NASA’s Orbital Debris Environment Model

ORDEM 3.0

Implications for Measurements and Modeling

Mark Matney
NASA Orbital Debris Program Office
33rd IADC Meeting
WG 1-2 Joint Meeting
• An engineering model is a tool (primarily) for spacecraft designers and users to understand the long-term risks of debris collisions

• ORDEM 3.0 represents NASA’s best estimate of the current and near future orbital debris environment.
 – The environment is dynamic and must be updated periodically.

• ORDEM 3.0 has significant new capabilities
 – Uncertainties
 – Material density categories
 – Model extended to GEO
 – Can easily calculate flux for satellites in highly elliptical orbit
ORDEM Flow
Creating the Current Environment

- Initial environment created using database of known space activity and tools such as the NASA Standard Breakup Model & PROP3D
- Environment dominating events such as the Chinese ASAT (~850 km) and the Iridium/COSMOS collision (~775 km) were modeled separately as were a few unique populations
- Material distributions derived from analysis of residue in impact features from returned spacecraft surfaces and from ground impact tests
- Initial environment fit to measurement data using Maximum Likelihood Estimator to create final “Current” debris environment
 - Weighting factors derived from the fitting routine are used to project into the future
• Small particle populations are fit separately from large particle populations
ORDEM Flow
Projecting Into the Future – Debris > 1 mm

- LEGEND used to propagate the “Current” environment into the future
- When LEGEND creates new future debris (such as through collision or explosion) the same weighting values that were used to fit historical size distributions are applied to debris production in the future
- Launch rate, solar activity, and explosion rate are independent inputs into the model
- Probability of future debris producing collisions is calculated based on spatial density and cross sectional area of orbiting objects
- 120 Monte Carlo future environments are created
- Reported future environment is the average of the 120 possible future environments
• LEGEND used to characterize the population of intact objects

• The surface degradation model “creates” particles with zero delta-velocity at different sizes and material types proportional to the area of the parent body

• These debris are propagated under solar radiation pressure and atmospheric drag to compute flux on in situ surfaces

• Damage equations (based on empirical tests) are used to estimate distribution in feature size (e.g., crater diameter)

• Production rates at the parent bodies adjusted to match data

• Assumptions
 – Production rate only a function of area of parent, not broken down by type of parent or orbit family
 – No “feedback” assumed such as would be expected from ejecta due to small collisions
ORDEM 3.0 vs. ORDEM2000

<table>
<thead>
<tr>
<th>Parameter</th>
<th>ORDEM2000</th>
<th>ORDEM 3.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spacecraft & telescope/radar analysis modes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Time range</td>
<td>1991 to 2030</td>
<td>2010 to 2035</td>
</tr>
<tr>
<td>Altitude range with minimum debris size</td>
<td>200 to 2000 km (>10 μm) (LEO)</td>
<td>200 to 38,000 km (>10 μm) (LEO to GTO) 34,000 to 38,000 km (>10 cm) (GEO)</td>
</tr>
<tr>
<td>Orbit types</td>
<td>Circular (radial velocity ignored)</td>
<td>Circular to highly elliptical</td>
</tr>
<tr>
<td>Model populations divided by type & material density</td>
<td>No</td>
<td>Intacts Low-density (<2 g/cc) – e.g., plastic Medium-density (2-6 g/cc) – e.g., aluminum High-density (>6 g/cc) – e.g., steel RORSAT NaK coolant droplets (0.9 g/cc)</td>
</tr>
<tr>
<td>Special model populations</td>
<td>No</td>
<td>Yes (ASAT, Iridium/Cosmos, Snapshot, Transit)</td>
</tr>
<tr>
<td>Model cumulative size thresholds (fiducial points)</td>
<td>10 μm, 100 μm, 1 mm, 1 cm , 10 cm, 1 m</td>
<td>10 μm, 31.6 μm, 100 μm, 316 μm, 1 mm, 3.16 mm, 1 cm, 3.16 cm, 10 cm, 31.6 cm, 1 m</td>
</tr>
<tr>
<td>Flux uncertainties</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Meteoroids</td>
<td>No</td>
<td>No*</td>
</tr>
</tbody>
</table>

* a separate meteoroid environment model (MEM) is available from NASA’s Meteoroid Environment Office
ORDEM 3.0 Datasets and Supporting Models

<table>
<thead>
<tr>
<th>Observational Data</th>
<th>Role</th>
<th>Region/Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSN catalog (radars, telescopes)</td>
<td>Intacts & large fragments</td>
<td>LEO > 10 cm, GEO > 70 cm</td>
</tr>
<tr>
<td>HAX (radar)</td>
<td>Statistical populations</td>
<td>LEO > 3 cm</td>
</tr>
<tr>
<td>Haystack (radar)</td>
<td>Statistical populations</td>
<td>LEO > 5.5 mm</td>
</tr>
<tr>
<td>Goldstone (radar)</td>
<td>Statistical populations</td>
<td>LEO > 3 mm</td>
</tr>
<tr>
<td>STS windows & radiators (returned surfaces)</td>
<td>Statistical populations</td>
<td>10 μm < LEO ≤ 1 mm</td>
</tr>
<tr>
<td>MODEST (telescope)</td>
<td>GEO data set</td>
<td>GEO > 30 cm</td>
</tr>
</tbody>
</table>

- Note that the US Space Shuttle is no longer an active data source.
Graphical Output Options for Spacecraft Mode

Average Cross-Sectional Flux vs. Size
Year: 2013 Perigee Altitude = 440.000 Apogee Altitude = 440.000 inc = 51.60

2-D Directional Flux
Year: 2013 Perigee Altitude = 440.000 Apogee Altitude = 440.000 inc = 51.60 particle size = >1mm

Flux vs. Local Azimuth
Year: 2013 Perigee Altitude = 440.000 Apogee Altitude = 440.000 inc = 51.60 particle size = >1cm

Flux vs. Local Azimuth
Year: 2013 Perigee Altitude = 440.000 Apogee Altitude = 440.000 inc = 51.60 particle size = >1cm
Past Environment vs. Future Risk; > 3 mm

- Predicted spatial density in the future is somewhat higher than pre-2007 measured values even though the contribution from the two collisions has dropped to very low levels.

- Part of the increase is due to averaging 120 different future “realities.”
 - Each future Monte Carlo environment has 0, 1, 2, or more future collisions or explosions at “random” times.

- The future level is an accurate representation of the risk to ISS.

Note: Public release version will not produce data prior to 2010
Past Environment vs. Future Risk; > 1 cm

Time Evolution of >1 cm ORDEM 3.0 Debris at 400 km Altitude

- 2009 Iridium-Cosmos Collision
- 2007 ASAT Collisions
- Average Future Collisions
- Non-Collision Sources

Year
Past Future

Spatial Density [km⁻³]
Future Population > 3 mm

- Effects of explosions and collisions are not as transient at this altitude.
- Spatial density at this altitude will remain much higher than pre-2006 levels for many years.
Future Population > 1 cm

Time Evolution of >1 cm ORDEM 3.0 Debris at 705 km Altitude

- 2009 Iridium-Cosmos Collision
- Average Future Collisions
- 2007 ASAT Collision
- Explosions near this Altitude in 2006-2007

Spatial Density [km²]
- 6.0E-07
- 5.0E-07
- 4.0E-07
- 3.0E-07
- 2.0E-07
- 1.0E-07
- 0.0E+00

Year
- 1995
- 2000
- 2005
- 2010
- 2015
- 2020
- 2025
- 2030
- 2035

Past
- Future
ORDEM Flux for ISS 400km

Average Cross-Sectional Flux vs. Size

Year: 2013 Perigee Altitude = 400.000 Apogee Altitude = 400.000 inc = 51.60

Flux

±10 Error
Material Distributions - ISS

ORDEM Populations for 2013 ISS Flux as a Function of Debris Size

- ORDEM 3.0 LD Population
- ORDEM 3.0 MD Population
- ORDEM 3.0 HD Population
- ORDEM 3.0 Total Population
- ORDEM 2000

Flux [m2 yr$^{-1}$]

Debris Size [m]
ORDEM Flux for A-Train 705km
Material Distribution – A-Train

ORDEM Populations for 2013 98° 705 km Orbit Flux as a Function of Debris Size

- ORDEM 3.0 LD Population
- ORDEM 3.0 MD Population
- ORDEM 3.0 HD Population
- ORDEM 3.0 Total Population
- ORDEM 2000

Flux [m² yr⁻¹]

Debris Size [m]
ORDEM 2000 and ORDEM 3.0 Comparisons for 2015 Populations > 1mm

Spatial Density [km$^{-3}$]

Altitude [km]

ORDEM 2000 Population
ORDEM 3.0 Population
Small Particle Population

ORDEM 3.0 2014 Small Particle Populations

Spatial Density [km$^{-3}$]

Altitude [km]

- HD > 1 mm
- MD > 1 mm
- HD > 316 um
- MD > 316 um
STS Radiator Data

Shuttle Radiator Facesheet Hole
MD Population

P-Value = 0.622
STS Radiator Data

Shuttle Radiator Facesheet Hole
HD Population

Equivalent single facesheet hole diameter estimated from hypervelocity tests

P-Value = 0.694
STS Radiator Data

Shuttle Radiator Hole Data
STS-71 - STS-133 (except STS-75 and STS-100)
1995-2011

Filled points are impactors identified by chemistry
Hollow points are "Unknowns" with impactor size estimated using MD density
Conclusions

• The ORDEM model has allowed us to separate the risk from different material density categories of debris
 – HD populations dominate the risk to all classes of spacecraft
 – HD populations drive down the critical size

• Model and measurement limitations make it difficult to understand what is happening at higher altitudes for the 1 mm population
 – Elliptical vs circular orbits
 – Sources? Production processes?

• Our best data set of populations <1 mm is no longer available

• We need new and improved instruments to measure the <1 mm environment
 – Collecting areas as large as possible (Shuttle Radiators ~100 m²)
 – Measure particle sizes up to and larger than 1 mm
 – Distinguish material densities (especially HD vs MD)
 – Measure orbit parameters (especially inclination and eccentricity)
 – Measure at higher altitudes (e.g., sun-synchronous altitudes)