Mobile Space Robots for Terrestrial Applications

Bill Bluethmann, PhD
NASA Johnson Space Center
March 5, 2015
Mobility: Introduction (videos)
Mobility: Background

- A branch in the Robonaut family tree
 - Common design philosophy and components
Mobility: Common Themes

- Safety is paramount
 - Getting crew home is top priority in space
 - Translates to earth
 - Functional redundancy
- Extreme dexterity
 - Independent wheel modules
 - Active suspension
 - Crab steering
- Re-use to cut development time and cost
- Multiple control modes
 - Ride-on
 - Teleoperated
 - Autonomous and shared control modes
Chariot Chassis

- Developed beginning in 2007
- Concept/prototype of crew rover developed for surface exploration
- Goal: challenge the conventional wisdom of crew rovers
- Designed for extreme terrain mobility
- Six wheeled rover with each wheel module having 3 motions
- Capable of being driven by on-board crew, tele-operation and ground control
Chariot Chassis

- Designed as a modular chassis carrying a variety of payloads
 - Crew in pressurized suits, standing up, Chariot style
 - Configured as a flat deck for general purpose payloads
 - Small Pressurized Rover Cabin (forming NASA’s Lunar Electric Rover)
 - Science and surveying instruments
 - Supplementary power

- Currently two models in 1st generation series
Chariot Chassis: Video
Space Exploration Vehicle

• Pressurized Mobile Habitat consisting of:
 – Small Pressurized Rover cabin
 – Chariot chassis
• Crew explores in shirt sleeves
• Access to space through suit ports
 – No airlock
 – Direct access to suits from cabin
 – EVA in 15 minutes vs. 4 hours on Space Station
• Nominal operations: 2 astronauts for 3, 7 or 14 days
 – 4 crew for up to 24 hours
Space Exploration Vehicle

• Features:
 – 2 person cockpit
 – Redundant driving stations
 – Separate crew areas with privacy curtains
 – Storage for up to 14 days
 – Water system
 – Waste control system
 – Exercise devices
 – Hatches with docking ports
 – Aft driving station
 – Aft enclosure for suit dust and thermal protection
Modular Robotic Vehicle

• NASA developed unique skills in Astronaut rovers during NASA’s Constellation program (2006-2010),
 – Focus on safety & reliability
 – R&D scale of investment
 – Highly maneuverable vehicles
 – Rigorous testing
 – Different requirements than Mars rovers
 – Dual purpose: Astronaut or robotically driven

• MRV projects spins technologies to terrestrial applications
MRV: Unique Vehicle Capabilities

• Fail-operational *drive-by-wire* design
 – Focus on vehicle safety under fault conditions
• Independent, modular wheel systems
• Extreme maneuverability
• Battery electric vehicle
• Designed for robotic control: remote and autonomous driving
MRV: Vehicle Specs

- Design speed: 64 kph (40 mph)
 - Currently computer limited to 25 kph (15 mph)
- Curb weight: 900 kg (2000 lb)
- Footprint: 2.15 x 1.55 m (7’ x 5’)
- Drive-by-wire without mechanical backup
Robonaut Humanoid

A Great Relationship
Robonaut Humanoid

• Developed in partnership with General Motors
• Developed to serve as Astronaut assistant, working safely near humans
• Deployed to International Space Station 2011; legs 2014
• World class dexterity
Robonaut 2 Introduction
Robonaut ISS Mobility
Valkyrie Humanoid

Walking Humanoid developed for in space surface applications and disaster recovery
 – Heavily inspired on inability to access Fukushima after the disaster

Leveraging prior NASA technology investment
 – Radiation survivability
 – Thermal range
 – Mechanism
 – Soft goods
 – Dexterous tool use

Making significant progress towards walking through National Robotics Initiative grant
 – A challenge for Mars tasks is currently being formulated
Valkyrie Humanoid
Concluding Remarks