11 of FIG. 3 over a time interval (t) is given by
(1/(I +p))t. Likewise, the maximum drift of the slowest Local-
Timer overtime interval (t) is given by (1/(1+p))t. Therefore,

25 the maximum relative drift of the fastest and slowest nodes 30
of FIG. 3 with respect to each other over a time interval (t) is
given by:

6(t)=((1+p)-11(1+p))t

30 Communication Delay (D), Network Imprecision (d), and
Latency (y)

Still referring to FIG. 3, the communication latency (y)
between adjacent nodes 30 is expressed in terms of the mini-
mum event-response delay (D) and a measure of network

35 imprecision (d). A Sync message (arrow 32A) transmitted at
time to is expected to arrive at all destination nodes, e.g. node
30C, and to be processed there. Subsequent messages are
generated in the interval [t o+D, to +D+d].

Communication between independently clocked nodes 30
40 is inherently imprecise. The network imprecision, d, is the

maximum time difference among all receivers of a message
from a transmitting node 30 with respect to real time. The
network imprecision, d, is due to oscillator drift with respect
to real time, jitter, discretization error, temperature effects,

45 and differences in lengths of the physical communication
media. The parameters d and D are assumed to be bounded
such that D>-1 and d>-0, and both have discrete values with
units of a real time clock tick. The communication latency (y)
is thus expressed in terms of D and d, and is constrained by:

50
Y=(D+c)

The communication delay between any two adjacent nodes
30 is constrained by [D, y].
Network Topology

55 	A communication link is an edge in the digraph represent-
ing a direct physical connection between two nodes 30. A
path is a logical connection between two nodes 30 consisting
of one or more links. A path-length is the number of links
connecting any two nodes. The general topology T consid-

60 ered herein is a strongly connected digraph (e.g., network 11)
consisting of K nodes 30, with K=3 in the example embodi-
ment of FIG. 3. Each node 30 is connected to the network 11
by at least one communications channel. There is a path from
any given node 30 to every other node 30, and the communi-

65 cations channels are either unidirectional or bidirectional.
Furthermore, the present approach assumes there is no direct
path from any node 30 back to itself, i.e., no self-loop, and

US 8,861,552 B2
7

there are no multiple channels directly connecting any two
nodes 30 in any one direction. This is the general framework
within which the present protocol 100 of FIG. 5 and the
alternative embodiments of FIGS. 5A and 5B operate.

Two nodes 30 are saidtobe"adjacent' to each other if they 5
are connected to each other via a direct communication link.
L, an integer value, represents a number of links and denotes
the largest loop in the graph, i.e., the maximum value of the
longest path-lengths from a node 30 back to itself visiting the
nodes 30 along the path only once, except for the first node io
which is also the last. W, also an integer value representing a
number of links, signifies the width or diameter of the graph,
i.e., the maximum value of the shortest path connecting any
two nodes. For digraphs of size K>l . L and W are bounded by
2:5L:5K and 1:5W:5K-1. 15

The system 10 of FIG. 1 has two synchronization states:
synchronized and unsynchronized. The system 10 is in the
unsynchronized state when it starts up or when it is powered
on. The synchronized state is entered when the nodes 30 of
FIG. 3 are within an expected boundary precision. The dis- 20
tributed system 10 transitions from the unsynchronized state
to the synchronized state after execution of the present syn-
chronization protocol 100 of FIG. 5. When the distributed
system 10 of FIG.1 reaches the synchronized state it is said to
be in synchrony. 25

Due to inherent drift in the local times, the present protocol
100 of FIG. 5 is to be executed all the time to ensure that the
local times remain synchronized, i.e., executed continuously
in an analog implementation or once per local clock tick in a
digital implementation. The rate of resynchronization is con- 30

strained by physical parameters of the design, for instance
drift rates of the physical oscillators 14, 18, and 22 of FIG. 1
as well as precision and accuracy goals. The present approach
addresses achieving and maintaining the precision goal of the
distributed system 10 of FIG. 1. Therefore, the present pro- 35
tocol enables the distributed system 10 to achieve and main-
tain synchrony among distributed logical clocks 13, 17, and
21 of FIG. 1 and not the physical oscillators 14, 18, and 22
shown in the same Figure.

The logical clocks 13, 17, and 21 of FIG.1 are periodically 40
synchronized by an exchange of Sync messages between
directly connected nodes 30. That is, a given node 30 selec-
tively transmits a Sync message only to other nodes 30 that
are directly connected to it. The process of periodic and
automatic synchronization after initial synchrony is achieved 45
is referred to as resynchronization, whereby all nodes 30
reengage in the disclosed synchronization process. A given
node 30 is said to "time-out' when its logical clock 13, 17, or
21 reaches a maximum value, i.e., the calibrated maximum
value P. i.e., the resynchronization period, described above 50
with reference to FIG. 2.

The resynchronization process begins when the first node,
herein defined as the fastest node, times-out and transmits a
Sync message. The process ends after the last node, herein
defined as the slowest node, transmits a Sync message. For a 55
drift rate p«l, the fastest node cannot time-out again before
the slowest node transmits a Sync message. A Sync message
is transmitted either as a result of a resynchronization tim-
eout, or when a node 30 receives a Sync message(s) indicative
of other nodes 30 engaging in the resynchronization process. 60
A node 30 is said to be interrupted when it accepts an incom-
ing Sync message before its clock value LocalTimer reaches
its maximum value, i.e., before it times-out.
Synchronizer and Monitors

Referring to FIG. 4, transmitted Sync messages from each 65
node 30 are deposited on communication channels. Each
node 30 includes a synchronizer 28, such as but not limited to

8
a state machine, and a plurality of monitors 29. To closely
observe the behavior of other nodes, each node 30 employs, at
least one monitor 29 and, at most, K-1 monitors 29. One
monitor 29 is employed for each source of incoming mes-
sages, e.g., from directly connected nodes N 1 , Ni- 1 , N,,,, and
N, Anode 30 neither uses nor monitors its own messages.

Each monitor 29 keeps track of the activities of its corre-
sponding source node(s). A monitor 29 detects proper
sequence and timelines of the received messages from its
corresponding source node, reads, evaluates, time stamps,
validates, and stores only the last Sync message it receives
from that particular node. Additionally, a monitor 29 ascer-
tains the health condition of its corresponding source node by
keeping track of the current state of that node. As the number
of nodes K increases in the digraph, so does the number of
monitors 29 in each node 30. The monitors 29 may be imple-
mented as separate physical components from the nodes 30 or
they may be logically implemented as part of the node func-
tions.

Upon conveying the valid Sync message to the local syn-
chronizer 28, a given monitor 29 disposes of the valid Sync
message after it has been kept for one local clock tick. The
synchronizer 28 describes the behavior of the node, N , , uti-
lizing assessment results from its monitors 29, where moni-
tor , i;~j, is the particular monitor for the corresponding node
N.

A Sync message is transmitted to directly connected nodes
either as a result of a resynchronization time-out or when a
node 30 receives a valid Sync message(s) (arrows 32) indica-
tive of other directly connected nodes 30 engaging in a resyn-
chronization event. A node 30 periodically undergoes a resyn-
chronization process either when its LocalTimer times out or
when it receives a Sync message. If it times out, it broadcasts
a Sync message (arrow 132 of FIG. 4) and so initiates a new
round of the resynchronization process.

However, since only detectable faults are assumed, i.e.,
F-0 where F is the maximum number of faulty nodes, when
a node 30 receives a Sync message, except in a predefined
ignore window bounded to [D, TS], it accepts the Sync mes-
sage and undergoes the resynchronization process where it
resets its clockvalue LocalTimer and relays the Sync message
(arrow 132) to other directly connected nodes 30. This pro-
cess continues until all of the nodes 30 participate in the
resynchronization process and converge to a guaranteed pre-
cision. The predefined window where the node 30 ignores all
incoming Sync messages, i.e., the ignore window, provides a
means for the protocol to stop the endless cycle of resynchro-
nization processes triggered by the follow up Sync messages.
Sync Message

In order to achieve synchrony, the nodes 30 communicate
by exchanging Sync messages with other directly connected
nodes as noted above. The Sync message is the only type of
message used by the protocol to self-stabilize the digraph.
When the system 10 of FIG. 1 is in synchrony, the protocol
overhead is at most one Sync message per resynchronization
period (P), where P has units of real time clock ticks and is
defined as the upper bound on the time interval between any
two consecutive resets of the clock value LocalTimer by a
given node 30. Assuming physical-layer error detections are
dealt with separately, the reception of a Sync message by any
given node 30 is indicative of its validity in the value domain.
The present protocol 100 of FIG. 5 and its embodiments of
FIGS. 5A and 5B thus perform as intended when the timing
requirements of the messages from every node 30 are satis-
fied. However, in the absence of non-detectable faults the
reception of a Sync message is indicative of its validity in the

US 8,861,552 B2
9
	

10
value and time domains. A valid Sync message is discarded
after it is relayed to the synchronizer and has been kept for one
local clock tick.
Protocol

The following protocol assumptions are made: (1) the
number of nodes 30 is denoted by K, where K>-1; (2) all nodes
30 correctly execute the protocol; (3) all links correctly trans-
mit data from their sources to their destinations; (4) T=a
non-partitioned, strongly connected digraph; (5) 0<p«l; (6)
a Sync message sent by any given node 30 will be received
and processed by all adjacent nodes 30 within the duration of
y, where y=D+d; and (7) initial values of the variables of a
node 30 are within their corresponding data-type range,
although possibly with arbitrary values. In a physical implan-
tation, it is expected that some local mechanism exists to
enforce type consistency for all variables.
The Distributed Self-Stabilizing Clock Synchronization
Problem

To simplify the present protocol 100 of FIG. 5 and its
alternative embodiments discussed below, it is assumed that
all time references are with respect to an initial real time t o,
where to-0 when the above listed protocol assumptions are
satisfied, and for all t>—t o the system 10 of FIG. 1 operates
within the protocol assumptions noted above.

The maximum difference in the value of the clock values
LocalTimer for all pairs of nodes at time t, Ar et (t), is deter-
mined by the following equations that account for the varia-
tions in the values of the clock value LocalTimer across all
nodes:

LocalTimerm,,,(x)=min(N.-LocalTimer(x)), and

LocalTimer__(x)=max(NLocalTimer(x)), for all i.

AN,,(t)=min((LocalTimer..(t)—LocalTimerm,,,(t)),
(LocalTimer__(t—r)LocalTimer m,,,(t—r))),

where:
C is a bound on the maximum convergence time, wherein

the protocol deterministically converges to synchrony
within the time bound (C) as a linear or substantially
linear function of P. While substantially non-linear func-
tions are possible, such functions may result in a lack of
determinism and/or difficulty of analysis;

A, ,et (t), for real time t, is the maximum difference of values
of the corresponding LocalTimer of any two nodes (i.e.,
the relative clock skew) for t>—t o ; and

71, the synchronization precision, is the guaranteed upper
bound on A,, t (1) for all t?C.

There exists C and 71 such that the following self-stabiliza-
tion properties hold:

Convergence: A, ,et (C)«, 0«<P;
Closure: for all t>—C, A, ,et (t):57t;
Congruence: for all nodes N, for all t>—C,(N •LocalTimer

(t) y) implies AN t (t):57t; and
Liveness: for all t>—C, the LocalTimer of every node

sequentially takes on at least all integer values in [y,
P-7t].

Self-Stabilizing Distributed Clock Synchronization Protocol
for Arbitrary Digraphs

The protocol 100 of FIG. 5 and its embodiments of FIGS.
5A and 5B use a synchronizer 28 and a set of monitors 29 as
shown in FIG. 4, both of which execute once every local clock
tick. The following parameters apply when all links are bidi-
rectional:

T,s (L+2)(y+6(y))

Pa3Ts, for p-0

5 	Pa3 (Ts+6(Ts)), for L=K and p>O

Pamax((2K+1)(y+6(y)), 3(TS+6(TS))), forL=f(T) and
p>0.

The following is a list of protocol parameters for digraphs,
io i.e., when at least one link is unidirectional:

Tsa(K+2)(y+6(y))

PaK(Ts+6(Ts))

15 Regardless of the types of links in the network 11 of FIG. 3,
the following is a list of protocol measures:

Ci,r 2P+K(y+8(y))

20

C=C~ ,r+[o~ ;1v1P

WdsAi,,a,a _,cgW(+6(y)), for all taC

25
ji=Ai ,rte_ reed+y(P)a0 for all taC and OSJLSP

A trivial solution is when P-0. Since P>Tsand the clockvalue
LocalTimer is reset after reaching P (worst-case wrap-
around), a trivial solution is not possible.

30 	Referring now to the example flow chart of FIG. 5, the
protocol 100 is shown in one possible embodiment with
respect to a particular node 30 of FIG. 3. Beginning at step
102, the synchronizer 28 for a particular node 30 determines
if the clock value LocalTimer at that particular node 30 has a

35 value that is less than zero. As noted above, this condition in
which the LocalTimer has a negative value should not ordi-
narily be present, but step 102 is still provided for preventa-
tivereasons and safety. Theprotocol 100 proceeds to step 103
if LocalTimer is less than 0. Otherwise, the protocol 100

40 proceeds to step 104.
At step 103, the synchronizer 28 resets the clock value

LocalTimer, i.e., sets the value of LocalTimer to zero, and
then returns to step 102. Steps 102 and 103 are alternatively
represented in pseudo-code below as the logic statement E0.

45 At step 104, the protocol 100 proceeds by having the syn-
chronizer 28 determine if a valid Sync message has been
received at its node 30, referred to in this context as the
receiving node. If a valid Sync message is received the pro-
tocol 100 proceeds to step 105, and otherwise proceeds to step

50 112.
At step 105, the synchronizer 28, having received a valid

Sync message at step 104, next determines whether the cur-
rent clock value LocalTimer is less than the value of the
minimum event response delay D. If so, the protocol 100

55 proceeds to step 106. The protocol 100 proceeds instead to
step 108 if LocalTimer is determined at step 105 to be greater
than or equal to D.

At step 106, the synchronizer 28 determines that an inter-
ruption has occurred and sets the clock value LocalTimer

60 equal to the value of the communication latency y. Thereafter,
the protocol 100 returns to step 102. Steps 104, 105, and 106
are alternatively represented in pseudo-code below as the
logic statement El.

At step 108, the synchronizer 28 determines whether the
65 current clock value LocalTimer, assuming a valid Sync mes-

sage is received at step 104, equals or exceeds the graph
threshold T. If it does, the protocol 100 proceeds to step 110.

US 8,861,552 B2
11

However, if the clock value LocalTimer is less than the graph
threshold TS the protocol 100 proceeds instead to step 112.

At step 110 the synchronizer 28 determines that an inter-
ruption has occurred and sets the clock value LocalTimer
equal to the communication latency y, and also transmits a 5

Sync message to all other nodes directly connected to its node
30. Thereafter, the protocol 100 returns to step 102. Steps 108
and 110 are alternatively represented in pseudo-code below
as the logic statement E2.

At step 112, the synchronizer 28 determines whether 10

LocalTimer equals or exceeds the LocalTimer's maximum
value, i.e., P. If so, the synchronizer 28 determines that the
node 30 being evaluated has in fact timed out, and proceeds as
a result to step 114. If the clock value LocalTimer is deter-
mined to be less than P, the protocol 100 proceeds instead to 15

step 116.
At step 114 the synchronizer 28 resets its logical clock, i.e.,

LocalTimer=0, transmits a Sync message to all directly con-
nected nodes as noted above, and returns to step 102. Steps
112 and 114 are alternatively represented in pseudo-code 20
below as the logic statement E3.

At step 116, the synchronizer 28, having determined at step
112 that LocalTimer is less than P, regardless of whether or
not a valid Sync message is received at step 104, increments
its corresponding clock value, i.e., LocalTimer—Local

25 Timer+l, and returns to step 102. Step 116 is alternatively
represented in pseudo-code below as the logic statement E4.

In the protocol 100, if Sync message(s) arrive and either of
the conditions of steps 105 or 108 are true, then the Local-
Timer for that node does not get incremented.

Referring briefly to FIG. 6, the embodiment of the protocol 30
100 shown in FIG. 5 may be physically embodied as a logic
circuit 15, for instance residing in the networked devices 12 of
FIG. 1, with similar logic circuits 19 and 23 residing in the
other devices 16 and 20 of the same Figure. A monitor 29
determines whether a valid Sync message is generated by its 35

monitored node as noted above, and feeds this information
into a set of logic gates embodying portions of the synchro-
nizer 28 of FIG. 4. Various logic blocks 42, 44, 46 process the
indicated comparative steps, e.g., whether the value from the
clock value LocalTimer is less than D inblock 44, greaterthan 40

or equal to Tsinblock 42, or greater than or equal to P inblock
46.

The logical time clock 13 may be embodied as a type of
flip-flop as shown, receiving an oscillator signal 41 from its
local physical oscillator (OSC) 14 and outputting its local 45
clock signal as the clock value LocalTimer value used for all
comparison steps of the protocol 100 of FIG. 5. Other logical
embodiments may be used to encode the required logic set
forth in FIG. 5 without departing from the intended inventive
scope.

Pseudo-code as noted above in the description of the flow
chart of FIG. 5 may be readily envisioned as a series of logic
statements EO-E4, with corresponding comments denoted by
"H" :

E0: if (LocalTimer < 0)
LocalTimer := 0

El: elseif (validSync(and (LocalTimer <D))
LocalTimer := y, 	 //interrupted

E2: elseif (validSync(and (LocalTimer a T s))
LocalTimer := y, 	 //interrupted
Transmit Sync,

E3: elseif (LocalTimer aP) 	//timed out
LocalTimer := 0.
Transmit Sync,

E4: else
LocalTimer := LocalTimer + 1

12
Additional Discussion

From the expression for Ar ,,, the synchronization time C
and precision 71 are functions of the network topology T and
the drift rate p, specifically the graph's width W and the
amount of drift the network experiences. In other words,
C=f(W,6(P)) and 7r=f(W,6(P)).

From the expression for Ar it and Ar itcuamnteea it follows
that for networks with small W values, Ar itcuarauteea occurs
instantaneously, but for networks with large W values
Ar itcuarauteea is a gradual process. The general equation for
Ar it applies to the ideal (p -0, d-0) and semi-ideal (p -0, d>-0)
scenarios. For these scenarios, A r jt<Wy.

Although the initial (coarse) synchrony, A n it, occurs
within Cr it, the initial guaranteed precision, Ar itGuarauteea,

takes place after a number of periods and after achieving the
initial synchrony. The general equation for 71 applied to the
ideal and semi-ideal scenarios. Since Ar itcuarauteea f(W 6
(P)), for large values of PAr itcuarauteea Ar it and no improve-
ment on A n it is achievable. However, since typically 0<p«I,
for small values of 6(P), AI tcuarauteea<AI t and improve-
ment on Ar itcuarauteea is possible.

In particular, for the ideal and semi-ideal scenarios, subse-
quent resynchronization processes beyond the initial syn-
chrony results in tighter precision. Specifically, for C C r it+

[Ar j /yjP, for the ideal scenario the result is Ar itcuarauteea 0
and 71-0, while for the semi-ideal scenario,
Ar itcuarauteea Wd and 7c=Wd. Therefore, Ar itcuarauteea-0 .
Wd, and W(y+6(y)) for the ideal, semi-ideal, and realizable
systems (p>-0,d>0), respectively.

After synchrony for the ideal scenario, the nodes periodi-
cally pulsate in perfect unison (true synchrony). For the semi-
ideal scenario, even in the absence of drift, the system's
behavior resembles a ripple effect where the nodes remain at
most d apart from each other with the leading node as the
center and originator of the ripple. Also, for realizable sys-
tems due to the effect of drift, the system's behavior
resembles a ripple effect. However, when the nodes periodi-
cally pulsate, depending on the amount of drift, the nodes
remain at most one duration y apart from each other with the
leading node as the center and originator of the ripple.

Recall that 7t=f(W,6(y)) and C=f(W,6(y)). Therefore,
depending on the values of W and 6(y) the precision of the
network and convergence time may be quite large. From the
expression for 7 it follows that for networks with small W
values synchronization occurs instantaneously with optimal
precision, while for networks with large W values synchro-
nization is a gradual process with larger precision. For
instance, for a fully connected graph, W=1, 7r-0+6(y) is at its
minimum with minimal dependence on the drift, and the
convergence time is at its minimum value of Cdr it, whereas
for the linear graph, W=K-1, 71 is at its maximum and more
dependent on the drift, and the convergence time is at its
maximum value of C. Indeed, for the worst case where drift is
very high, no improvement on A n it is possible no matter how
much time passes. So, to achieve a desired precision one must
reduce W, 6(P), or both.

To reduce W, new links may be added to the graph such that
the graph width W is halved and its precision doubled. This
implies that the number of links (edges) to be added, E, is
given by:

Ez[logz4z„irl

50

55

60

More accurate oscillators are needed to reduce drift. However
more accurate oscillators are more costly. Sometimes a graph

65 cannot or should not be modified by adding new links, and as
there are no perfect oscillators, drift may not be improved
beyond a certain limit. Thus, other ways for achieving syn-

US 8,861,552 B2
13

chrony faster and with more accurate precision are now dis-
cussed along with variations of the protocol 100 of FIG. 5.
Variations of the Protocol
Variation #I: Time Shift

In the "if' expressions for El, E2, and E3 in the above
pseudo-code, one can potentially add or subtract a value from
the right hand side of the comparisons when comparing with
LocalTimer. In other words, El can be written as:

elseif (ValidSync(and (LocalTimer < (D ± X)),
and E2 as:

elseif (ValidSync(and (LocalTimer a (Ts ± X))
and E3 as:

elseif (LocalTimer a (P ± X))

with X being the same value for all El, E2, and E3 expres-
sions and for some X>-0. Of particular interest is when X>—D.
In thi s case, and in conjunction with E0, El will not be needed
and can be eliminated and thus result in further simplification
of the protocol.
Variation #2: Reset

One of the key elements of the present protocol 100 of FIG.
5 is the proper setting of the clock value LocalTimer upon
receiving a broadcast Sync message from a directly con-
nected node. The clock value LocalTimer is set to the com-
munication latency y in the embodiment of the protocol
shown in FIG. 5. Thus, when a node 30 times out, it resets its
clock value LocalTimer, i.e., LocalTimer -0, and after one
duration y the transmitting and receiving nodes would natu-
rally be in relative synchrony of, at most, d clock ticks from
each other. If the clock value LocalTimer is set to D, the
protocol 100 behaves similarly but with lower precision. As
noted below, setting the clock value LocalTimer to any value
less than y produces lower precision than setting it to the
latency y.

Setting the clock value LocalTimer to other values may not
produce the desired effect. On the other hand, if a node gets
interrupted the receiving nodes have no knowledge of the
broadcasting node's LocalTimer value, which could be either
0 or y. The clock value LocalTimer is set to y upon interrupt as
noted above. However, it could be assigned other values equal
to or greater than 0. An arbitrary value is not going to produce
the desired synchrony, but if the value of the broadcasting
node's LocalTimer is forwarded, then the clock value Local-
Timer of the receiving node could be set to that value, offset
by y, and once again the two nodes would be in relative
synchrony.

In this variation the clock value LocalTimer is reset, i.e.,
LocalTimer=0, upon receiving a Sync message rather than
setting the LocalTimer to y as in steps 106 and 110 of FIG. 5.

Referring briefly to FIG. 5A, steps 106 and 110 of FIG. 5
are therefore simply replaced by alternative steps 206 and
210, with all other steps of the protocol appearing as in FIG.
5. Thus, FIG. 5A is to be read in conjunction with FIG. 5.

Step 206 of FIG. 5A includes having the synchronizer 28
for a particular node determine that an interruption has
occurred and resetting the clock value LocalTimer. Thereaf-
ter, the protocol returns to step 102 of FIG. 5.

Likewise, at step 210 the synchronizer 28 determines that
an interruption has occurred. Here, the synchronizer 28 resets
the clock value LocalTimer and also transmits a Sync mes-
sage to all other nodes that are directly connected to the node
of the synchronizer 28 acting at step 210. Thereafter, the
protocol 100 returns to step 102 of FIG. 5.

This variation also synchronizes the network for p>-0 and
d>-0 with the same A,,,,, i.e., A,,,,~5(K-1)(y+0.5(y)). Also,

14
when p-0 and d-0, unlike the protocol 100 of FIG. 5 where

AI tcuaranteea-0l Al tcuaranteea WY• Setting the clock value
LocalTimer to other values between 0 and y would produce
similar results as the protocol 100 of FIG. 5 and this variation

5 with 0<A1, itcuaranteea<WY• Since Ar itcuaranteea WY in this
variation, even in the absence of drift the system's behavior
resembles a ripple effect where nodes remain at most y apart
from each other with the leading node as the center and
originator of the ripple.

10 	Pseudo-code for this variation is as follows:

E0: if (LocalTimer < 0)
LocalTimer:=0

15 	 El: elseif (ValidSync(and (LocalTimer < D))
LocalTimer := 0,

E2: elseif ((ValidSync(and (LocalTimer a Ts))
LocalTimer := 0,
Transmit Sync,

E3: elseif (LocalTimer aP) //timed out

20 	
LocalTimer := 0.
Transmit Sync,

E4: else
LocalTimer := LocalTimer + 1

25 Variation #3: Jump Ahead
In this variation, the current value LocalTimer is transmit-

ted along with the Sync message. Referring briefly to FIG.
513, steps 106, 110, and 114 of FIG. 5 are simply replaced by
alternative steps 306, 310, and 314. Step 306 entails deter-

30 mining via the synchronizer 28 that an interruption has
occurred and setting the clock value LocalTimer equal to the
sum of the incoming LocalTimer value from the transmitting
node, LocalTimerIn, plus the communication latency y, i.e.,
LocalTimer --LocalTimerin+y. Thereafter, the protocol

35 returns to step 102 as explained above according to FIG. 5.
Likewise, at step 310 the synchronizer 28 determines that

an interruption has occurred, and sets the clock value Local-
Timer equal to the sum of the incoming value of the Local-
Timer from the transmitting node, i.e., LocalTimerIn, plus the

40 communication latency y, i.e., LocalTimerIn+y, and also
transmits a Sync message and the clock value LocalTimer to
all othernodes directly connected to that node. Thereafter, the
protocol 100 returns to step 102 as shown in FIG. 5.

Step 314 entails resetting the clock value LocalTimer and
45 transmitting a Sync message and the clock value LocalTimer

to all nodes directly connected to that node. Thereafter, the
protocol 100 returns to step 102.

This variation introduces more overhead due to the trans-
50 mission of the LocalTimer value, but synchronizes the net-

workfor p>-0 and d>-0 withthe same initial precision. In other
words, Ar

 ~ t
<_(K-1)(y+(3(y)). However, the variation produces

tighter initial guaranteed precision for the same convergence
time, i.e., Ar itcuamnteea (I+d)6(P) and Cdr it+[Ar i/y]P.

55 This variation also requires greater number of exchanges of
Sync messages during the convergence process. The excess
transmission of Sync messages is due to the burst of relays of
Sync messages prior to the convergence. Note that since after
receiving a Sync message the clock value LocalTimer of a

6o node gets incremented, all messages will eventually die out
when the clock value LocalTimer of a node reaches or
exceeds its maximum value of P. In the protocol 100 of FIG.
5, by setting the clock value LocalTimer of a node to y that
node immediately enters the ignore window, a time interval

65 where it ignores all incoming Sync messages. In this varia-
tion, however, depending on the initial value of the clock
value LocalTimer of a given node, a message may not get

US 8,861,552 B2
15

ignored until eventually the clock value LocalTimer of a node
reaches or exceeds its maximum value of P and then enters the
ignore window.

Also, due to an interrupt the slowest nodes may never get
set to a y during a resynchronization process even when the
system is in synchrony. As a result (Theorem Congruence),
for t>—C the nodes are in synchrony when N,. LocalTimer(t)=
Wy. In the original protocol 100 of FIG. 5, for all t C Local-
Timer of every node sequentially takes on at least all integer
values in [y, P -7t]. However, for this variation the minimum
range of values is [Wy, P -7t].

Pseudo-code for this alternative embodiment of the proto-
col 100 of FIG. 5 may be readily envisioned as a series of logic
statements EO-E4:

E0: if (LocalTimer < 0)
LocalTimer:=0

El: elseif (validSync() and (LocalTimer < D))
LocalTimer := LocalTimerin + y, //interrupted

E2: elseif ((validSync() and (LocalTimer a T s))
LocalTimer := LocalTimerin + y, //interrupted
Transmit Sync and LocalTimer,

E3: elseif (LocalTimer aP) //timed out
LocalTimer := 0.
Transmit Sync and LocalTimer,

E4: else
LocalTimer := LocalTimer + 1

Digraphs and Dynamic Graphs
As noted above, the general form of the distributed syn-

chronization problem (S) is defined by the following sep-
tuple:

S=(K, T,D, d, p,P,T),

i.e., the number of nodes (K), network topology (T), event-
response delay (D), communication imprecision (d), oscilla-
tor drift rate (p), synchronization period (P), and number of
faults (F), respectively. The most general form of the
problem (S) may be described by the following septuple:

S'=/K(t),T(t),D,d,gP,T).

where K(t) represents the dynamic node count and T(t) rep-
resents the dynamic topology for a given K(t). In a dynamic
node count the number of nodes comprising the network can
change at any given time, and the presented protocol and its
variations are readily applicable to this scenario provided the
new nodes enter the network from a reset state where they are
clear of all residual effects. The dynamic topology allows for
topologies with any combination of unidirectional and bidi-
rectional links as described above, whether static or dynamic.
That is, for a given K(t) the number of links can change at any
time.

While the best modes for carrying out the invention have
been described in detail, those familiar with the art to which
this invention relates will recognize various alternative
designs and embodiments for practicing the invention within
the scope of the appended claims.

The invention claimed is:
1. A self-stabilizing network comprising:
a node that includes:

• synchronizer;
• set of monitors in communication with the synchro-

nizer, wherein each monitor in the set of monitors is
configured to receive a transmitted Sync message, and
wherein the number of monitors in the set of monitors
is no more than one fewer than the number of nodes in
the network;

16
• physical oscillator; and
• logical time clock driven by the physical oscillator and

having a variable clock value that locally tracks the
passage of clock time for the node;

5 	wherein the synchronizer, without using a global clock or a
globally-generated signal, globally-generated pulse, or
globally-generated message of any kind for self-stabili-
zation, executes a predetermined protocol to thereby:
set the clock value equal to 0 when the clock value is less

to 	than 0;
set the clock value equal to between 0 and a communi-

cation latency value (y) when the Sync message is
received by the synchronizer and the clock value is

15 	less than a minimum event-response delay (D);
set the clock value equal to between 0 and y and transmit

a new Sync message when:
the Sync message is receivedby the synchronizer; and
the clock value is greater than or equal to both D and

20 to a calibrated graph threshold (T S);
set the clock value to 0 and transmit a new Sync message

when the Sync message is not received by the syn-
chronizer and the clock value is greater than or equal
to a calibrated resynchronization period (P); and

25 increment the clock value when the Sync message is not
received by the synchronizer and the clock value is
less than P;

wherein the network is an arbitrary, non-partitioned
digraph that is self-stabilizing, via execution of the

30 protocol, from any initial state, and wherein the syn-
chronizer transmits the Sync message to as many
other nodes in the network as are directly connected to
the first node.

2. The network of claim 1, wherein the node comprises one
35 of a plurality of nodes, and wherein the synchronizer trans-

mits the new Sync message to any of the plurality of nodes
that are directly connected to the node.

3. The network of claim 1, wherein the Sync message is the
only type of message used by the protocol to self-stabilize the

4o digraph.
4. The network of claim 1, wherein the protocol determin-

istically converges to synchrony within a time bound (C) that
is a substantially linear function of P.

5. The network of claim 1, wherein the Sync message
45 comprises a I-bit message.

6. The network of claim 1, wherein the synchronizer
ignores all Sync messages that the synchronizer receives
within a calibrated ignore window [D, T s].

7. The network of claim 1, wherein at least one of the nodes
50 is anonymous.

8. The network of claim 1, wherein the synchronizer sets
the clock value equal to y when the Sync message is received
and the clock value is less than D.

9. The network of claim 1, wherein the synchronizer resets
55 the clock value when the Sync message is received and the

clock value is less than D.
10. The network of claim 1, wherein the synchronizer sets

the clockvalue equal to y andtransmits thenew Sync message
to the as many of the other nodes in the network as are directly

60 connected to the transmitting node when the Sync message is
received and the clock value is greater than or equal to both D
and TS.

11. The network of claim 1, wherein the synchronizer
resets the clock value and transmits the new Sync message to

65 the as many of the other nodes that are directly connected to
the transmitting node when the Sync message is received and
the clock value is greater than or equal to both D and T.

US 8,861,552 B2
17

12. A self-stabilizing network comprising a plurality (K) of
nodes in communication with each other, wherein each of the
nodes includes:

• synchronizer;
• set of no more than K-1 monitors in communication with

the synchronizer, wherein each monitor in the set of
monitors is configured to receive a transmitted Sync
message and an incoming clock value from another of
the nodes;

• physical oscillator; and
• logical time clock that is in communication with the

synchronizer and driven by the physical oscillator,
wherein the logical time clock locally keeps track of the
passage of time in a node of the synchronizer as a vari-
able integer clock value;

wherein the synchronizer, without using a global clock or a
globally-generated signal, globally-generated pulse, or
globally-generated message of any kind for self-stabili-
zation, executes a predetermined protocol that includes:
when the clock value is less than 0:

resetting the clock value;
when a Sync message is received by the synchronizer

and the clock value is less than a minimum event-
response delay (D):
setting the clock value equal to the sum of a commu-

nication latency value (y) and the incoming clock
value;

when the Sync message is received by the synchronizer
and the clock value is greater than or equal to both D
and a graph threshold (T S):

setting the clock value equal to the sum of y and the
incoming clock value as an updated clock value;
and

transmitting a new Sync message and the updated
clock value to as many of the other nodes as are
directly connected to the corresponding node;

when the clock value is less than a calibrated resynchro-
nization period (P) and the Sync message is not
received:
incrementing the clock value; and

when the clock value is greater than or equal to P:
setting the clock value to 0; and

transmitting a new Sync message and the clock
value of 0 to the as many of the other K nodes that
are directly connected to the corresponding
node;

wherein:
the network is an arbitrary, non-partitioned digraph; and
the Sync message is the only type of message that is used

by the protocol to self-stabilize the digraph.
13. The network of claim 12, wherein the protocol deter-

ministically converges within a time bound (C) that is a linear
function of P.

18
14. The network of claim 12, wherein at least one of the

nodes is anonymous.
15. The network of claim 12, wherein each monitor dis-

poses of all previously received Sync messages after one tick
5 of the logical time clock.

16. The network of claim 12, wherein the synchronizer
ignores all Sync messages received within a calibrated ignore
window [D, Ts].

17. A method for self-stabilizing an arbitrary, non-parti-

10 tioned digraph of K nodes each including a synchronizer, no
more than K-1 monitors per node each in communication
with the synchronizer, a physical oscillator, and a logical time
clock in communication with the synchronizer that has a
variable integer clock value, is driven by the oscillator, and

15 locally keeps track of the passage of time as the clock value,
the method comprising:

setting the clock value for a first node of the K nodes to 0
when the clock value for the first node is less than 0;

when a Sync message has been received at the first node:
20 	comparing the clock value for the first node to a mini-

mum event-response delay (D);
setting the clock value for the first node equal to between

0 and a communication latency value (y) when the
clock value for the first node is less than D; and

25 setting the clock value for the first node equal to between
0 and y and transmitting a new Sync message to as
many of the K nodes as are directly connected to the
first node when the clock value for the first node is
greater than or equal to both D and a calibrated graph

30 	threshold (Ts);
when the Sync message has not been received by the first

node:
comparing the clock value for the first node to a cali-

brated resynchronization period (P);
35 	incrementing the clock value for the first node when the

clock value for the first node is less than P; and
setting the clock value for the first node to 0 and trans-

mitting a new Sync message to as many of the K nodes
as are directly connected to the first node when the

40 	clock value for the first node is greater than or equal to
P;

wherein the method deterministically converges to synchrony
within a time bound (C) that is a substantially linear function
of P, and is executed without using a global clock or a glo-

45 Bally-generated signal, globally-generated pulse, or globally-
generated message of any kind for self-stabilization.

18. The method of claim 17, further comprising disposing
of a received Sync message after one tick of the logical time
clock for the first node.

50 	19. The method of claim 17, further comprising:
ignoring all transmitted Sync messages received within a

calibrated ignore window [D, Ts].

	8861552-p0001.pdf
	8861552-p0002.pdf
	8861552-p0003.pdf
	8861552-p0004.pdf
	8861552-p0005.pdf
	8861552-p0006.pdf
	8861552-p0007.pdf
	8861552-p0008.pdf
	8861552-p0009.pdf
	8861552-p0010.pdf
	8861552-p0011.pdf
	8861552-p0012.pdf
	8861552-p0013.pdf
	8861552-p0014.pdf

