
1111111111111111111inuun1111111111u ~

(12) United States Patent
Hart et al.

(54) ROBOT TASK COMMANDER WITH
EXTENSIBLE PROGRAMMING
ENVIRONMENT

(71) 	Applicant: GM Global Technology Operations
LLC, Detroit, MI (US)

(72) 	Inventors: Stephen W Hart, Houston, TX (US);
John D. Yamokoski, Houston, TX (US);
Brian J Wightman, Seabrook, TX (US);
Duy Paul Dinh, Houston, TX (US);
Dustin R Gooding, League City, TX
(US)

(73) 	Assignees: GM Global Technology Operations
LLC, Detroit, MI (US); The United
States of America as represented by
the Administrator of the National
Aeronautics and Space
Administration, Washington, DC (US)

(*) 	Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 107 days.

(21) Appl. No.: 13 /803,017

(22) Filed: Mar. 14, 2013

(65) Prior Publication Data

US 2014/0277743 Al 	Sep. 18, 2014

(51) Int. Cl.
B25J 9116 	 (2006.01)

(52) U.S. Cl.
CPC B25J 911661 (2013.01); G05B 2219140099

(2013.01)
USPC 700/264; 700/245; 700/248

(58) 	Field of Classification Search
CPC B25J 9/16; B25J 9/1602; B25J 9/1656;

B25J 9/00

(1o) Patent No.: 	US 8,868,241 B2
(45) Date of Patent : 	 Oct. 21 9 2014

USPC .. 700/264, 246, 248
See application file for complete search history.

(56) 	 References Cited

U.S. PATENT DOCUMENTS

8,260,460 1329/2012 Sanders et al.
2007/0150102 Al * 	6/2007 Park et al 700/245

OTHER PUBLICATIONS

Sattar, Junaed; Xu, Angi; Dudek, Gregory; and Charette, Gabriel;
"Graphical State-Space Programmability as a Natural Interface for
Robotic Control", IEEE, 1050-4729, pp. 4609-4614, May 3-7,
2010.*
Li, Jimm; Xu, Angi; and Dudek, Gregory; "Graphical State Space
Programming: A Visual Programming Paradigm for Robot Task
Specification", IEEE, 1050-4729, pp. 4846-4853, May 9-13, 2011.*

* cited by examiner

Primary Examiner Mark Cheung
Assistant Examiner Brian Sweeney
(74) Attorney, Agent, or Firm Quinn Law Group, PLLC

(57) 	 ABSTRACT

A system for developing distributed robot application-level
software includes a robot having an associated control mod-
ule which controls motion of the robot in response to a com-
manded task, and a robot task commander (RTC) in net-
worked communication with the control module over a
network transport layer (NTL). The RTC includes a script
engine(s) and a GUI, with a processor and a centralized
library of library blocks constructed from an interpretive
computer programming code and having input and output
connections. The GUI provides access to a Visual Program-
ming Language (VPL) environment and a text editor. In
executing a method, the VPL is opened, a task for the robot is
built from the code library blocks, and data is assigned to
input and output connections identifying input and output
data for each block. A task sequence(s) is sent to the control
module(s) over the NTL to command execution of the task.

18 Claims, 3 Drawing Sheets

73

z
I

L0
N

MI

MI

V

O
T

U.S. Patent 	Oct. 21 9 2014
	

Sheet 1 of 3
	

US 8,868,241 B2

w

C w

N
N

d

TLU

'CO
T

w
Cn

W

W

J 	~ 	a-)I

NI

MI

N

czj

w

U

U.S. Patent 	Oct. 21 9 2014 	Sheet 2 of 3
	

US 8,868,241 B2

A

	

TE 	 46 	 48
41

	

F 141 	
44

J

146 ~lL44148 	246 244
50 50

~ 50 	 50--
R

0

1~d
K

12~\

21

&751- 1
52 	1 r--

50 	 50
FIG. 2

70

1 	25 	65
60

25 	 SE 	 GUI
J 	 20 	 22

I 	~ 	 1 '
62 	25

Y
13

FIG. 3

i X12

14

16

'2

4

16

'8

100

FIG. 4

U.S. Patent 	Oct. 21 9 2014 	Sheet 3 of 3 	 US 8,868,241 B2

US 8,868,241 B2
2

ROBOT TASK COMMANDER WITH
EXTENSIBLE PROGRAMMING

ENVIRONMENT

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

This invention was made with government support under
NASA Space Act Agreement number SAA-AT-07-003. The
United States Government may have certain rights in the
invention.

TECHNICAL FIELD

The present disclosure relates to systems and methods of
task planning for an automated robot, and in particular to a
robot task commander having an extensible programming
environment that can be used for such task planning

BACKGROUND

Robots are automated devices that are able to manipulate
objects using a series of mechanical links. The links are
interconnected via motor/actuator-driven robotic joints. Each
joint in a typical robot represents an independent control
variable, i.e., a degree of freedom. End-effectors are the par-
ticular devices located at the end of a robot manipulator used
for performing a task at hand, such as grasping a work tool or
capturing a 3D image of an object. Therefore, precise control
of a robot may be organized by the level of task specification:
object level control, i.e., the ability to control the behavior of
an object held in a single or cooperative grasp of a robot,
end-effector control, and joint level control. Collectively, the
various control levels cooperate to achieve the required levels
of robotic mobility, dexterity, and work task-relatedfunction-
ality.

Robots vary in complexity ranging from conventional
3-axis or 6-axis robotic arms to highly complex humanoid
robots, i.e., robots having human-like structure or appear-
ance, whether as a full body, a torso, and/or an appendage.
The structural complexity of a humanoid robot depends
largely upon the nature of the work task being performed.
Typically, each robot has its own dedicated programming
environment wherein expert users program the various tasks
that must be executed according to a particular task sequence.
The programming code is then compiled, with communica-
tions protocols rewritten whenever new peripheral devices
and other hardware elements are added to the robot. As a
result, certain task programming inefficiencies may exist in
the art, particularly in larger networked environments utiliz-
ing robots of differing designs and/or with a wide disparity in
relative complexity.

SUMMARY

A system is disclosed herein that includes a robot task
commander (RTC). The RTC is intended for development of
distributed robot application-level software, i.e., software
that is not real-time critical, as is well understood in the art.
The RTC may be embodied as a set of programs running on
one or more computer devices, including an Integrated Devel-
opment Environment (IDE) with a graphical user interface
(GUI) and one or more programs configured to function as
respective script engines. The GUI acts as a graphical "front
end" to the RTC, allowing an expert or non-expert user to
interface with the script engines in an intuitive manner. The
GUI also enables a user to view run-time diagnostic informa-

tion, to compose new scripts that can be stored inmemory and
accessed via a graphical file browser, and to "drag-and-drop"
such stored scripts as "code library blocks" into new
sequences. The task sequences are likewise stored in memory

5 for hierarchical re-use as "task sequence blocks" in additional
sequences.

The GUI allows the user to deploy task sequence blocks as
"applications" to the script engine(s). In turn, the script
engines act as the computational "back end" of the RTC.

io Sub-blocks within an application may be assigned to specific
script engines that must then interpret and execute those
particular blocks in a designated sequence order. Therefore,
the script engines are responsible within the system for trans-
mitting program sequence data to other script engines as well

15 as for communicating diagnostic feedback to the GUI. Diag-
nostic feedback as used herein may take two forms: a text
window in the GUI, and "block highlighting", such that when
an application is deployed to the script engine(s), the corre-
sponding blocks in the GUI may turn different colors, e.g.,

20 green to indicate proper execution, red to indicate an error or
fault, etc.

Use of the RTC as disclosed herein facilitates automated
robot task planning in a networked environment wherein one
or more robots are controlled over a network transport layer

25 (NTL) by multiple computing devices. The RTC is designed
to support multiple network protocols, for instance the Robot
Operating System (ROS), ZeroMQ, TCP/IP, UDP, etc., for
implementing the network communication between different
script engines, the RTC GUI, and one or more robot/periph-

30 eral devices without being unique to any particular protocol.
As applications may consist of task sequences of multiple
blocks distributed over a wide network at multiple script
engines using these protocols, network latencies may exist.
However, such latencies are entirely acceptable within the

35 context of the RTC's intended application-level software
development role.

The script engines used by the RTC may reside on different
computers on the network. Each script engine can send "trig-
ger commands" to other script engines, e.g., as a set of coor-

4o dinated state machines executing in parallel. In such an envi-
ronment, the GUI allows a user to understand at a glance
precisely what is occurring throughout the various distributed
script engines. Also, the distributed approach allows for com-
putational load across the network to be balanced if particular

45 library script or sequence blocks, referred to collectively
hereinafter as "code library blocks", are particularly inten-
sive, for instance in the case of sensor/image fusion or image
processing algorithms.

In a possible approach, a given script engine could be
5o dedicated to a corresponding robot on the network. Likewise,

each task sequence and code library block could be run on a
different script engine on a different computer. In general, the
deployment of each block can be set by the user in the GUI
before deployment, or automatically assigned to the script

55 engine(s) on the network through standard scheduling algo-
rithms such as "round robin" or the like, as is well understood
in the art. The particular trigger events that connect the vari-
ous blocks are sent over the NTL, thereby allowing the RTC
to function properly even in a widely distributed network

60 environment. The task sequences themselves need not be
linear. That is, a single trigger command could trigger execu-
tion of multiple blocks of code at the same time, thereby
initiating a concurrent or parallel processing pipeline, and so
forth.

65 	The RTC described herein uses script blocks that are spe-
cifically written to accept "input" data from a robot and/or
sensor data being published over the NTL, as is understood in

US 8,868,241 B2
3

the art, as well as to publish "output' data to the NTL itself.
Upon composition in the GUI of the RTC, the scripts must be
written "abstractly", i.e., agnostic to any specific input/output
(I/O) data bindings. In such a way, each individual script
block only knows about the type of information, e.g., joint
positions, joint velocities, image coordinates, etc., and not the
specific source of that information. It is left to the user to
"bind" the sources and sinks of this I/O data in the VPL using
an intuitive graphical interface when composing code blocks
in task sequences and/or applications. Thus, central to the
present approach is the ability to use and reuse such abstract
functionality in the form of library scripts, in different appli-
cations, while possibly connecting to different hardware
devices. These concepts are discussed in further detail below.

As will be appreciated by those having ordinary skill in the
art, the RTC disclosed herein may provide various advantages
relative to existing command and control approaches. Such
approaches may be poorly suited to interfacing with newly
added peripheral hardware devices such as sensors, manipu-
lators, and/or third party software in a uniformly consistent
way when creating new robot task applications. On-line feed-
back of both program state and robot telemetry data, which
may be useful for run-time introspection and diagnostics of
tasks in progress, may also be lacking in the prior art. Inte-
grated support is provided for leveraging external software
packages via communication over the NTL, and it is the
integrated support of multiple network protocols that make
this possible. Together, these features can enable rapid pro-
totyping and deployment of advanced robot programming
techniques suitable for the next generation of flexible general
assembly manufacturing systems, space exploration systems,
and the like. As an added benefit, by using the RTC, commu-
nication protocols need not be rewritten whenever new hard-
ware is added to the network.

In a particular embodiment disclosed herein, the system
specifically includes a robot with an associated control mod-
ule. The control module controls the motion of at least one
joint of the robot in response to a commanded task. The
system also includes the RTC described above, which is in
networked communication with the control module over the
NTL. The RTC includes a processor and memory having a
centralized library within which code library blocks may be
stored, with each code library block constructed via an asso-
ciated text editor using an interpretive language computer
programming code. Each library code block may also have
one or more I/O connections, which are defined herein as the
particular I/O links which communicate over the NTL as
pointers to input and output data, respectively. The RTC also
includes a GUI in communication with the memory. The GUI
provides access to both the VPL environment and the text
editor.

The RTC executes instructions from memory in response
to user commands to thereby open the VPL, and to allow the
user to select or develop code for a task to be executed via the
robot(s), including selecting and/or developing one or more
code library blocks. The selected/developed blocks of code
are downloaded over the NTL to the various designated script
engines, where the blocks are executed according to the flow
path(s) dictated by the particular trigger commands. After the
code library blocks are processed via the script engines, each
control module subsequently controls the required motion
dictated by the task, periodically communicating its state
back to the controlling RTC via the script engines. Various
embodiments of the foregoing system are set forth in further
detail herein.

The above features and advantages and other features and
advantages of the present invention are readily apparent from

4
the following detailed description of the best modes for car-
rying out the invention when taken in connection with the
accompanying drawings.

5 	BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic illustration of a distributed robotic
system that includes multiple robots, individual control mod-
ules, and a robot task commander (RTC) configured as set

10 forth herein.
FIG. 2 is a schematic flow diagram describing program

development using the RTC of the system shown in FIG. 1.
FIG. 3 is a schematic flow diagram describing robotic task

planning using the RTC.
15 	FIG. 4 is a flow chart describing a method for task planning

of the robots shown in FIG. 1.

DETAILED DESCRIPTION

20 Referring to the drawings, wherein like reference numbers
refer to the same or similar components throughout the sev-
eral views, FIG. 1 schematically depicts a distributed robotic
control network 10. For instance, the control network 10 may
include an example humanoid robot 12 and a conventional

25 multi-axis robot 14 as shown, and/or more or fewer robots of
greater or less complexity relative to the robots 12, 14. As set
forth herein, consolidated robotic task planning for one or
more robots is achieved within the control network 10 via a
robot task commander (RTC) 13.

30 	Typically, task planning across a distributed control envi-
ronment is performed at the level of each of the robots 12 and
14, and specifically only for those particular robots 12, 14.
The RTC 13, when configured and used as set forth herein,
instead provides a graphical integrated development environ-

35 went (IDE) which allows use of a Visual Programming Lan-
guage (VPL) to write new programming code. This occurs in
a first layer, i.e., a graphical user interface (GUI) 22, which
thus acts as a graphical "front end" to the RTC 13 as noted
above.

40 The GUI 22, which may be hosted on a suitably configured
computer device, allows a user to create new program scripts,
store the scripts as graphical blocks, and then start, pause, and
stop execution of these blocks at runtime as needed while
receiving runtime diagnostic feedback. In such a way, the

45 GUI 22 may be used for both the development and deploy-
ment of applications, where the term "application" is used to
denote any "top-level' sequence block that can be dispatched
to one or more RTC script engine(s) 20, which in turn pro-
vides a second layer of control. The GUI 22 may include or

50 provide access to a text editor (TE) 41, the VPL noted above,
and a library browser (B) displaying the scripts and blocks
that have already been created. Thus, the dichotomy of a
graphical IDE via a single GUI 2, and potentially many dis-
tributed script engines 20, facilitates software prototyping

55 and high-level task planning across a distributed environ-
ment. Control modules (CM) 21, 31 provide a third layer of
control, with all three layers described in further detail below.
Although not shown for simplicity, the GUI 22 may open an
associated window for each block when the block is clicked

60 on in the IDE. This concept is described in further detail
below with reference to FIG. 2.

In a particular embodiment, the humanoid robot 12 of FIG.
1 may have over 42 degrees of freedom (DOE) and perform
automated, interactive tasks using other integrated system

65 components such as clamps, 2D or3D cameras, lights, relays,
etc., with human-like levels of dexterity. To achieve such
dexterity, the robot 12 may include independently-moveable

US 8,868,241 B2
5
	

6
and interdependently-moveable robotic joints, such as but not

	
(NTL) 25, i.e., the particular layer in a computer network that

limited to a shoulder joint of an arm 18. The position of the
	

is responsible for forming data packets and delivering the data
shoulder joint is generally indicated by arrow A. 	 packets to the various processes and control modules, as is

Likewise, an elbow j oint is generally indicated by arrow B, 	well known in the art. The RTC 13 supports multiple network
with the robot 12 also including a wristjoint (arrow C), a neck 5 data transfer protocols for implementing the NTL 25, e.g.,
joint (arrow D) providing multi-axis movement to a head 19, 	ROS, ZeroMQ, TCP/IP, UDP, etc., and is easily extensible to
and a waist joint (arrow E) providing movement of a torso 16, 	include others at the developers demand through a plug-in
as well as the various finger joints (arrow F) positioned

	
architecture as is understood in the art. This capability facili-

between the phalanges of each robotic finger. Each robotic 	tates integration of the RTC 13 with third-party software and
joint contains and is internally driven by one or more actua- io sensors that may have their own particular protocol. Also, the
tors, e.g., joint motors, linear actuators, rotary actuators, and

	
structure and function of the RTC 13 as disclosed herein

the like. Although not shown in FIG. 1 for illustrative sim- 	facilitates fast integration of peripheral input sensory devices
plicity, the finger joints (arrow F) and/or other joints may be 	such as, but not limited to, cameras, laser range finders, 3D
driven via tendons using ball-screw devices. 	 depth sensors, force/torque sensors, inertial measurement

In contrast to the robot 12, the multi-axis robot 14 may have 15 units or accelerometers, etc. The I/O blocks can easily be
a much lower degree of relative complexity. For instance, the 	configured to "listen" or "subscribe" to any defined type of
robot 14 may move with respect to just three axes G, H, and

	
sensory data over the NTL 25 that is being generated from

I, and/or it may rotate with respect to a fixed or mobile base 	such a peripheral device.
17. Such a robot is typically used in industry to perform

	
The required functionality of the script engines) 20

repetitive tasks. Example uses of the robot 14 may include 20 includes coordinating the flow of programs, i.e., how the
paint application, welding, logistics/materials handling, and

	
various blocks send trigger-events along their various con-

the like. The two example robots 12 and 14 are intended to 	nections to start new blocks, the flow of data between all
illustrate robots having vastly different degrees of freedom 	computational nodes in the control network 10, and the
relative to each other. The complexity of the robots 12,14 that 	sequencing of reference commands to the control modules
are actually used as part of the control network 10 of FIG. 1 25 21, 31. Hardware may include tangible, non-transitory
may vary depending on the application. For illustrative con- 	memory (M), a processor P, and a transceiver (T), as well as
sistency, the simplified two-robot example embodiment of

	
recorded instructions necessary for executing a method 100

FIG. 1 will be used hereinafter. 	 as shown in FIG. 4 and described below. Additional hardware
Task execution for each of the robots 12 and 14 is directly 	may include the A/D, D/A, and I/O circuitry noted above, as

controlled via the respective control modules 21, 31, each 30 well as any other required hardware and software.
forming a lower level of control relative to the RTC 13. The

	
As with the control modules 21, 31, the various script

control modules 21 and 31 generate or accept commanded
	

engines 20 of the RTC 13 may be executed via one or multiple
inputs or control references for the various joint actuators, 	computers or data processing devices each having one or
e.g., motors, linear actuators, and the like, in the execution of

	
more processors (P), tangible, non-transitory memory (M)

any commanded tasks. While each control module 21, 31 is 35 such as read only memory (ROM), optical memory, flash
shown as a single computer device in FIG. 1, the various 	memory, and the like, as well as random access memory
hardware and software elements of the control modules 21, 	(RAM) and erasable electrically-programmable read only
31 may be distributed with respect to the robot 12, 14 being 	memory (EEPROM). The various hardware of the script
controlled. 	 engine(s) 20 may include a high-speed clock, analog-to-digi-

For example, each j oint may have an embedded j oint con- 40 tal (A/D) circuitry, digital-to-analog (D/A) circuitry, and any
troller in the form of a printed circuit board assembly in 	required input/output (I/O) circuitry and devices, as well as
communication with a main circuit board (not shown). 	signal conditioning and buffer electronics.
Regardless of how the physical elements of the control mod- 	The RTC 13 provides an extensible programming environ-
ules 21, 31 are distributed, each control module 21, 31

	
ment for developing, diagnosing, and deploying new robot

includes one or more processors 23, 33, one or more trans- 45 applications within the network 10 of FIG. 1. Such applica-
ceivers 27, 37, and one or more tangible, non-transitory 	tions may be used by any robot or sensor connected to the
memory devices 29, 39. Likewise, each control module 21,31

	
RTC 13 over the NTL 25, whether the high-degree of freedom

may have an associated user interface 32, 42 as shown pro- 	robot 12 or the relatively low degree of freedom robot 14, and
viding a user with access to the robot 12 or 14. 	 anything in between. The RTC 13 provides an interpretative

In terms of functionality, each control module 21, 31 is 50 programming environment, which is an environment in
configured to control the motion of the robots 12, 14 in 	which compiling of computer-executable code is neither
response to received task instructions provided from the RTC

	
required nor used. In this environment, users can easily "drag

13, after any blocks embodying the programming code or 	and drop" existing task planning script blocks from the cen-
script are processed via the script engines) 20. That is, each

	
tralized library, i.e., "code library blocks", into new applica-

control module 21, 31 is programmed, equipped, and/or oth- 55 tions, and/or create new task sequence blocks to address
erwise physically capable of performing all requisite control

	
evolving requirements and new hardware. This concept will

steps needed for responding to task planning instructions 	now be explained with reference to FIG. 2.
from the RTC 13 without further modification. The control

	
Referring to FIG. 2, the RTC 13 shown schematically in

modules 21, 31 provide precise motion control over the fine
	

FIG. 1 facilitates program development at the task planning
and gross movements needed for any actions of the robot 12, 60 phase of control. While shown linearly for simplicity, a single
14. The RTC 13 effectively tells each control module 21, 31

	
event could also trigger multiple blocks concurrently, thereby

what to do as opposed to precisely how to do it. The control
	

initiating a concurrent/parallel processing pipeline. However,
modules 21 and 31 are programmed or otherwise configured

	
a linear sequence will be described herein for illustrative

to determine how to execute the top-level tasks assigned by 	consistency.
the RTC 13. 	 65 A user of the RTC 13 may load the GUI 22 from any

Still referring to FIG. 1, the various control modules 21, 31
	

computer device on which it is available and write source
communicate with the RTC 13 over a network transport layer 	code 141 using the text editor 41. In a possible embodiment,

US 8,868,241 B2
7

the source code 141 may be written using the Python pro-
gramming language, e.g., Python 3.3.0 or later releases, Lua,
or other scripting languages. Python and Lua are two non-
limiting examples of interpretive programming languages
that are well suited for application development and task 5

prototyping, and that run on various platforms including Win-
dows, Linux/Unix, Mac OS X, OS/2, and Amiga.

Features of Python and Lua, which should be shared by any
other scripting language used in alternative embodiments,
include clear, readable syntax and a natural expression of io
procedural code. Such code, unlike non-scripting languages
such as C++, do not require compiling and linking steps.
While other interpretive programming languages may be
used via the text editor 41 without departing from the
intended inventive scope, similar capabilities would facilitate 15

the effective use of the RTC 13. The example flow diagram of
FIG. 2 includes some basic illustrative blocks, including I/O
connections and state identifiers. Each block represents an
interpretative program for a particular task or function of the
robots 12 or 14. Left undefined, i.e., "abstract', is the specific 20

hardware which is to be tied into the particular I/O connec-
tions. Defined only is the type of data, e.g., j oint velocity, joint
position, RGBD image, etc., that the script must input or
output.

A user, via the GUI 22 of FIG. 1, thus writes and/or selects 25

code library blocks 44 and drops them into a programming
screen of the GUI 22. Clicking on an individual block may
open up a window in the GUI 22 to display information or
menus, e.g., tabs displaying the various script engines 20 that
may be selected (a "settings" tab), modifiable parameters a 30

user can set for that particular instance of the script in the
current task sequence (a "parameters" tab), etc. Thus, when a
user writes new script in the text editor 41, there are code
"hooks" allowing the user to create new code variables with
values that are deferred until the user defines the values of 35

these variables in the higher-level application, i.e., the task
sequence block 52. When a new instance of the script block is
dragged and dropped in a new task sequence block 52, these
variables, along with editable text windows, are displayed.
The user can then modify the values of those variables such 40

that the user-set values are interpreted during execution.
Individual scripts of source code 141 written via the text

editor 41, each describing a step or steps of a certain top-level
task, may be stored in the centralized library of memory
within the GUI 22 as the code library blocks 44, with each 45

code library block 44 providing a visual representation of the
underlying programming code at a given computational node
within the system 10 of FIG. 1. Each code library block 44
may have an arbitrary number of input connections 46 and
output connections 48 respectively to and from other library 50

blocks as well as third party applications. These connections
capture the data flow paths into, out of, and among the blocks
44 in an application during deployment. The actual number of
respective input and output connections 46 and 48 may vary,
with one of each shown for illustrative simplicity. The input 55

connection 46 forms a pointer to incoming data, e.g., a color
image from a camera connected as a hardware element to one
of the robots 12 or 14 of FIG. 1 or a sensor reading a joint
position. Likewise, the output connection 48 is a pointer to
processed output data, e.g., a black and white processed ver- 60

sion of the same image, or a corresponding joint command
using the same examples. The RTC 13 of FIG. 1 thus defines
the type, but not the source, of the various inputs and outputs
for a given code library block 44.

In the IDE provided by the RTC 13 of FIG. 1, and as noted 65

above, a VPL environment may be used to "drag and drop"
existing code library blocks 44 into a desired task sequence.

8
The task sequence in turn may be stored in the library within
memory (M) of FIG. 1. A simplified example is shown in FIG.
2 with the code library block 44 being "dragged and
dropped", as indicated by arrow 7, in another window to form
a task sequence with other code library blocks 144 and 244.
Each of the other code library blocks 144 and 244 may have,
like the code library block 44, a set of input and output
connections. These are shown as input connections 146, 246
and output connections 148, 248 for the respective code
library blocks 144 and 244.

Multiple respective input and/or output connections 46
and/or 48 in a given sequence may be linked together and
exposed in the "higher level" task sequence block 52. For
simplicity, I/O connections analogous to connections 46 and
48 are not shown on the task sequence block 52, as they reside
in the RTC GUI 22 when such exposure occurs. For instance,
if different output connections 46, 146 both point or connect
to the same image data, the output connections 46 and 146
could be linked together by parameterizing these connections
with the same name in the task sequence block 52. In order to
be executable by a given script engine 20, all task sequence
blocks 52 must have a start and stop state to indicate the entry
and exit points of the program flow of that sequence 52 when
it is run as an application, or as a sub-task in a higher-level
application. The task sequence has a start state (0) and an end
state (1). Between some or all of the code library blocks 44,
144, 244, sensor data 50 may be received and used in the
execution of the next code library block in that sequence,
which once again may be linear or non-linear, e.g., with
possible concurrent or parallel execution of one or more
steps.

As indicated by arrow K of FIG. 2, the entire task sequence
may be stored in the centralized library within memory of the
GUI 22 or in another accessible location as a task sequence
block 52. As a result, in building other task sequences, the task
sequence block 52 may be reused by dragging and dropping
the task sequence block 52 into a VPL window, e.g., of the
GUI 22 shown in FIG. 1, and writing additional code library
blocks, and/or dragging and dropping existing code library
blocks. One working within a VPL window could click on the
task sequence block 52 to open the underlying structure,
which may consist of additional task sequence blocks 52
and/or code library blocks 44. Thus, during deployment,
when a user presses "play" from the GUI 22 on a given
sequence block, all of the blocks for the sequence download
over the NTL 25 to one or more designated script engines 20,
loading into the local memory M of the script engine(s).

Clicking on a given code library block of any type causes
the text editor 41 to open, such that the underlying code 141
is visible to the user. One can use the text editor 41 of FIG. 2
during program development to associate a particular state or
status of a given code library block 44 or task sequence block
52 with, for instance, a color such as green, yellow, or red. Via
the GUI 22, one may then later view the status of each block
44 or 52 at runtime and can click on a given block 44 or 52 to
thereby "drill down" to the next level of the task sequence and
view the status of sub-blocks in the application hierarchy in
real time.

Initially, the centralized library may reside on the side of
the GUI 22. That is, any pre-existing code library blocks 44
may be stored in in a directory on any computer from which
the GUI 22 is run, and viewed via the file browser B shown in
FIG. 1. Any newly-created code library blocks 44 may also be
saved to the same directory. Because one might run the GUI
22 on a different physical device from that of the various
script engines 20 executing the underlying scripts, pressing
"play" to launch a given task sequence via the GUI 22 results

US 8,868,241 B2
9 10

in downloading, over the NTL 25, of all associated code
library blocks 44 to the required script engine(s) 20, where the
blocks 44 may be stored in local memory (M) of the physical
computer device(s) making up each script engine 20.

Any script engine 20 having the top-most level block or 5

"start" block then issues a trigger command, again over the
NTL 25, to all script engines 20 in the control network 10 of
FIG. 1. If any of the notified script engines 20 have loaded
code library blocks 44 connected in a sequence to the "start"
block, then those particular script engines 20 begin executing io
those blocks 44, and so on. For each code library block 44, the
I/O connections effectively become the only required plug-
ins prior to deployment for customizing an otherwise abstract
task program, which is built entirely of the individual code
library blocks 44, for use by a specific robot 12 or 14 (see FIG. 15

1).
To revisit a point made above, all of the code library blocks

44 remain abstract at the level of the RTC 13, while task
sequence blocks 52 may or may not remain abstract.
Abstract' blocks of any type are not readily usable by third 20

party hardware and software. Thus, the RTC 13 and/or the
control modules 21, 31 connected to the RTC 13 over the NTL
25 of FIG.1 must take additional steps to render these abstract
blocks useable at the level of the control modules 21, 31. This
approach will now be explained with reference to FIG. 3. 25

Referring to FIG. 3, an example task planning diagram 70
is shown using a simplified system in which just one robot is
used, in this example the robot 12. Adding additional robots
and additional script engines 20 does not change the present
approach, although it would add additional computational 30

nodes. For simplicity, only one script engine 20 is shown,
although as explained below with reference to FIG. 4 any
number of script engines 20 may be used in various embodi-
ments. The GUI 22 canbe used to drag and drop the necessary
code library blocks for building a task or a task sequence, as 35

explained above with reference to FIG. 2. Double-headed
arrow 65 represents the two-way flow of information to and
from the GUI 22 and the script engine 20.

The building of a given task sequence, particularly in a
VPL environment, effectively creates a finite state machine. 40

While a single state machine is shown for simplicity, and thus
one computational node, more nodes may be used, with each
node communicating via the NTL 25. A finite state machine
as used herein is any device that stores a status/state and can
operate on an input to change that status/state, and/or cause an 45

action or output to take place for any given change.
Each script engine 20 communicates across the NTL 25

with the robot 12 without regard to the particular operating
systems or computational engines used by the robot(s). Dif-
ferent hardware devices of the robot 12 are used in the execu- 50

tion of a given task. For example, the robot 12 may use a 3D
camera (not shown) to view the object 11 shown in FIG. 1 in
preparation for grasping the object 11. Proximity, force, and/
or other sensors may be used as part of the control logic for
executing a grasp, whether of the object 11 or of a different 55

device. Data from the various hardware devices of the robot
12 is transmitted over the NTL 25 to the script engine 20.
After any hardware element outputs a value, the data must be
"published" to the network, as that term is known in the art,
such that any networked devices, or other script engines 20, 60

communicating over the NTL 25 can access the data.
Thus, each hardware module may include a corresponding

interpreter block (IB) 60, 62 which interprets the raw data and
publishes it to the network. Interpreter blocks 60, 62 act as
sensory processing nodes. The interpreter blocks 60, 62 may 65

use stand-alone software packages such as but not limited to
the open-source Robot Operating System (ROS) maintained

by Open Source Robotics Foundation (OSRF), i.e., an open
source protocol for communicating over the NTL 25 between
the various hardware modules and the robot 12, allowing both
standard message passing protocols and data types as well as
various code libraries or modules that can process sensor data
or compute robot behavioral plans. That is, ROS provides
standard network protocol and operating system services
such as hardware abstraction, device drivers, libraries, mes-
sage-passing, package management, hardware abstraction,
and low-level device control, as is well known in the art. The
message passing protocol of ROS may be used herein to
access I/O data over the NTL 25, although other Y d party
networking libraries may be used such as ZeroMQ from
iMatix Corporation.

Referring to FIG. 4, a method 100 is shown for task plan-
ning within a distributed environment, such within the control
network 10 of FIG. 1. Beginning at step 102, the RTC 13 is
initialized, thereby establishing or verifying network connec-
tivity with the robots being controlled. The method 100 then
proceeds to step 104.

Step 104 entails accessing the centralized library, which
may exist within memory of any computer device embodying
or hosting the GUI 22, e.g., by clicking on an icon displayed
within a window of the GUI 22. The method 100 then pro-
ceeds to step 106.

At step 106, a user determines whether code library blocks
44 exist in the centralized library for the particular task that is
being planned. If not, the method 100 proceeds to step 108.
However, if sufficient code library blocks 44 exist in the
centralized library, the method 100 proceeds instead to step
112.

At step 108, a user may open a programming window via
the GUI 22 and begins to write programming code, e.g.,
Python or Lua code, suitable for a given step or steps of the
task. Each step of the task may be stored as a new code library
block 44 or task sequence block 52 in the centralized library
at step 110. The method 100 proceeds from step 110 to step
112 once all necessary code has been written or dragged and
dropped.

At step 112, the user opens a VPL window via the GUI 22
and drags and drops the developed code library blocks 44 to
build a desired task sequence. A simplified version of this
with code library blocks 44, 144, and 244 is shown in FIG. 2
and described above. One or more task sequence blocks 52
can be built in thi s manner and stored in the centralized library
at step 114 using as many of the linked code library blocks 44
as are required for the desired task.

Step 116 includes assigning the I/O devices to the code
library blocks 44 via the input block 46, which as noted above
forms a pointer to incoming data. Also as part of step 116, the
output block 48 may be assigned. The RTC 13 is thus used at
step 116 to define the type of the inputs and outputs for each
code library block 44. As part of this step, prior to deploy-
ment, a user may choose whether or not to "re-bind" the I/O
connections to point to different sources or destinations in the
data flow. For example, one could re-bind by clicking on the
input block 46 or output block 48, which may display text
associating each with variables in the code of the particular
block, at which time a dialog window may be presented with
a text field that allows the user to type in the specific destina-
tion or source, i.e., the pointer to the data as mentioned above,
such as by typing "left_eye_camera_rgb_image" in one run-
time control context or "right_eye_camera_rgb_image" in
another.

Once this is done, the tasks are executed at step 118, which
includes downloading the code blocks 44 or 52 to the required
script engine(s) 20 of FIG. 1. Part of this step may include

US 8,868,241 B2
11

having the user select the particular script engine(s) 20 to
dispatch to, or step 118 may simply default to one or more
script engines 20. At step 118, the script engine(s) 20 interpret
the underlying programming code, transfer of any I/O data
over the NTL 25, and handle any transitions between the task 5

sequences and the associated code library blocks 44.
Furthermore, as the script engines 20 of FIG. 1 are "dis-

tributed" throughout the control network 10 of the same Fig-
ure, a user who wishes to assign the entire application to a
single script engine 20 may do so. Likewise, if the user wishes io
to execute each individual code library block 44 and/or task
sequence block 52 on different script engines 20, the user may
do that as well, or anything in the spectrum between these
example extremes. As noted above, a key feature of the RTC
13 shown in FIG. 1 and described in detail above is that the 15

RTC 13 will handle the program flow of any and all task
sequences even in a situation in which each block 44 or 52 is
distributed across the control network 10 of FIG. 1. Program
flow between different script engines 20 is handled over the
NTL 25. Thus, as part of the flow shown in FIG. 4, the user 20

could assign particular blocks 44 or 52 to specific script
engines 20 to optimize processing efficiency and balance the
computational load.

Ultimately in step 118, any required lower level control-
lers, e.g., the control modules 21, 31 of FIG. 1, are instructed 25

to take some action such as move one or more joints and/or
end effectors, according to the task code interpreted by the
script engine(s) 20. Upon receipt of the task, the control
modules 21, 31 thereafter control the various joint motors
and/or other joint actuators as needed to move according to 30

the task from the RTC 13.
While the best modes for carrying out the invention have

been described in detail, those familiar with the art to which
this invention relates will recognize various alternative
designs and embodiments for practicing the invention within 35

the scope of the appended claims.
The invention claimed is:
1. A system comprising:
• robot having a control module, wherein the control mod-

ule is configured to control motion of the robot in 40

response to a received task sequence; and
• robot task commander (RTC) in networked communica-

tion with the control module over a network transport
layer (NTL), and having:
at least one script engine; 	 45

a processor;
tangible, non-transitory memory; and
a graphical user interface (GUI) having a text editor and

a file browser, wherein the GUI is configured to pro-
vide access to the text editor, and, via the file browser, 50

to a centralized library of code library blocks in the
memory, each constructed using the text editor from
an interpretive language computer programming
code, and each having an input and an output block
forming pointers to required input and output data, 55

and providing a Visual Programming Language
(VPL) tool and the text editor;

wherein the system is configured to execute instructions
from the memory via the at least one script engine and
the processor to thereby open the VPL tool, build and 60

store the task sequence for the robot using at least some
of the stored code library blocks, assign data to the input
and output connections identifying the required input
and output data for each library code block, and transmit
the task sequence to the control module over the NTL. 65

2. The system of claim 1, wherein the RTC displays on-line
feedback of state and telemetry data of the robot via the GUI

12
at runtime of the task sequence to thereby enable diagnostics
of an execution of the task sequence in real time.

3. The system of claim 1, wherein the input and output
connections are the only plug-ins used for customizing the
task sequence for execution by the robot.

4. The system of claim 1, wherein the robot includes a first
robot having up to 6 degrees of freedom and a second robot
having at least 42 degrees of freedom.

5. The system of claim 1, wherein the interpretive language
is one of the Python and the Lua programming languages.

6. The system of claim 1, wherein the robot includes a
hardware element having an interpreter block which inter-
prets raw data from the hardware element and publishes the
interpreted raw data to the network over the NTL, and
wherein the RTC is in communication with the interpreter
block over the NTL.

7. A method comprising:
placing a robot task commander (RTC) in networked com-

munication with a control module of a robot over a
network transport layer (NTL), wherein the RTC
includes and at least one script engine and a graphical
user interface (GUI) having a text editor and a file
browser;

developing a task sequence via the GUI, including:
opening a Visual Programming Language (VPL) envi-

ronment and the text editor;
constructing, via the text editor, a set of code library

blocks using an interpretive language computer pro-
gramming code;

storing a task sequence from a plurality of the con-
structed code library blocks in memory, wherein each
code library block includes a corresponding input and
output connection;

assigning data to the input and output connections iden-
tifying required input and output data for each of the
code library blocks forming the task sequence; and

transmitting the stored task sequence to at least one
script engine over the NTL;

processing the stored task sequence via the at least one
script engine; and

controlling, via the control module, a motion of the robot
in response to the processed task sequence.

8. The method of claim 7, further comprising: displaying
state and telemetry data of the robot at runtime via the GUI.

9. The method of claim 7, wherein the I/O connections are
the only plug-ins used for customizing the task sequence for
execution by the robot.

10. The method of claim 7, wherein the robot includes a
first robot having up to 6 degrees of freedom and a first control
module, and a second robot having at least 42 degrees of
freedom and a second control module, and wherein transmit-
ting the stored task sequence to the control module includes
transmitting different stored task sequences to each of the first
and second control modules.

11. The method of claim 7, wherein the interpretive lan-
guage is one the Python and the Lua programming languages.

12. The method of claim 7, wherein the robot includes a
hardware element having an interpreter block, further com-
prising:

interpreting raw data from the hardware element via the
interpreter block; and

publishing the raw data to the network over the NTL.
13. A robot task commander (RTC) in networked commu-

nication with a plurality of control modules for a matching
plurality of robots over a network transport layer (NTL),
wherein the control module controls task execution of a cor-
responding one of the robots, the RTC comprising:

US 8,868,241 B2
13

a plurality of script engines;
at least one processor;
a graphical user interface (GUI) providing access to a text

editor and to a Visual Programming Language (VPL)
environment; and

tangible, non-transitory memory;
wherein the at processor is configured to execute instruc-

tions from the memory, via the processor, to thereby:
receive a task sequence for at least one of the robots from

one of the text editor and the VPL environment;
store the task sequence in the memory as a set of code

library blocks;
assign data to an input and an output connection of the

code library blocks identifying respective input and
output data for each code library block;

transmit the task sequence to the plurality of script
engines over the NTL;

process the task sequence via the plurality of script
engines; and

transmit the processes task sequence to the control mod-
ule of at least one of the robots over the NTL to
thereby command execution of the task sequence by
the at least one robot;

14
wherein the GUI is configured to display on-line feed-

back of state and telemetry data at runtime to enable
diagnostics of the execution of the task sequence in
real time.

5 	14. The RTC of claim 13, wherein the RTC is in networked
communication with different control modules over the NTL,
with each of the different control modules controlling task
execution of a respective one of the plurality of robots.

15. The RTC of claim 14, wherein one of the robots has at
10 least 42 degrees of freedom.

16. The RTC of claim 13, wherein the input and output
connections are the only plug-ins used for customizing the
task sequence for execution by the robots.

17. The RTC of claim 13, wherein the interpretive language
is is one of the Python and the Lua programming languages.

18. The RTC of claim 13, wherein each of the robots
include a hardware element having an interpreter block which
interprets raw data from the hardware element and publishes

20 the interpreted raw data to the network over the NTL, and
wherein the RTC is in communication with the interpreter
block via the NTL.

	8868241-p0001.pdf
	8868241-p0002.pdf
	8868241-p0003.pdf
	8868241-p0004.pdf
	8868241-p0005.pdf
	8868241-p0006.pdf
	8868241-p0007.pdf
	8868241-p0008.pdf
	8868241-p0009.pdf
	8868241-p0010.pdf
	8868241-p0011.pdf

