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Abstract 

 

Aviation safety risk modeling has elements of both art and science.  In a complex domain, such as the National 

Airspace System (NAS), it is essential that knowledge elicitation (KE) sessions with domain experts be performed to 

facilitate the making of plausible inferences about the possible impacts of future technologies and procedures. This 

study discusses lessons learned throughout the multiple KE sessions held with domain experts to construct 

probabilistic safety risk models for a Loss of Control Accident Framework (LOCAF), FLightdeck Automation 

Problems (FLAP), and Runway Incursion (RI) mishap scenarios.  The intent of these safety risk models is to support 

a portfolio analysis of NASA’s Aviation Safety Program (AvSP). These models use the flexible, probabilistic 

approach of Bayesian Belief Networks (BBNs) and influence diagrams to model the complex interactions of 

aviation system risk factors.  Each KE session had a different set of experts with diverse expertise, such as pilot, air 

traffic controller, certification, and/or human factors knowledge that was elicited to construct a composite, systems-

level risk model. There were numerous “lessons learned” from these KE sessions that deal with behavioral 

aggregation, conditional probability modeling, object-oriented construction, interpretation of the safety risk results, 

and model verification/validation that are presented in this paper. 

 

Introduction 

 

As a complex domain with numerous interacting elements, aviation presents significant challenges to both 

researchers and practitioners in modeling system safety risk.  With the creation of probabilistic safety risk models, 

inferences about changes to the states of the accident/incident shaping or causal factors can be ascertained.  These 

predictive safety inferences derive from qualitative reasoning to conclusions based on data, assumptions, and/or 

premises and enable an analyst to identify the most prominent causal factors leading to a risk factor prioritization.  

Such an approach facilitates a mitigation portfolio study and assessment.  The resulting risk model also facilitates 

the computation of sensitivity values based on perturbations to the estimates in the conditional probability values.  

Such computations lead to identifying the most sensitive causal factors with respect to an accident/incident 

probability. This approach may lead to vulnerability discovery of emerging causal factors for which mitigations do 

not yet exist that then informs possible future Research & Development (R&D) efforts. 

 

The safety risk methodology in this study uses the flexible, probabilistic approach of Bayesian Belief Networks 

(BBNs) and influence diagrams to model the complex interactions of aviation system risk factors.  Accidents are 

seldom, if ever, the result of a single hazard.  In some instances, a shortcoming in the typical hazard analysis 

approach is to focus on a single hazard and risk assessment.  Combining the individual hazard assessments inherent 

in a complex system to arrive at an overall level of system risk is a difficult challenge.  Safety practitioners need to 

deal with numerous inherent hazard scenarios that a complex system operation can generate.  The approach achieves 

a better understanding of the dynamics and inherent uncertainties in these scenarios.  It permits robust inductive 

reasoning on the hypothesized accident/incident scenarios, ideal for addressing emergent National Airspace System 

(NAS) operations where there may be obvious data and experience limitations.   

 

This paper focuses on the experience of knowledge elicitation (KE) sessions for the development of three different 

safety risk models.  These models are developed by NASA Aviation Safety Systems Analysis Team in support of 

the NASA Aviation Safety Program (AvSP).  Each KE session had a different set of experts with varying expertise, 

such as pilot, air traffic controller, certification, and/or human factors knowledge that needed to be elicited to 

construct a composite, systems-level risk model. In particular, the artful building of the relationships among the risk 

factors and their associated conditional probabilities are a unique, original contribution in each of the models.  There 

were numerous “lessons learned” from these KE sessions that deal with behavioral aggregation, probabilistic risk 



modeling, object-oriented construction, interpretation of the risk results, and verification/validation. The “lessons 

learned” and recommendations from these “lessons” are presented in this paper.    

 

Methodology 

 

When constructing causal models, one of the most important factors that should be considered is the impact of 

uncertainty. In essence, probability theory derives solutions to reasoning under uncertainty in the face of limited 

information. Ideally there may be nominal or non-nominal statistical data about the operation under study.  

However, in novel situations, such as a study on new flight deck automation, these statistical data are scarce.  In 

recent years, Bayesian Belief Networks (BBNs) have emerged as a principal methodology for numerous problems 

that involve reasoning under uncertainty in complex decision making arenas (see  ref. 1).  In some applications there 

may well be an abundance of information available during the development process.  However, in other cases, while 

incident and accident data may exist, these data are not easily searched due to the lack of clear definitions/categories 

in the search engine. For emergent operations, such as civil uses for unmanned aircraft systems (UAS), the data are 

sparse. 

 

Belief networks provide symbolic representations of probability models combined with efficient inference 

algorithms for probabilistic reasoning under uncertainty (refs. 2-5).  Undesired events are not deterministic so any 

modeling effort needs to capture the probabilistic nature of multiple causalities. A BBN is a graphical approach that 

allows the “quantification” of safety risk models by using conditional probability theory.  The next sub-section 

presents a brief overview of the basic BBN theory and inferencing principles. 

 

Basic concepts in belief networks 

Let X = {X1, X2,…, Xn} be a set of n variables. A belief network consists of a set of variables and a set of directed 

links between variables. This graphical structure is referred to as a directed acyclic graph (DAG) as in Figure 1.  A 

variable or node represents a set of possible states, and the variable is in exactly one of its states.  A DAG is 

considered acyclic if there is no directed path X1, X2, …, Xn such that X1 = Xn.  Let D be a DAG with one node for 

each variable in X. Every link from Xi to Xj in the graph indicates a direct dependence between the variables Xi and 

Xj. The node Xi is called a parent of Xj and Xj is referred to as a child of Xi. The set of all parents of a node Xi is 

denoted as i . For example, in Figure 1 the nodes X3 and X6 are the parents of X5. Therefore, }{ 6,35 XX .  

 

A crucial concept in belief networks is the idea of conditional independence.  In general, the variables A and C are 

independent given the variable B if P (A|B) = P (A|B,C). This statement implies that if the state of B is known then 

no knowledge of C will alter the probability of A. The notion of conditional independence facilitates the 

construction of the belief network and leads to efficient algorithms for the Bayesian network computations. In 

general, a Conditional Probability Table (CPT) given as P (A| B1, …,Bn)  is attached to each variable A with parents 

B1, …,Bn.  Inference algorithms that essentially use Bayesian inference methods as in refs (2-5) are employed on a 

BBN based on the probability tables associated with each node. The fundamental concept in the Bayesian treatment 

of uncertainties in probabilistic network models is conditional probability. The basic notation P (A|B) = x is read as 

“given the event B, the probability of the event A is x”, and it should be noted that the statement does not mean that 

whenever B is true then the probability is x. Rather, this statement means that if B is true, and everything else known 

is irrelevant for A, then P (A|B) = x.  

 

The fundamental rule for probability calculus is given as: P (A|B) ˖ P (B) = P (A, B) where P (A,B) is the joint 

probability of the event BA . Remembering that probabilities should always be conditioned on a context C, the 

formula should read P (A|B, C) ˖ P (B|C) = P (A, B|C). This leads to the well-known Bayes’ rule:  
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Bayes’ rule conditioned on C is: 
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Bayes’ formula, which constructs the foundation for inference algorithms in belief networks, can be interpreted as 

follows. Suppose we are interested in B and we begin with a prior probability   P (B), representing our belief about 

B before observing any relevant evidence. Suppose we then observe A. By (1), our revised belief for B, the posterior 

probability P (B|A), is obtained by multiplying the prior probability P (B) by the ratio P (A|B) / P (A).   

 
Figure 1 – Influence diagram with chance and decision nodes (UE is the Undesired Event) 

 

Figure 1 is an influence diagram that is an extension of a BBN containing both chance nodes and decision nodes.  

Chance nodes (i.e., the random variables) are represented as circles and decision nodes (see D1, D2, and D3) are 

depicted as rectangles.  The chance nodes are typically the causal nodes, whereas a decision node represents choices 

available to the decision-maker. The set of actions available to an individual in any given situation can be 

represented by a variable or a group of variables that are under the control of the decision-maker, unlike the chance 

variables. A decision variable can be related to one or multiple chance variables or multiple decision variables can 

be related to one particular chance variable. Choosing an action amounts to selecting a set of decision variables in an 

influence diagram, and then fixing their values unambiguously. Such a choice normally alters the probability 

distribution of other sets of variables that are judged to be consequences of the decision variables. 

 

The conditional probability of one causal factor given the presence of other factor(s) may be estimated using the 

“beliefs” of subject matter experts.  Aviation accidents are rare events so it is challenging to obtain hard data to 

quantify the models.  An event tree could possibly be used to obtain some numerical “seeds” for the model, but an 

event tree is not an influence diagram and the interpretation of the numbers is not the same.  With the BBN 

approach, the numbers in the conditional probability tables essentially represent the strength of the belief in the 

conditional causality as assessed by the expert for the scenario under study.  A degree of belief approach was used 

by Ang and Buttery (ref. 6) in their risk assessment study of nuclear power plants.  The approach involves moving 

up the systems ladder a bit and necessitates that the subject matter experts rely upon their mental model repository of 

similar cases. With a systems expansion viewpoint, the experts establish some basic boundary conditions, such as a 

towered airport, moderate traffic density, time period, etc. to set the conditioning context.  This systems 

interpretation is consistent with the conceptual notion of “analytic generalization”.  These conditional probabilities 

serve to baseline the safety risk model.   

 

Model quantification occurs by developing the Conditional Probability Tables (CPTs) using data when it is 

available.  In the absence of data, experts’ “beliefs” are used.  Typically, model quantification involves the fusion of 

both hard data and “beliefs” and BBNs are ideally suited to such a hybrid or mixed modeling approach.  Various 

elicitation methods of expert beliefs are provided in (refs. 7-9). There are a number of issues concerning human 

capabilities to consider when eliciting beliefs from the experts.  Benson et al. (ref. 9) distinguish between “belief 

assessment” and “response assessment.” Benson et al. (ref. 9) contend that “belief assessment” includes the 

structuring and conditioning steps in which target propositions are identified and defined and relevant knowledge is 

evoked from the domain expert.”  They state that “response assessment” encompasses the encoding and verifying 

steps in which numerical or verbal qualifiers are attached to the proposition” (ref. 9, p. 1641).  Quantitative or semi-

quantitative knowledge involves providing numerous conditional probabilities for the BBN. Benson et al. (ref. 9) 

state “a probability qualifies an individual’s belief concerning a target proposition” (ref. 9, p. 1641).  The elicitations 

of numerous probabilities are typically considered the bottleneck in BBN construction and are prone to a number of 

expert cognitive and motivational biases.  Renooji (ref. 10) and (refs. 11-13) present an approach to facilitate 



probability elicitation in BBNs.  This approach involves the use of fragments of text to provide a conditioning 

context that are derived from the graphical BBN structure.  Then the fragments of text are placed adjacent to a 

probability scale that contains both verbal probability expressions and numerical values. The verbal expressions are 

of the form “(almost) certain, probable, expected, fifty-fifty, uncertain, improbable, and (almost) impossible” (ref. 

11) as shown in Table 1.  The authors contend that the combined approach of both verbal and numerical anchors 

accelerate conditional probability assessments in BBN when used in conjunction with the fragments of text.  Ang 

and Buttery (ref. 6) also used such an approach in their elicitation of subjective probabilities for Probabilistic Safety 

Assessments (PSAs) in the nuclear power plant industry.   However, the Ang and Buttery scale differs from the 

Renooji and Witteman scale especially in the mappings of numerical probabilities to the word “probable”.   For the 

LOCAF, FLAP, and RI safety risk models developed in these studies, the SMEs in each session adapted the scales 

to the unique boundary considerations of the problem domain under consideration and reached concurrence on the 

verbal-numerical probability scale to be used in each session to ensure consistency “within” a session.  So, for 

example, the same scale was used for all LOCAF KE sessions. The Hugin BBN software (http://www.hugin.dk; 

Jensen (ref.  3)) is used in this research to perform the Bayesian propagations and calculus. 

 

Table 1– Comparison of Numerical Probabilities and Verbal Descriptors 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Inserting Mitigations.    

This step involves expert assessments of what causal factors may be impacted by mitigations, such as new 

technologies/procedures and the possible extent of that impact.  These assessments are in the form of conditional 

probabilities.  The BBN modeling approach enables an assessment of single and/or multiple technologies/procedures 

impacting either single and/or multiple causal factors.  At this point in the ongoing research, only the LOCAF model 

has had mitigations inserted by the SMEs. 

 

Evaluating the risk associated with the mitigations. 

An original contribution of the safety risk modeling process is the projection of the relative safety risk of the 

undesired event.  Once a model is constructed, the decision support tool may be used to evaluate various scenario 

combinations of mitigations.  The “best” sub-set of mitigations is identified from a larger set of all safety products 

and the analyst may drill down to evaluate the relative risk reduction of mitigations not only upon the final 

consequence or undesired event, but also upon the causal factors comprising the model.  The relative risk reductions 

may be used to evaluate the projected effects that a mitigation portfolio may have, and collectively, these risk 

reductions by undesired event type paint a mosaic of system safety risk. The introduction of mitigating measures 

often leads to the introduction of novel hazards, so the safety risk assessment needs to be expanded with these 

hazards and then the assessment process repeated as the model’s ontology may change.  

 

Verification and Validation (V&V) of a BBN is complex since there is a blend of quantitative and qualitative data.  

The V&V of a composite case may be decomposed into construct validity, internal validity, external validity and 

repeatability (ref. 14).  The V&V decomposition of a BBN system risk modeling approach is discussed in Bareither 

Renooij & Witteman (ref. 11) 

Verbal Descriptor 

Probability Ang & Buttery (ref. 6) 

Verbal Descriptor 

certain (almost) 1  

 0.9999 extremely likely (i.e. almost certain) 

 0.9 very likely 

probable 0.85  

expected 0.75  

 0.7 likely 

fifty-fifty 0.5 indeterminate 

uncertain 0.25  

improbable 0.15  

 0.1 probable (i.e. credible) 

 0.01 unlikely 

 0.001 very unlikely 

 0.0001 extremely unlikely 

(almost) impossible 0  



and Luxhøj (ref. 15).  The BBN system risk approach has been vetted in a number of industry/government studies 

and presentations.  The original BBN aviation system safety approach was developed with funding from the FAA 

and NASA.  The BBN approach was used in a previous NASA Research Announcement (NRA) (ref. 16) to support 

an industry team in completing a study on “System Safety.”  Currently, the BBN approach is being used to support 

another NASA NRA (ref. 17) on “Unmanned Aircraft Systems (UAS) in the NAS”.  In this UAS study, the BBN 

approach is being used for hazard and risk modeling of small UAS.  As previously noted, the NASA Aviation Safety 

Systems Analysis Team is currently using the BBN approach to support safety risk modeling of accidents/incidents 

for commercial aircraft. Safety risk models are being constructed to understand the interactions of hazards 

associated with in-flight Loss of Control, Flightdeck Automation Problems and Runway Incursions.  These risk-

based causal models will then be used to support a portfolio assessment of the safety technologies (or products) 

being developed through NASA’s AvSP.   

 

Lessons Learned from the Multiple KE Sessions 

 

In this study, multiple KE sessions were held with domain experts to construct probabilistic safety risk models for 

LOCAF, FLAP and RI mishap scenarios.  As previously noted, the intent of these safety risk models is to support a 

portfolio analysis of NASA’s AvSP.  Each KE session had a different set of experts with diverse expertise, such as 

pilot, air traffic controller, certification, and/or human factors knowledge that was elicited to construct a composite, 

systems-level risk model. There were numerous “lessons learned” from these KE sessions that deal with behavioral 

aggregation, conditional probability modeling, object-oriented construction, interpretation of the safety risk results, 

and model verification/validation.   The “lessons learned” are summarized below with the intent of suggesting “good 

practices” for future KE sessions. 

 

LOCAF Model 

The LOCAF model was constructed as an Object-Oriented Bayesian Network (OOBN) by NASA AvSP systems 

analysis personnel and the same three SMEs for all KE sessions.  Luxhøj et al. (ref. 18) present a case study on the 

technical details of the LOCAF model.  The LOCAF model is the most developed to date of the three BBN models. 

The baseline model has been constructed, CPTs elicited and NASA AvSP products inserted.  In addition, the model 

has been through several levels of external review.  A summary of the multiple model building and review sessions 

is shown in Figure 2.  A high level depiction of the LOCAF model with its three sub-nets of Flight Crew Conditions, 

Environment, and System Component Failure is shown in Figure 3.  Each sub-net has its own set of causal factors 

and their interactions.  

 

The systematic development of the LOCAF model initiated with a data analysis of numerous LOC accidents, 

followed by the identification of common and principal causal factors. Three operational SMEs participated in 

model development in three KE sessions.  These SMEs included a pilot, air traffic controller and a certification 

expert. The terminology and definitions of all nodes in the BBN were reviewed with the SMEs.  The SMEs offered 

suggestions to improve the clarity of the node definitions.  It was important to preserve the participation of the same 

three SMEs for all KE sessions for the continuity and consistency of model development and conditional 

probabilities.  The OOBN structure with its inherent use of sub-nets facilitated model construction as well as CPT 

elicitation. The top-level model was able to be decomposed into smaller “chunks” and later synthesized into a 

cohesive whole.  The multi-day KE session was divided into time slots of not more than 1½ hours in duration with 

multiple, short breaks given to the SMEs and the team in order to maintain focus.  CPT elicitation in BBNs is known 

as the “bottleneck” and the LOCAF model construction was no exception.  Mostly binary state nodes were used; 

however, there were a few tertiary state nodes that added to modeling complexity.  The conditional probabilities of 

each SME were elicited and recorded. The elicitation proceeded in a randomized sequence with the SMEs.  

Typically, the facilitator started with an unconditioned node as a “warm-up” to a more involved parent node with 

children.  The development team worked diligently to not have more than five inputs (i.e., causal factors) leading 

into any one node for human cognitive reasons (ref. 1).  During the LOCAF CPT elicitation, it was discovered that a 

CPT “shortcut” for a large table might involve “blanketing” a section of the table with a numerical modifier for a 

change of state in one of the variables if the SMEs concurred that the “stability” of their assessments facilitated such 

a “global” adjustment.  As reported in Ancel, et al. (ref. 19), the final developed baseline LOCAF model exhibited 

close correspondence with  two different historical datasets (i.e., in one case, the LOCAF indicated a 15.92% LOC 

probability vs. 13.81% historical LOC and in another case, the LOCAF probability of 10.11% compared to an 

historical dataset indicating a 12.84% LOC occurrence). 

 



 
 

Figure 2 – Multiple KE Sessions for the LOCAF Model 

 

 

 
 

Figure 3 – Top-level LOCAF model 

 

FLight Automation Problems (FLAP) Model 

While the LOCAF model construction followed a “structured” process with its OOBN decomposition/synthesis 

approach, the FLAP model was constructed as a flat network rather than the object-oriented network.  The issues 

surrounding advanced automation in the cockpit are quite complex and integrated and the FLAP model reflected this 

interplay between automation and the human.  It was essential for this model development that a human factors 

expert participated in the KE session.  Initially it was planned to have two 2-day sessions to build the baseline 

model; however, due to scheduling issues with the SMEs and the NASA team, it was decided to hold one 4-day KE 

session with 4 SMEs – 2 pilots, 1 human factors expert, and 1 system integration expert.  However, due to internal 



organizational issues, only 3 SMEs actually participated in the KE session.  A 4-day meeting proved challenging; 

however, lessons learned from the LOCAF model building process were insightful.  For the FLAP model, it was 

important to carefully clarify all node terminology and definitions, such as “automation surprise”.  The human 

factors expert provided a strong link between the two pilots in communicating their thought processes and rationales 

to the model building team.  During the CPT elicitations, the probability “blanketing” adjustments were again used 

with SME concurrence to efficiently complete the tables.  Usually with the CPT elicitations, the completion of the 

table moves from the “worse” case (i.e., all given causal factors in their worse state) to the “best case” (i.e., all given 

casual factors in their “best” state).  One of the SMEs suggested completing the CPTs by moving in the opposite 

direction – from the “best” case to the “worse” case.  However, it quickly became apparent to the SMEs and the KE 

facilitator that the cognitive burden with this approach was significant and did not offer any elicitation procedural 

efficiencies.  At this point in time, the FLAP baseline model awaits for its external review with a different set of 

SMEs as preparation for the AvSP product insertion phase. 

 

Runway Incursion (RI) Model 

The RI model was initially planned to be a smaller model compared to the LOCAF and FLAP models; however, it 

developed into a fairly large BBN.  Some key lessons learned from the RI session include the importance of 

preparation before the KE session and starting with a clear scope that the SMEs can then refine; simplifying the 

structure of a very “people intensive” and “communication intensive” modeling situation; and simplifying the event 

reporting structure imposed by the FAA data source and definitions.  As originally constructed, the RI model is not 

an OOBN.  There were 4 SMEs involved in the model construction KE session along with the NASA team.  There 

was a senior pilot with both military and commercial experience, a regional jet pilot, an air traffic controller and a 

human factors expert. The RI model is very operational in nature and the “scoping” of the model and establishing 

boundary conditions were quite important in this case.  Again, the “blanketing” adjustments during CPT elicitations 

proved efficient. There was a unique lesson learned from the RI session.  One SME fell ill and was not able to 

appear in person during the KE, so the team held an impromptu telecon/WebEx to finish off the KE session.  This 

adjustment is important because the SME appreciated that individual contributions were acknowledged and the team 

obtained conditional probabilities from four SMEs rather than three. The lesson is to be flexible and know how to 

handle an unexpected event. At the present time, the RI model is being expanded to a larger runway safety model 

(RUNSAFE) that considers both runway incursion and runway excursion events. The RUNSAFE baseline model is 

under development.  

  

As previously noted, V&V of a BBN is complex due to the blending of quantitative and qualitative data.  The 

LOCAF model was able to represent a generic loss of control environment very effectively (ref. 19).  In general, the 

V&V of a composite case may be decomposed into construct validity, internal validity, external validity and 

repeatability (ref. 14).   Besides the numerical validation, the LOCAF model’s assumptions, structure, as well as the 

placement of the products (i.e., construct validity) were reviewed by external SMEs. The construction and the 

verification of the LOCAF model were conducted in four steps. The first step was the initial review of the links and 

nodes and collection of the numerical values for CPTs for the baseline LOCAF model, performed by the same three 

SMEs (i.e., both construct and internal validity). During the second step, the baseline model was reviewed by a 

different SME group (comprised of experts in various fields in which NASA technologies are being developed) in 

order to identify any missing links/nodes in representing a LOC environment (i.e., external validity). Following the 

establishment of the baseline model, the third step involved the placement of the NASA safety products into the 

model. The initial SME group that participated in the construction of the model was also used in this step in order to 

achieve consistency in the assumptions. The SMEs not only placed the products in the model, but also they provided 

numerical values of the prospective impacts of each technology on its attached node. The final step included the 

review of the entire model with the technology insertions by another external SME panel (i.e., external validity). 

This panel involved professionals from the NTSB and FAA, as well as individuals experienced in systems 

engineering and modeling for a comprehensive review. Besides the SME panels, the LOCAF model results were 

presented at two internal NASA technical forums and three conference paper sessions to seek further discussions 

and comments.  The LOCAF model was thoroughly documented to ensure that the model building process could be 

replicated (i.e., repeatability).  The team plans to follow a similar V&V process for both the FLAP and RI models; 

however, it is acknowledged that while historical data exist for calibration purposes for the RI model as with the 

LOCAF model, the historical data for calibration purposes for the FLAP model may be rare.  For the FLAP model, it 

may be that key segments of the model may be compared with data from aviation human factors databases. 

 



As a common factor in all the KE sessions, it was discovered that the arranging the logistics of the meeting was vital 

for the project. Identification and selection of the qualified SMEs, scheduling of several people with busy schedules, 

and securing a suitable venue require substantial preparation and time. Due to contractual differences and 

compensation plans, SMEs involved in government versus private industry require different approaches. For 

example, the participation of non-government SMEs appears more straightforward because their time and travel 

were made by the same arrangement.  However, the participation of government SMEs in a KE session may become 

quite complex should compensation for time and travel be involved and subjected to different processes. For that 

reason, it is advisable to identify alternative experts and contingency plans in cases where the SMEs are unable to 

attend the meetings due to contractual issues, health reasons, scheduling conflicts or even unexpected events like 

government shutdown. The KE facilitator needs to consider these aspects when coordinating the arrangements for 

the KE session. 

 

Recommendations from “Lessons Learned” 

 

Consistent with the U.S. Environmental Protection Agency (EPA) task force white paper (ref. 20), expert elicitation 

is considered as the “formal, systematic process of obtaining and quantifying expert judgment on the probabilities of 

events, relationships and parameters.” (ref. 20, p. 116).  This section summarizes recommendations from the 

multiple KE sessions that are highly consistent with the U.S. EPA task force white paper (ref. 20) on expert 

elicitation.  SME KE is fundamental to quantitative estimation of uncertain values in the absence or the inadequacy 

of hard data in complex problem domains and can also assist with model conceptualization.   The LOCAF model in 

particular demonstrates that KE can provide useful, credible results. A KE session requires a significant investment 

of resources and time in order to provide credible results and several general suggestions for “good practices” are 

noted above. Some specific recommendations from the “lessons learned” from the LOCAF, FLAP and RI KE 

sessions are as follows: 

 

1) KE is especially useful when an emerging scientific or engineering challenge lacks a consensus 

interpretation and database or for a challenge that is dependent on uncertain events.  As shown from the 

LOCAF, FLAP and RI models, expert beliefs about the value and meaning of data can provide valuable 

insights.  As noted by Richard Hamming, considered by many as the “father” of numerical methods, “The 

purpose of computing is insight, not numbers” (ref. 21).  Also, as shown in the LOCAF model with its 

OOBN constructs, it may be useful to disaggregate or decompose the problem into smaller sub-nets, 

develop these separately, and then synthesize or aggregate these sub-nets into a top-level model for 

subsequent analysis. 

 

2) It is important that the KE session be well-designed and implemented to help ensure the model’s credibility 

and endorsement of the results within the organization and by external parties.  The NASA Aviation Safety 

Systems Analysis Team may use the KE results to communicate to a regulatory agency, such as the FAA, 

to encourage transparency, credibility, objectivity (unbiased and balanced), rigor (control of heuristics and 

biases), and relevance to the technical problem under study.  The KE session and BBN models are 

generally context-specific so the interpretation of the results should be performed with caution.  With each 

team member working in concert, a KE session has distinct, specialized roles for members of the project 

team (such as a generalist, modelers/analysts, and SMEs) and each role/member contributes in a unique 

way to the final risk model. 

 

3) It is concluded that a KE is appropriate for research challenges with complex technical problems and 

unobtainable data characterized by a high level of uncertainty.  As per the EPA report, it is also noted that a 

KE session can serve as a proxy for traditional data but should not be used as a substitute for conventional 

research when empirical data can be obtained within the available time and resources.   

 

4) Some issues to be addressed in the design and execution of a KE session include (U.S. EPA, ref. 20): 

- Standards of quality for KE that are a function of their intended use (e.g., to inform research 

needs, to inform regulatory decisions) and a minimum set of best practices. 

- How to interpret the quality of the results and the KE process? 

- How does acceptability of the results depend on context? 

- The role of stakeholders (e.g., product designers) in the KE process to provide input on relevant 

questions or issues. 



- Appropriateness of secondary application of KE results (i.e., the use of results beyond the intended 

purpose of the initial study). 

- If and how to combine experts’ judgments? 

- Comparison of alternative types of research findings: empirical data, external expert 

recommendations and KE results. 

- How the KE results should be used and communicated to decision-makers? 

 

5) The development of training materials for the KE sessions could be helpful for future sessions.  For 

example, in the KE session for the RI model, a small BBN of sub-set of risk factors was developed to 

illustrate to the SMEs the numerical Bayesian computations.  The development of additional, similar 

material should improve the efficiency of the KE session.  The KE session is quite dependent on the skill of 

the KE facilitator and it would be beneficial to develop an informal community of practice where this 

knowledge could be shared with other potential KE facilitators.   

 

6) It is important for credibility and defensibility to select SMEs who do not have conflicts of interests and 

who can be impartial.  In general there should be a process of nominating and selecting SMEs on a case-by-

case basis.  In our study, the sponsor was involved in the nomination and final selection of the SMEs to 

ensure quality and credibility of the process.  The SMEs were identified by name and organizational 

affiliations; however, their responses and judgments remained anonymous.  A record of all judgments was 

maintained and if necessary, could be provided for any auditing purposes or if requested during a peer 

review.   Peer review of the results is an essential component of the KE process.  The peer review focused 

on the KE process, such as how the experts were selected, what information they provided, how the KE 

session protocols were conducted, how biases were controlled, and how the modeling results were analyzed 

and presented.  The purpose of the peer review was to review the KE process, not necessarily to question 

the details of the modeling results; however, order of magnitude comparative results are important to 

review.  For example, in the LOCAF model development, a formal peer review was conducted by external 

stakeholders and changes about modeling terminology and structure were collected and then provided to 

the original SMEs for their considerations.  Moreover, placements of NASA’s AvSP products in the 

LOCAF model were briefed to and reviewed by the project managers and product technology leads.  

Suggestions and/or clarifications about the capabilities of their products were provided to the SMEs post-

KE session for their consideration; however, the operational SMEs retained the final control of the AvSP 

product placements in the LOCAF model. 

 

Finally, descriptions of the KE process and its protocols, model development and analysis, SME selection and 

probability elicitation processes, peer review procedures and BBN modeling results are being planned for 

presentation in workshops, colloquia, and professional society meetings to promote dialogue, encourage innovation 

and improve the quality and appropriate use of KE assessments.  
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