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Abstract
Probabilistic software analysis aims at quantifying how likely a tar-
get event is to occur during program execution. Current approaches
rely on symbolic execution to identify the conditions to reach the
target event and try to quantify the fraction of the input domain sat-
isfying these conditions. Precise quantification is usually limited
to linear constraints, while only approximate solutions can be pro-
vided in general through statistical approaches. However, statistical
approaches may fail to converge to an acceptable accuracy within
a reasonable time.

We present a compositional statistical approach for the efficient
quantification of solution spaces for arbitrarily complex constraints
over bounded floating-point domains. The approach leverages in-
terval constraint propagation to improve the accuracy of the estima-
tion by focusing the sampling on the regions of the input domain
containing the sought solutions. Preliminary experiments show sig-
nificant improvement on previous approaches both in results accu-
racy and analysis time.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

Keywords Symbolic Execution, Monte Carlo Sampling, Proba-
bilistic Analysis, Testing

1. Introduction
The pervasiveness of software, the heterogeneity of its users, and
the growing complexity of interactions with third-party compo-
nents are introducing a new degree of uncertainty about the exe-
cution conditions of a program, raising the quest for verification
techniques able to deal with and to quantify such uncertainty, both
in the problem and in the verification results. Probabilistic soft-
ware analysis aims at quantifying the probability of a target event
to occur, given a probabilistic characterization of the behavior of a
program or of its execution environment. Examples of target events
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include an uncaught exception, the invocation of a certain method,
or the access to confidential information.

In the past probabilistic software analysis has been mostly per-
formed at model level [20], limiting its applicability to early soft-
ware design stages or requiring explicit abstraction from the code.
Some recent techniques have brought it at the code-level [11, 12,
30]. These techniques use a symbolic execution of the program to
collect the symbolic constraints on the input that lead to the oc-
currence of the target events. The constraints are then analyzed to
quantify how likely is an input, distributed according to certain us-
age profiles [11], to satisfy any of them.

The quantification of the solution space for a set of constraints is
one of the main obstacles to the applicability of probabilistic soft-
ware analysis in practice. In previous studies [11, 12], model count-
ing techniques have been applied to count the number of points
of a bounded integer domain that satisfy given linear constraints.
These counts are then coupled with a probabilistic input usage pro-
file, which establishes a probability distribution over the input do-
main, to asses the probability for the target event to occur in that
usage profile. Sankaranarayanan et al. [30] proposed a different
approach to quantify the solution space of linear constraints over
bounded floating-point domains. They propose an iterative algo-
rithm to compute tight over-approximating bounds of the actual so-
lution space suitable for efficient volume computation. All these
approaches are thus quite limited as they can only handle linear
constraints. In this paper we tackle the problem for the general case
of complex (non-linear, containing transcedental functions, etc.)
mathematical constraints over floating-point domains with appli-
cation to probabilistic software analysis.

When considering floating-point domains, the quantification of
the solution space for a constraint usually involves the computation
of an integral. Symbolic and numerical integration are usually im-
practicable in the case of complex mathematical constraints and
multi-dimensional input domains due to the high computational
time and memory demands of such methods [17]. Furthermore,
despite the fact they could be able to provide exact results, sym-
bolic methods cannot deal with problems whose solution cannot be
expressed in analytical form, which is the case for many integra-
tion problems [15]. Statistical methods overcome the limitations
in terms of feasibility and memory demand of both symbolic and
numerical methods, allowing to deal with arbitrarily complex con-
straints. However, statistical methods are based on simulation and
can only provide approximate results. While the accuracy of the
results can be arbitrarily improved, the price to be paid is the in-



creased number of simulations, which increases the analysis time,
possibly making it unreasonably long.

This paper presents qCORAL, a compositional statistical ap-
proach for the efficient quantification of solution spaces for arbi-
trarily complex constraints over bounded floating-point domains.
Our compositional approach further leverages interval constraint
propagation to improve the accuracy of the obtained results with a
limited number of additional experiments.

qCORAL follows a layered compositional strategy. It splits up
the problem of estimating the solution space of a set of symbolic
conditions (describing the program paths leading to the occurrence
of the target event) into the problem of estimating the solution space
of individual path conditions. qCORAL further decomposes each
path condition into a set of independent clauses that can be ana-
lyzed separately. It then composes the estimated results back to-
gether. This divide-and-conquer strategy speeds up the analysis by
reducing large problems into sub-problems that are easier to ana-
lyze, and also allows the reuse of partial results for clauses appear-
ing in several constraints. For each independent clause, qCORAL
further uses an off-the-shelf interval constraint solver [14] to break
the solution spaces into even smaller regions, whose union neces-
sarily bounds the solution space of the clause. qCORAL then uses
stratified sampling [29], a well known technique for speeding up
the convergence of Monte Carlo simulations, to analyze the data
from the independent regions, and to compose the results.

We evaluated qCORAL on a set of benchmarks taken from the
literature and a set of real world software taken from medicine and
aerospatial domains. Preliminary results show significant improve-
ment over previous research approaches [30] and built-in routines
of general purpose mathematical tools, both in terms of accuracy
of results and analysis time.

2. Background
2.1 Symbolic Execution
Symbolic Execution [7, 18] is a program analysis technique which
executes programs on unspecified inputs by using symbolic inputs
instead of concrete data. For each executed program path, the anal-
ysis builds a path condition PC, which is a conjunction of boolean
conditions characterizing the inputs that follow that path. This PC
is built according to the branching conditions in the code and it is
checked for satisfiability using off-the-shelf solvers. If a PC be-
comes unsatisfiable it means that the corresponding path is not
feasible in the program (and the analysis backtracks). The execu-
tion paths followed during the symbolic execution of a program
are characterized by a symbolic execution tree. The nodes repre-
sent program (symbolic) states and the arcs represent transitions
between states. Traditional applications of symbolic execution in-
clude test case generation and error detection, with many tools
available [6, 13, 28, 31]. Symbolic execution of looping programs
may result in an infinite symbolic execution tree. For this reason,
symbolic execution is typically run with a (user-specified) bound
on the search depth.

2.2 Interval Constraint Propagation
Interval constraint propagation (ICP) [8] is an algorithmic approach
to compute interval solutions to equality and inequality numeri-
cal constraints. The input is a list of n-variable constraints and
the output is a list of n-dimensional boxes. Each constraint is an
equality or an inequality constraint, possibly involving non-linear
analytical expressions and not necessarily differentiable. A box is
a characterization of a subset of the Cartesian product of the do-
mains of input variables. Geometrically speaking, a box is an hy-
perplane, which generalizes a 2-dimensional plane for higher di-
mensions. The approach guarantees that the union of all boxes re-

ported on output contains all solutions. Hence, a problem is un-
satisfiable if the union of all boxes is empty. RealPaver [14] is
a well-known implementation of the approach. Consider the con-
straint (1.5− (x · (1.0− y))) = 0.0, the following is one example
box that RealPaver reports on output:

x : [99.99925650834012, 100]
y : [0.9849998884754217, 0.9850000000000001]

Even though the low and high values of these intervals are
floating-point numbers, the box denotes a 2-dimensional region of
real solutions. RealPaver uses two parameters to determine how
tight are the boxes reported on output: the decimal bound and
the time budget. The bound is the number of decimal digits that
limits the size of the smallest box that RealPaver can report and
the time budget limits the time for computing boxes. Note that,
irrespective of these parameters, the output should always include
all real solutions. The smaller the decimal bound and the higher
the time budget the tighter are the boxes reported. The approach is
flexible to support a wide range of mathematical functions.

3. Probabilistic Software Analysis
Probabilistic software analysis is concerned with quantifying how
likely software execution is to satisfy a given property. Probabilistic
software analysis is relevant in contexts where the software is
designed to exhibit uncertain or randomized behavior [30] or when
the execution environment, including interactions with users, is
characterized by a probabilistic profile [4]. In these situations, it
is usually more relevant to quantify the probability of satisfying
(/violating) a given property than to just assess the possibility of
such events to occur.

Figure 1 shows the main flow of the tool that we use to sup-
port probabilistic analysis. The tool takes on input a Java program
and the usage profile for the program’s input variables. The usage
profile includes the domain of input variables and the probability
distribution associated with each domain. The output of the tool is
an estimate of the probability for satisfying (or violating) a property
of interest, e.g. an assertion in the code or a certain observable event
of interest. Internally, the tool uses symbolic execution to produce
a set of path constraints. In particular we use Symbolic PathFinder
(SPF) [24] for the symbolic execution of Java bytecode, but other
similar tools can be used. In this context, satisfaction of one indi-
vidual path constraint implies the occurrence of the event of inter-
est. The work reported in this paper focuses on the last processor in
the figure pipeline, the “Probabilistic Analysis” component, which
takes as input a disjunction of path conditions and, based on that, it
computes the probability of the event to occur. This component is
not dependent on any programming language.

Java

SPF
Probabilistic 

Analysis
PCs

Probabilistic Software Analysis

Probability
+ Accuracy

Input
profile

Target
Event

Figure 1. Probabilistic software analysis chain.

3.1 Computing Probabilities
Let’s classify the path constraints produced with symbolic execu-
tion in the sets PCT and PCF based on whether they lead to the
occurrence of the target event (T) or not (F).

Under the assumption that symbolic execution terminates and
only produces constraints for complete paths, the path constraints
define disjoint input sets and they cover the whole input domain



[18, 28]. However, in order to deal with possible non termina-
tion due to looping constructs in the code, SPF actually performs
bounded symbolic execution. Hence, if an event has not occurred
within the symbolic execution bound, the corresponding PC is not
included in PCT . On the other hand, since hitting the execution
bound is an event observable though SPF, it is possible to introduce
a third set of PCs containing those where the bound has been hit
and quantify the probability of such sets as well; this probability
can give a measure for the confidence in the results obtained within
the bound (the lower the probability the higher the confidence).This
approach has been applied, for example in [11], but for the sake of
space we will not consider it here.

We define the probability of satisfying a given property, as the
probability of an input distributed according to the usage profile to
satisfy any of the path constraints in PCT . Formally, what we aim
to compute is:

∫
D
�PCT (x) · p(x) (1)

where D is the input domain defined as the Cartesian product
of the domains of the input variables, p(x) is the probability of
an input x to occur for the given usage profile, and �PCT (x) is

the indicator function on PCT , that is a function that returns 1
when x satisfies any of the PCs in PCT , and 0 otherwise [26].
Equation (1) represents the expected probability for satisfying the
target property.

3.2 Monte Carlo Simulation
In general, the constraints in PCT can be non-linear or can make
the integral ill-conditioned for numerical solutions [17]. To retain
generality, qCORAL builds on simulation-based methods. These
methods have theoretically no limitations on the complexity of the
constraints they can handle. However, they can take a long time
to converge, especially in the presence of large, multidimensional
domains. The simplest simulation-based method applicable to the
problem at hand is the Hit-Or-Miss Monte Carlo method [29]. In
practice, it consists in generating a sequence of n independent in-
puts (x0,x1, . . . ,xn−1), according to the usage profile, and to count
the number of hits, i.e., the number of samples that satisfy the con-
straints under analysis. The ratio of hits (fraction of samples which
are hits) provides an efficient, unbiased, and consistent estimator
for the probability of satisfying the constraints [26]. In particular
such estimator X̂ has a binomial distribution with expected values
and variance given by the following equations [26]:

E
[
X̂
]
= x̄ Var

[
X̂
]
=

x̄ · (1− x̄)
n

(2)

where x̄ = ∑n−1
i=0 �PCT (xi)/n is the sample mean. Note that the

more samples are collected, the closer X̂ gets to the integral of
Equation (1). In particular, this convergence can be quantified by
the estimator variance Var: the closer the variance is to 0 the more
accurate is the estimation.

3.3 Interval Constraint Propagation and Stratified Sampling
Despite their generality, hit-or-miss Monte Carlo methods may suf-
fer from a slow convergence rate [17], especially if the probability
of the target event gets close to zero [32]. If additional informa-
tion is known about the problem under analysis, it can be exploited
to improve the estimation performance, i.e. to reduce the estimator
variance. A well established method for variance reduction is the
stratified sampling [19, 29]. This approach consists in partitioning
the sample space, which in our case corresponds to the input do-
main D, into disjoint subsets ({R0,R1, . . . ,Rm}), called strata. Each
strata Ri can be analyzed separately via hit-or-miss Monte Carlo,

obtaining the corresponding estimator X̂i. Since the sampling pro-
cesses within each region is independent, and assuming we take the
same number of samples on each strata [29], the strata estimators
can be combined to obtain an estimator X̂ over the original sample
space, with the following expected value and variance [29]:

E
[
X̂
]
= ∑

i
wi ·E

[
X̂i
]

Var
[
X̂
]
= ∑

i
w2

i ·Var
[
X̂i
]

(3)

where wi is defined as wi = size(Ri)/size(D) and it denotes the
size of region Ri relative to the size of the domain D. Since the
strata constitute a partition of D, ∑i wi = 1. The expected values
and variance of the estimators X̂i are obtained with Equation (2).

It has been shown that the variance of an estimator obtained
through stratified sampling cannot be worse than the variance ob-
tained running Hit-or-Miss Monte Carlo integration on the entire
domain, although only a suitable choice of strata provides signifi-
cant benefits [29]. Optimal stratification criteria can be defined for
each problem, although this usually requires additional informa-
tion about the problem, which is not always available or easy to
estimate [19].

In our case, the set of constraints composing a PC are assumed
to be formalized as the conjunction of mathematical inequalities,
which may involve also non-linear analytical functions. By defi-
nition, the indicator function of Equation (1) evaluates to 1 iff the
input satisfies the path constraint, that is, if it belongs to the locus of
the solutions of the system of mathematical inequalities composing
it. The exact computation of these solutions is usually infeasible,
but interval constraint propagation can help to identify a set of sub-
regions of the domain containing them. For this paper, we use the
tool RealPaver [14], which provides interval constraint propagation
for systems of non-linear inequalities over real domains. Given a
set of inequalities and a bounded domain, RealPaver identifies a
set of non-overlapping boxes whose union contain all the solutions
of the problem. The boxes may be tight, meaning they only con-
tains solutions, or loose, containing both solutions and other points.
Since no solution exists outside those boxes, there is no need to ana-
lyze such region through hit-or-miss Monte Carlo, since we already
know that the estimator would converge to 0, with variance 0, since
the integral of Equation (1) evaluates to 0.

Example. As an example of the use of Interval Constraint Prop-
agation (ICP) for variance reduction, let us consider the con-
straint x ≤ −y ∧ y ≤ x, where values of variables x and
y are uniformly distribution over the domain [−1,1]. As il-
lustrated in Figure 2, the probability of satisfying the con-
straints can be easily computed as the ratio between the area

0

−1 0

−1

1

b4

b3b2b1

Figure 2. Example
illustrating interval
constraint propaga-
tion with stratified
sampling.

of the triangle identified by the con-
straint and the size of the domain, and
it is exactly 1/4. By using hit-or-miss

Monte Carlo with 104 samples, we ob-
tain mean (i.e., expected value) .2577
and variance .19131. Let’s consider that
ICP produces four boxes, as shown in
the figure, containing all solutions. Let’s
consider we take 2,500 samples within
each box, thus overall still 104 sam-
ples as in the case of the regular (non-
stratified) hit-or-miss Monte Carlo ap-
proach. Table 1 shows the boxes coor-
dinates for each of the boxes, size, and
corresponding estimates. The part of the
domain not covered by the four boxes

accounts for 3/4 of the domain, and in such region we already
know that both the mean and the variance of a hit-or-miss estima-
tor would be 0, because there are no solutions are in there. If we



x y w E[X̂ ] Var[X̂ ]
b1 [−1,−.5] [−1,−.5] .25/4 .5012 .2501
b2 [−.5,−.5] [−1,−.5] .5/4 1 0
b3 [.5,1] [−1,−.5] .25/4 .508 .25
b4 [−.5, .5] [−.5,0] .5/4 .4904 .25

Table 1. Variance reduction for the example case.

combine the estimators of the single boxes as per Equation (3), we
obtain mean .2494 and variance .00586, which is a significant im-
provement, despite the relatively small number of samples we took
within each region. Further evaluation of the accuracy achievable
through this approach will be provided in Section 6.1.

4. Compositional Estimation for Complex
Constraints

Simulation techniques are highly sensitive to the number of sam-
ples they take – see the number of samples factor “n” in the de-
nominator of Equation 2. Efficiency is therefore essential for these
techniques: improved efficiency means one can sample more within
the same time budget and therefore reduce the estimate variance.

We propose a compositional approach to efficiently estimate the
solution space for complex mathematical constraints, encoding the
disjoint path conditions obtained through symbolic execution. Our
approach leverages the following two observations:

• Disjunction: From the semantics of symbolic execution, an
input cannot satisfy more than one path constraint in PCT . Each
path constraint in this set denotes one equivalence class of the
input space. We therefore decompose the estimation for PCT

into the estimation of each individual PC in the set.

• Conjunction: Each individual path constraint PC is a compo-
sition of simpler independent predicates that can be estimated
separately; furthermore these predicates occur across multiple
path constraints in PCT , and therefore their estimates can be
efficiently re-used.

Section 4.1 describes an approximate composition rule for the
disjunction of two path constraints in PCT and Section 4.2 provides
a heuristic for dealing with the conjunction of many constraints.

4.1 Disjunction of Path Conditions
Consider the set PCT = {PCT

1 ,PCT
2 , . . . ,PCT

m} of the PCs leading

to the occurrence of the target event. The elements PCT
i are pair-

wise disjoint by construction. Let X̂T
i be the estimator of the prob-

ability, given an input profile, of satisfying the constraints in PCT
i

(i.e. an estimator of the integral in (1)). Since there is no intersec-
tion between any two sets PCT

i , PCT
j , we can define an estimator

X̂T of the disjunction between PCT
i and PCT

j as follows:

X̂T = X̂T
i + X̂T

j (4)

Since there is no intersection between any two sets PCT
i and

PCT
j , the expected value of X̂T can be straightforwardly computed

as [26]:

E
[
X̂T ]= E

[
X̂T

i
]
+E

[
X̂T

j
]

(5)

The following theorem gives a bound on the variance for the
composed estimator X̂T , based on the variance computed for the
individual path conditions:

Theorem 1. Let PCT
i , PCT

j ∈ PCT , X̂T
i and X̂T

j estimators of
the probability of satisfying PCT

i and PCT
j respectively. Let X̂T =

X̂T
i + X̂T

j , then:

Var
[
X̂T ]≤ Var

[
X̂T

i
]
+Var

[
X̂T

i
]

(6)

Proof. Since X̂T is defined as the sum of two random variables, the
following general relation holds [26]:

Var
[
X̂T ]= Var

[
X̂T

i
]
+Var

[
X̂T

i
]
+2 ·Cov

[
X̂T

i , X̂T
j
]

where the covariance Cov[X̂T
i , X̂T

j ] = E[X̂T
i · X̂T

j ]−E[X̂T
i ] ·E[X̂T

j ].
We already know from Equation (1) that

E[X̂T
i · X̂T

j ] =
∫

D
�PCT

i
(x) ·�PCT

j
(x) · p(x)

but the product of the indicator functions in the equation above is
alway zero because, for every input, at most one of the PCs can
be satisfied. On the other hand, the probability of satisfying a PC
cannot be negative, thus Cov(X̂T

i , X̂T
j )≤ 0.

Theorem 1 allows us to process each PC separately (possibly
also in parallel) and then compose the partial results to estimate the
probability of satisfying any of the PCs in PCT . The price for this
approach is the need to provide an overestimation of the variance of
the composition, although, as will be shown in Section 6, in prac-
tical applications the benefits of the variance reduction techniques
on analyzing the single disjuncts often overcome the loss due to the
conservativeness we took for disjuncts composition.

4.2 Conjunction of Constraints
We now consider the problem of efficiently computing the proba-
bility of satisfying an individual path condition PC. For a real ap-
plication, a path condition could be very large and may include
many constraints relating many input variables. We propose to par-
tition these constraints into smaller sets that have in common the in-
put variables, and whose satisfiability therefore can be determined
independently from one another. A path condition PCi is defined
by the conjunction of several simpler constraints ci0 ∧ ci1 ∧ . . .cim.
Each constraint cik can make an assertion about one or more input
variables v j, or functions thereof. Let indicate it by A(cik,v j).

Let us introduce a dependency relation (Dep) among the vari-
ables appearing in a program:

Definition 1. Given the path conditions obtained by the symbolic
execution of a program {PCi}, such that PCi = ci0 ∧ ci1 ∧ . . .cim,
and let V be the set of the input variables of the program. The rela-
tion Dep⊆V ×V is recursively defined by the following statements:

• ∀v ∈V : Dep(v,v)
• ∀vi,v j ∈V : ∃ckl A(ckl ,vi)∧A(ckl ,v j) =⇒ Dep(vi,v j)
• ∀vi,v j,vk ∈V : Dep(vi,vk)∧Dep(vk,v j) =⇒ Dep(vi,v j)

Intuitively, two input variables are depending on each other if
they appear together in at least one constraint in the path condition.
If this is the case, to evaluate the satisfaction of such conditions the
assignments to both variables has to be evaluated at the same time.

Notice that Dep is by construction an equivalence relation over
V and for this reason it induces a partition of V . Let us refer to
the sets composing this partitions as {Ṽ0,Ṽ1, . . . ,Ṽl}. We can now
extend the definition of A(·, ·) by stating that A(cik,Ṽj) holds if

there exists a variable v j ∈ Ṽj such that A(cik,v j) holds.
Consider now a path condition PCi. Let us define the constraints

C̃i j =
∧

cik :A(tik ,Ṽj)
cik. That is, C̃i j is the conjunction of all the con-

straints cik occurring in PCi and containing any of the variables
from Ṽj ⊆ V . The probability of satisfying PCi is the same as the
probability of satisfying all the constraints Ci j at the same time. But
since two constraints Ci j and Cik do not share any variable by con-
struction, the satisfaction of one of them is independent from the
satisfaction of the other1. This independence is straightforwardly

1 As support of this statement, notice that Pr(Ci j|vk = v̄k
1) = Pr(Ci j|vk =

v̄k
2), where vk /∈ Ṽj and v̄1

k and v̄2
k are any two valid assignments for vk .

Thus, we can conclude that Pr(Ci j|vk = v̄k
1) = Pr(Ci j).



inherited by the hit-or-miss estimators X̂i j and X̂ik of the probabil-
ity of satisfying Ci j and Cik, respectively. Indeed, the Monte Carlo
procedures will generate random assignments for the sets of vari-
ables Ṽj and Ṽk independently.

Thanks to the independence of the estimators X̂i j and X̂ik of the

probabilities of satisfying the constraints C̃i j and C̃ik, the probabil-

ity of C̃i j ∧C̃ik can be estimated by X̂i jk = X̂i j · X̂ik having [26]:

E
[
X̂i jk

]
= E

[
X̂i j

] ·E[X̂ik
]

(7)

Var
[
X̂i jk

]
= E

[
X̂i j

]2 ·Var
[
X̂ik

]
+E

[
X̂ik

]2 ·Var
[
X̂i j

]
(8)

+Var
[
X̂i j

] ·Var
[
X̂ik

]

4.3 Observation
By applying the composition methods introduced in this section,
we may obtain the following benefits. First, we can split the anal-
ysis of a large path condition into the analysis of several simpler
constraints. Second, each of the simpler constraints will possibly
involve only a subset of the input variables, making the generation
of the samples faster. Furthermore, reducing the input space to only
the variables actually involved in the constraint, would likely result
to a better coverage of the input sub-domain, for a fixed number
of samples.Finally, we remark that the simpler constraints can be
analyzed efficiently using the interval constraint propagation with
Monte Carlo stratified sampling described in the previous section.

4.4 Example
The following code snippet mimics a safety monitor for an autopi-
lot navigation system. If the altitude is less than 9000 meters, the
autopilot is allowed to control the position of the vehicle by ma-
nipulating the front and head flaps through floating point variables
headFlap and tailFlap. These variables range in the interval
[−10,10].

if (altitude <= 9000) { ...
if(Math.sin(headFlap*tailFlap)>0.25){

callSupervisor();
} ...

} else { callSupervisor(); }

Listing 1. Example of events and complex conditions in Java.

If during the flight the safety monitor realizes that the relative
position of the flaps violates the imposed safety conditions, it calls a
human supervisor to take over the control of the vehicle. The same
procedure is actuated if the vehicle get over 9000 meters of altitude.

For this example, our target event is the call of a supervisor and
the code substantiates this event with function callSupervisor.
We want to quantify the probability of such event to occur given
a certain probabilistic profile for variables headFlap, tailFlap,
and altitude. Such profile can be obtained by monitoring data of
similar vehicles. For the sake of simplicity, let us consider an uni-
form profile for the three variables over their respective domains.
We restrict altitude to the range [0,20000]. Symbolic execution pro-
duces the following path constraints that reach our target event:

PCT
1 : altitude > 9000

PCT
2 : altitude ≤ 9000 ∧ Math.sin(headFlap · tailFlap)> 0.25

We want to quantify the solution space over PCT ={PCT
1 ,PCT

2 }. We
illustrate how qCORAL analyzes these constraints in the following.

PCT
1 consists of a single atomic constraint predicating only on

the value of variable altitude, thus no further decomposition is
possible. This constraint can be analyzed by applying the tech-
niques introduced in Section 3, obtaining for its statistical estimator
X̂T

1 : E
[
X̂T

1

]
= 0.55 and Var

[
X̂T

1

]
= 0. Note that the variance of the

Algorithm 1: qCORAL

Input: PCs,D
Output: mean,var
dep ← computeDependencyRelation(PCs)
mean ← 0; var ← 0
for pc ∈ PCs do

〈pcMean, pcVar〉 ← analyzeConjunction(pc,D,dep)
mean ← mean+ pcMean
var ← var+ pcVar

return 〈mean,var〉;

estimator is 0 thanks to the help of ICP solver, which is able to
identify one tight a box for this constraint.

In contrast to PCT
1 , PCT

2 is a conjunction of two boolean expres-
sions. According to Definition 1, we know that variables headFlap
and tailFlap depend on one another, while altitude does not depend
on any other variables. For this reason, as discussed in Section 4.2,
we can analyze the two constraints separately and then merge re-
sults. For the atomic constraint altitude ≤ 9000 we obtain the es-
timator X̂T

2,1 having E
[
X̂T

2,1

]
=0.45, with variance 0. For the con-

straint sin(headFlap · tailFlap) > 0.25, although its solution space
does not fit in a single box, the use of ICP-based stratified sampling
does still help in exploiting the geometry of the solution space. For
this constraint the estimator X̂T

2,2 has Var
[
X̂T

2,2

]
=8.103406 · 10−6

and E
[
X̂T

2,2

]
=0.417975. Equations (7) and (8) enable qCORAL to

compose the estimators of sub-formulas of PCT
2 to obtain the esti-

mator X̂T
2 , with E

[
X̂T

2

]
=0.188089 and Var

[
X̂T

2

]
=1.64094 ·10−6.

Finally, Equation (5) enables qCORAL to obtain the estimator
X̂T , with E

[
X̂T ]= E

[
X̂T

1

]
+E

[
X̂T

2

]
= 0.738089, while Var

[
X̂T ]≤

Var
[
X̂T

1

]
+Var

[
X̂T

2

]
= 1.64094 · 10−6 . In this example, the exact

probability, rounded to the 6th digit is 0.737848.

5. Algorithms and Implementation
This section provides some implementation details of qCORAL.
The input of qCORAL includes a set of disjoint constraints PCs,
representing the path conditions leading to the occurrence of the
target event as obtained from the symbolic execution stage (see
Section 3), and a description of the input domain, i.e., a map from
floating-point input variables to their domain. The domain of each
variable is a closed interval. We used Symbolic PathFinder [28] as
our symbolic execution engine.

Algorithm 1 describes the main loop of qCORAL. It iterates
over the input path constraints, processes each one, and com-
bines the partial results as described in Section 4.1. Note that
qCORAL returns an upper bound for the variance of a disjunc-
tion of path constraints, as defined in Equation (6). The proce-
dure computeDependencyRelation returns the partition of the in-
put variables according to Definition 1. To efficiently implement
this procedure we rely on the Jung graph library2. We create an
undirected graph, where a node corresponds to an input variable
and and edge corresponds to a dependence between two variables.
This procedure visits every path condition and when two variables
appear in the same constraint it adds an edge between their cor-
responding nodes. The procedure then computes the weakly con-
nected components of the graph (with complexity at most quadratic
in the number of input variables).

Algorithm 2 computes results for one conjunctive clause. The
procedure extractRelatedConstraints goes through all the con-

2 http://jung.sourceforge.net



Algorithm 2: analyzeConjunction

Input: pc,D,dep
Output: mean,var
mean← 1; var← Nil
for varSet ∈ dep do

part ← extractRelatedConstraints(pc,varSet)
if !cache.contains(part) then

〈partMean, partVar〉 ←
stratSampling(part,varSet,D)
cache.put(part, 〈partMean, partVar〉)

〈partMean, partVar〉 ←cache.get(part)
mean ← mean∗ partMean
if var = Nil then

var ← partVar

else
var ←
mean2 ∗ partVar+ partMean2 ∗var+var∗ partVar

return 〈mean,var〉;

juncts in the path constraint pc and projects those containing vari-
ables in varSet. Note that each varSet contains the variables in
a partition induced by the dependency relation as computed by
computeDependencyRelation. The partial results for each set of
independent constructs is computed by means of the procedure
stratSampling, and then combined with the previous ones. As an
optimization, the results obtained for an independent constraint can
be safely stored in a cache and reused thanks to the global indepen-
dence of their estimator with all the others. Conceptually caching
makes a trade-off between accuracy and efficiency. It is possible
that, when caching is active, the error in local sampling may be am-
plified as qCORAL samples a partition only once. However, since
the subproblems whose results are cached are simpler than the orig-
inal one (especially in the cases when only a small subset of input
variables are related to one another), the accuracy we can obtain is
usually higher, especially considering that, thanks to caching, the
time budget for each simulation can be increased. Section 6 evalu-
ates the impact of caching in terms of precision and time.

Algorithm 3 computes results for one partition using stratified
sampling and Hit-or-Miss Monte Carlo. Argument varSet defines
the integration variables that needs to be considered to quantify
part through simulation.The procedure icp makes a call to our
the ICP solver. The estimate and variance obtained with stratified
sampling on each box are cumulatively added to return variables
mean and var. Although the methodology proposed in this paper
is general for any usage profile, our current implementation uses
uniform profiles only. We plan to evaluate the impact of using
more complex probability input distributions. This change affects
the sampling generation within the hitOrMiss method.

RealPaver. We used RealPaver [14] for Interval Constraint Prop-
agation (ICP). Section 2.2 describes input and output of an ICP
solver. Our RealPaver configuration is constrained with the follow-
ing stop criteria: time budget per query of 2s, a bound on the num-
ber of boxes reported per query of 10, and a lower bound on the size
of the computed boxes of 3 decimal digits. These parameters are set
empirically, based on previous experiences with the tool. All other
parameters are fixed. We note that the time budget, in particular,
enables one to calibrate the time spent with domain stratification
and time spent with simulation.

Algorithm 3: stratSampling

Input: part,varSet,D
Output: mean,var
mean ← 0; var ← 0
boxes ← icp(part,varSet,D)
for box ∈ boxes do

〈boxMean,boxVar〉 ← hitOrMiss(part,varSet,D)
boxWeight ← size(box)/size(D)
mean ← mean+boxWeight ∗boxMean
var ← var+boxWeight2 ∗boxVar

return 〈mean,var〉;

6. Evaluation
Our evaluation addresses the following research questions:

• RQ1. What is the accuracy of qCORAL estimates?

• RQ2. How qCORAL compares with the built-in numerical in-
tegration routines of Mathematica3 and with VolComp [30]
when handling linear constraints?

• RQ3. How the different features of qCORAL affect accuracy
and time when handling complex constraints?

All experiments have been run on an Intel Core i7 920 64-bit
machine, with 2.67Ghz and 8GB, running Ubuntu 12.04.

6.1 RQ1: What is the accuracy of qCORAL estimates?
This experiment evaluates how accurate qCORAL is for comput-
ing the volume of several geometric figures for which analytical
solutions are widely known. We used the symbolic integration rou-
tines of Mathematica to obtain the exact volumes of these solids,
while for qCORAL we computed them as the fraction of a domain
of known size.

Table 2 summarizes the results. We evaluated the accuracy of
our approach for 103, 104, 105, and 106 as maximum number of
samples for the Monte Carlo procedure. We run 30 times each
configuration and reported the average value and standard deviation
over the population of estimated volumes.

We grouped our subjects in three groups: convex polyhedra,
solids of revolution, and intersection of solids. Except for the con-
vex polyhedra cases, all other subjects contain non-linear con-
straints and mathematical functions, namely exponentiation and
square root. For these subjects the compositional approach does not
provide benefits, since the three variables characterizing each solid
are tightly dependent one another. We will come back to composi-
tionality later in this section.

All the experiments completed within 2 seconds, with the ex-
ception of Icosahedron and Rhombicuboctahedron for 106 samples
(4 and 7 seconds, respectively). Notably, thanks to Interval Con-
straint Propagation (ICP) and stratified sampling, even with a rel-
atively small number of samples, qCORAL provided a reasonably
accurate result for most of the subjects.

Finally, consider the case of Cube: the standard deviation is 0
because, regardless the number of samples, qCORAL was always
able to find the exact solution thanks to ICP. Indeed, the real
subject a 3D box and RealPaver can exactly identify it, driving the
estimation error to zero.

3 http://www.wolfram.com/mathematica



subject
Analytical 103 samples 104 samples 105 samples 106 samples
Solution estimate error (σ ) estimate error (σ ) estimate error (σ ) estimate error (σ )

Convex Polyhedra
Tetrahedron 0.512682 0.5151 0.0623 0.5144 0.0210 0.5122 0.0050 0.5128 0.0012

Cube 8.0 8.0 0.0 8.0 0.0 8.0 0.0 8.0 0.0
Icosahedron 2.181695 2.2043 0.1471 2.1948 0.0440 2.1843 0.0133 2.1829 0.0039

Rhombicuboctahedron 14.333333 14.4027 0.3111 14.3286 0.1403 14.3382 0.0416 14.3330 0.0114

Solids of Revolution
Cone 1.047198 1.0577 0.0509 1.0495 0.0223 1.0462 0.0060 1.0471 0.0019

Conical frustrum 1.8326 1.8483 0.1291 1.8385 0.0451 1.8340 0.0115 1.8326 0.0034
Cylinder π 3.1470 0.0451 3.1424 0.0189 3.1417 0.0045 3.1415 0.0017

Oblate spheroid 16.755161 16.7723 0.4242 16.7428 0.1479 16.7560 0.0586 16.7550 0.0122
Sphere 4/3 ·π 4.1930 0.1060 4.1857 0.0370 4.1890 0.0146 4.1887 0.0031

Spherical segment 113.557882 113.5982 2.9401 113.4129 0.8739 113.5646 0.2628 113.5618 0.0887
Torus 1.233701 1.2277 0.0467 1.2305 0.0127 1.2327 0.0042 1.2337 0.0013

Intersection
Two spheres intersection 56.5485 56.7837 1.9705 56.6357 0.6703 56.5498 0.2413 56.5480 0.0600

Cone-cylinder intersection 2.7276 2.7315 0.1401 2.7276 0.0500 2.7289 0.0136 2.7285 0.0036

Table 2. Microbenchmarks.

Assertion
Num. Num. Num. NIntegrate VolComp qCORAL{STRAT,PARTCACHE} - 30k
Paths Ands Ar. Ops. solution time(s) bounds time(s) avg. estimate avg. σ avg. time(s)

ARTRIAL
points ≥ 10 442 1,484 0 (0) 0.1343 5.05 [0.1343, 0.1343] 3.62 0.1343 0.00e+00 1.03

points−pointsErr ≥ 5 2,439 1,740 443 (3) 0.0005 89.26 [0.0005, 0.0005] 40.0 0.0005 1.00e-06 1.51
pointsErr−points ≤ 5 2,260 68,630 19,125 (3) 0.9350 4,179.36 [0.9340, 0.9364] 771.1 0.9352 1.63e-04 4.14

CART
count ≥ 3 44 1,209 638 (3) 0.9746 7.26 [0.9390, 1.0000] 32.29 0.9739 1.12e-02 4.18
count ≥ 1 47 1,296 681 (3) 0.9826 7.66 [0.9470, 1.0000] 33.74 0.9818 1.11e-02 4.39

CORONARY
tmp ≥ 5 320 195 62 (3) 0.0006 3.44 [0.0006, 0.0006] 3.93 0.0006 1.90e-06 0.92

tmp ≤ −5 274 31 8 (3) 0.0001 0.86 [0.0001, 0.0001] 1.99 0.0001 4.29e-07 0.57

EGFR EPI
f 1− f ≥ 0.1 45 547 31 (3) 0.1264 1.98 [0.1264, 0.1264] 0.60 0.1262 3.29e-04 1.61
f − f 1 ≥ 0.1 44 422 33 (2) 0.0986 1.69 [0.0986, 0.0986] 0.50 0.0986 4.80e-05 1.42

EGFR EPI (SIMPLE)
f 1 ≤ 4.4∧ f ≥ 4.6 13 163 12 (3) 0.5388 0.83 [0.5387, 0.5389] 0.46 0.5389 8.71e-04 0.85
f 1 ≥ 4.6∧ f ≤ 4.4 14 101 9 (3) 0.3012 0.65 [0.3012, 0.3012] 0.14 0.3012 0.00e+00 0.66

INVPEND
pAng <= 1 1 54 229 (3) 0.0507 1.15 [0.0000, 0.1225] 6.20 0.0515 7.82e-04 0.79

PACK
count ≥ 5 1,103 16,414 0 (0) 0.9546 57.44 [0.9546, 0.9546] 16.45 0.9546 0.00e+00 2.18
count ≥ 6 906 12,080 0 (0) 0.3898 41.76 [0.3898, 0.3898] 12.59 0.3898 0.00e+00 1.94
count ≥ 7 924 0 0 (0) 0.1428 45.48 [0.1427, 0.1427] 13.75 0.1428 0.00e+00 2.05
count ≥ 10 821 840 0 (0) 0.0002 4.41 [0.0002, 0.0002] 5.24 0.0002 0.0000 1.25

totalWeight ≥ 6 954 14,850 6,948 (2) 0.2462 5066.20 [0.2522, 0.2800] 104.8 0.2663 2.72e-05 68.79
totalWeight ≥ 5 1,030 16,186 7,578 (2) 0.6771 70.16 [0.6369, 0.7155] 60.15 0.6772 1.67e-04 82.98
totalWeight ≥ 4 1,132 17,972 8,420 (2) 0.9592 54.48 [0.9592, 0.9592] 16.93 0.9592 0.00e+00 92.33

VOL
count ≥ 20 24 13,824 882,508 (3) 1.0005 1245.30 [0.0000, 1.0000] 3.76 1.0001 5.18e-03 821.11

Table 3. Comparison of NIntegrate (default numerical integration method from Mathematica [1]), VolComp, and qCORALwith features
STRAT and PARTCACHE enabled. Note that the comparison is restricted to linear constraints and the comparison metrics are not the same.

6.2 RQ2: How qCORAL compares with Mathematica and
VolComp?

This experiment evaluates how qCORAL (with both stratified sam-
pling and the compositional analysis) compares with existing tech-
niques for quantifying solution spaces of linear constraints. As
baseline for comparison, we use the built-in procedure for numeri-
cal integration of the commercial tool Mathematica, NIntegrate.
This procedure is available off-the-shelf and we run it with its de-
fault settings. We also include VolComp, a recently developed tool
producing as output a tight closed interval over the real numbers
containing the requested solution.

The built-in numerical integration routine of Mathematica
performs a recursive procedure called Global Adaptive Integra-
tion [21]. On each recursive call, it analyzes the behavior of the
integrand function within the integration domain and automatically

selects an integration rule to apply. Mathematica supports a broad
variety of integration rules, e.g. Trapezoidal, Simpson, or New-
ton [1]. After each iteration, the procedure analyzes the obtained
results and if they do not meet the accuracy goals, the integration
domain is bisected and the integration routine is invoked on each
of the two parts. Partial results are then combined, similarly to the
case of stratified sampling. The procedure terminates when the de-
fault accuracy requirements are met or when the recursion depth
limit has been reached. Since NIntegrate guarantees the accu-
racy of the result (or gives a notification when its requirements are
not met), it provides a reference to evaluate how tight are the in-
tervals produced by VolComp and how precise are the estimates
produced by qCORAL.

The techniques we evaluate in this experiment report solutions
in different formats. Mathematica reports a single point solution,



which is exact up to an informed bound, VolComp reports an
interval solution that bounds the exact point solution, and qCORAL
reports an estimate on the exact solution and a statistical variance
for that estimate. In place of the variance, for qCORAL we report
the standard deviation (square root of the variance), which is in
the same unit scale of the estimate. Furthermore, since qCORAL
implements a randomized algorithm, the estimate and the standard
deviation we report are averaged over 30 executions.

To compare the tools, we used the VolComp benchmark,
which is publicly available [2]. The subjects we selected from the
benchmark are: the Framingham 4 atrial fibrillation risk calcula-
tor (ATRIAL), a steering controller to deal with wind disturbances
(CART), the Framingham coronary risk calculator (CORONARY), an
eGFR 5 estimator of chronic kidney’s disease (EGFR EPI and EGFR
EPI SIMPLE), an inverted pendulum (INVPEND), a model of a
robot that packs objects of different weights in a carton with the
goal to maximize total weight within a certain limit (PACK), and a
controller for filling up a tank with fluid (VOL).

We re-ran the benchmarks from [2] using their scripts. The PCs
were obtained by translating PCs produced with their frontend. All
experiments ran until completion. Table 3 shows the comparison
between qCORAL and VolComp [2]. Notice that the two tech-
niques provide different types of results. VolComp uses iterative
bounding to return an interval containing the solution. qCORAL re-
turns a statistical estimator characterized by its expected value and
its variance: the expected value is the most likely value as it comes
out from qCORAL analysis; the variance provides a measure of the
uncertainty of the estimate; such uncertainty could be used to quan-
tify the probability the real value belongs to an interval, for example
by using Chebyshev’s inequality [26].

The first 4 columns of Table 3 state the targeted assertion, how
many paths reach the assertion true, how many conjuncts (and)
are there on these paths and lastly how many arithmetic operations
(with the number of unique operations). For each tool we then show
the estimated probability of satisfying the assertions specified in
the first column. We make the following observations from these
results:

• ARTRIAL. For one of the three assertions Mathematica takes
very long to produce results and VolComp takes more than
10m to finish. qCORAL produces an accurate result very
quickly.

• CART. This subject produces a highly skewed polynomial [30],
which is known to be a case where branch-and-bound tech-
niques do not perform well. Indeed, results of VolComp are
not good for this case. qCORAL also suffers as it relies on Re-
alPaver which also uses branch-and-bound techniques. For this
reason, we observe a high standard deviation in our results rela-
tive to other subjects. Note that despite this limitation qCORAL
can still report an estimate close to the exact solution. Mathe-
matica can easily handle the subject in this case.

• CORONARY and EGFR. These are the best cases for
qCORAL. As compared to other tools, qCORAL reports results
very quickly and precisely.

• PACK. qCORAL is slower for the last two cases of PACK. The
reason for this high cost is the high number of paths and the high
interdependence among the variables on each path constraint,
which reduces the impact of our divide and conquer strategy
for conjuncts. We observed that for one case in this subject
Mathematica actually misses the interval; this is highlighted
in grey color. This happened because the default settings of

4 http://www.framinghamheartstudy.org
5 http://nephron.com/epi equation

NIntegrate does not allow to collect enough points for the
numerical integration to converge. This situation is reported by
the tool. Note that on some cases rounding the result to four
decimal digits made the results of VolComp be different than
those of Mathematica and qCORAL by the last digit. These have
to be considered just rounding error.

• VOL is a case that stresses qCORAL. Mathematica finishes in
more than 20m and VolComp returns the full range 0.0-1.0, i.e.
it did not perform any pruning. qCORAL reports the expected
result of ∼1.0. . Note that the estimate that qCORAL reports is
actually slightly greater than 1, for this case. This is due to the
propagation of errors in the estimation which magnifies when
the exact probability is close to the corner case 1. Mathematica
also reports a result > 1 due to the finite accuracy of numerical
integration, partially due to the use of off-the-shelf settings for
such complex subject.

In summary, we observed that qCORAL reports estimates very
close to the exact point solutions that Mathematica’s numerical
integration method reports (apart from the case of PACK where
Mathematica reported no convergence and a wrong). However,
numerical integration is potentially expensive when the number
of variables grows [27]. This observation is confirmed for the
cases of ATRIAL and PACK, where Mathematica takes respectively
more than 1h to complete. In most of the experiments, especially
those on complex subjects, qCORAL resulted faster than both off-
the-shelf use of Mathematica’s numerical integration function and
VolComp. For specific problems advanced settings of Mathemat-
ica may improve its performance, though a deeper understanding of
the mathematical nature of the problem might be required, which
might be not straightforwardly derived from the code under anal-
ysis. We also notice that the results of qCORAL have been consis-
tent with those of VolComp: the qCORAL estimates fall within the
corresponding VolComp intervals almost always, up to the accu-
racy (last decimal digit might be dangling because of rounding); the
only exception is f 1− f ≥ 0.1, where the variance is anyway large
enough to account for the deviation (3.29 · 10−4). Concluding, we
observe that qCORAL has provided a reasonable balance between
time efficiency and precision when handling linear constraints on
this benchmark suite.

6.3 RQ3: How the different features of qCORAL affect
accuracy and time when handling complex constraints?

This experiment evaluates how different configurations of qCORAL
compare with respect to precision and time. We considered two im-
plementations of Monte Carlo Hit-or-Miss: one from Mathematica
(baseline) and one from qCORAL: qCORAL{}. The empty braces
indicate that no feature from qCORAL has been enabled in this con-
figuration. The configuration qCORAL{STRAT} incorporates strat-
ified sampling in the analysis of individual path conditions. The
configuration qCORAL{STRAT,PARTCACHE} cumulatively incor-
porates partitioning and caching. We considered the following sub-
jects from the aerospace domain in this experiment:

• Apollo. The Apollo Lunar Autopilot is a Simulink model that
was automatically translated to Java using the Vanderbilt tool-
set [23]. The model is available from MathWorks 6. It contains
both Simulink blocks and Stateflow diagrams and makes use of
complex Math functions (e.g. Math.sqrt). The code contains
2.6KLOC, deployed in a single package with 54 classes. We
analyzed 5,779 path constraints for this subject.

• TSAFE. The Tactical Separation Assisted Flight Environment
(TSAFE) is designed to prevent near misses and collisions of

6 http://www.mathworks.com/products/simulink/demos.html



subject
Monte Carlo

qCORAL{STRAT} qCORAL{STRAT,PARTCACHE}Mathematica qCORAL{}
estimate σ time(s) estimate σ time(s) estimate σ time(s) estimate σ time(s)

1K samples
Apollo 0.62521 0.02126 65.44 0.62780 0.01342 18.17 0.62211 0.01262 62.98 0.62461 0.00972 45.04
Conflict 0.49794 0.01308 0.66 0.49927 0.01691 0.44 0.50016 0.00027 1.53 0.50016 0.00027 1.65

Turn Logic 0.72254 0.02250 2.18 0.71913 0.01338 0.64 0.72282 0.01462 1.22 0.72282 0.01462 1.62

10K samples
Apollo 0.62538 0.00896 221.75 0.62574 0.00458 130.75 0.62610 0.00438 206.89 0.62497 0.00315 97.43
Conflict 0.49992 0.00451 1.10 0.49906 0.00509 0.92 0.50015 0.00010 2.41 0.50015 0.00010 2.31

Turn Logic 0.72029 0.00777 5.97 0.72208 0.00436 2.46 0.72162 0.00490 2.83 0.72162 0.00490 3.35

100K samples
Apollo 0.62451 0.00278 1723.45 0.62540 0.00160 1263.02 0.62550 0.00143 1583.02 0.62524 0.00089 625.47
Conflict 0.50064 0.00526 5.12 0.50011 0.00156 5.71 0.50017 0.00002 10.14 0.50017 0.00002 8.23

Turn Logic 0.72209 0.00257 41.85 0.72195 0.00116 18.81 0.72238 0.00105 16.77 0.72237 0.00105 18.16

Table 4. Comparison of different configurations of qCORAL on different sampling rates.

aircraft that are predicted to happen in the near future (from
30s to 3m). The Conflict Probe module of TSAFE tests for
conflicts between a pair of aircraft within a safe time horizon.
The two aircraft may either be flying level or engaged in turns
of constant radius. The following math functions appear in the
path constraints of this subject: cos, pow, sin, sqrt, and tan.
The Turn Logic module of TSAFE computes the change in
heading required once an impending loss of separation between
two aircraft is detected. It assumes a constant turning radius
for the aircraft making the maneuver. Path constraints for this
subject contain the atan2 function. Each of these modules is
about 50 LOC. We analyzed respectively 23 path constraints on
Conflict and 225 path constraints on Turn Logic.

These case studies contain complex constraints. They have
2.6KLOC for Apollo and 50 each for the two TSAFE components
analyzed. Since no properties were defined, instead of fabricating a
property, we generated all the PCs (using Symbolic PathFinder with
search bound equal to 50) and selected a percentage of PCs to quan-
tify the path probabilities. We generated 5779 PCs for Apollo and
225 for TSAFE; the latter is smaller but involves complex math-
ematical functions and has high dependence among variables. We
arbitrarily picked the first 70% of the PCs in a bounded depth-first
order. We picked 70% of the paths so to avoid obtaining a proba-
bility close to 0 or 1, to not bias the evaluation for the Monte Carlo
estimation towards its worst cases (some extreme cases have al-
ready been evaluated in Table 3). This selection mimics a property
that is satisfied on some of the paths and not on the rest.

Table 4 shows experimental results. Note the reported estima-
tions are not exactly 70% because different PCs have different so-
lution spaces. Different columns show different configurations of
qCORAL, each line denotes one different subject, and each group
of lines denotes a different maximum number of samples allowed
for simulation in qCORAL. Results show that the addition of fea-
ture STRAT results in a significant reduction in the variance of the
estimate at the expense of an overhead in time. This additional
cost is justified by the multiple invocations of the ICP solver; one
call per disjunctive clause of the input formula. Adding the feature
PARTCACHE, i.e. performing compositional analysis, may further
improve precision (see Section 4), however, considering the most
time-consuming cases, it always reduces time. Increasing the maxi-
mum sample size from 1K to 100K results in higher time savings as
the cost for analyzing each subproblem increases. While the rela-
tionship between execution time and maximum number of samples
is approximatively linear for the basic configuration, the impact of
stratified sampling and compositionality on execution time depends
on the specific subject.

7. Related Work
There are many related works to ours, including probabilistic ab-
stract interpretation [22], probabilistic model checking [16] and
volume computations [9]. A comprehensive list of related work
that is relevant here too can be found in [30]. Here we focus on
the works we consider the most closely related.

We calculate the probability of a path, or more generally a set
of paths, being executed. Typically these paths lead to an event of
interest, such as an assertion violation for example. Techniques
for doing such probabilistic analyses differ in the type of input
distributions they consider, the language features supported, and
the approach used to calculate the number of solutions.

One approach in this area was that of Geldenhuys et al.[12] that
considered uniform distributions for the inputs, linear integer arith-
metic constraints, and used LattE Machiato [9] to count solutions
of path conditions produced during symbolic execution. Their goal
was to calculate the probability of covering branches and assertion
violations in the code. One of the main technical differences be-
tween this work and others based on symbolic execution (including
the present paper) is that probabilities are calculated at each branch-
ing point rather than after symbolic execution is finished. Here we
support complex constraints, including non-linear constraints, and
we use a statistical approach to count solutions. Our proposed ap-
proach is compositional and hence we believe it is applicable in the
incremental setting from [12] .

Sankaranarayanan et al. [30] and Filieri et al. [11] recently pro-
posed similar techniques to compute probabilities of violating state
assertions. Both techniques remove the restriction of uniform dis-
tributions, although in the latter case it is by discretizing the domain
into small uniform regions. As with [12] both approaches only con-
sider linear constraints. Their techniques also build on symbolic ex-
ecution to compute a relevant set of symbolic paths of a program
that leads execution to some assertion of interest. Both techniques
estimate probability of exercising those paths and violating the cor-
responding assertion from such a set. Sankaranarayanan et al. de-
veloped a customized algorithm for under and over-approximations
of probabilities. They use Linear Programming (LP) solvers to
compute over-approximations and heuristics-based “ray-shooting”
algorithms to compute under-approximations, which is applicable
for convex polyhedra. Filieri et al. used the LattE Machiato [9] tool
to compute probabilities. Our technique complements the works of
Sankaranarayanan et al. and Filieri et al. by supporting a wider
range of constraints. Experimental results show that although there
is a potential loss in precision by using our analysis, when that loss
occurs it is small.

Bouissou et al. [5] handles non-linear constraints with a com-
bination of abstraction based on affine and p-box arithmetic. The
approach relies on the use of noise variables to represent the un-



certainty of non-linear computations. However they cannot han-
dle conditional branches as we can here. More recently Adje et
al. [3] extended this work to allow conditional statements as well.
The main difference with our approach lies in that they use an ab-
straction based approach whereas we use a statistical approach. We
can thus handle a wider set of non-linear constraints such as com-
plex mathematical functions (sine, cosine, etc.). In future work we
would like to do an empirical comparison between these two ap-
proaches on the examples that both can handle.

Pavese et al. [25] propose the use Monte Carlo simulation and
model inference [10] to optimize probabilistic model checkers,
such as PRISM [16]. Conceptually, the idea is to obtain a sym-
bolic computational model from a set of traces obtained with sam-
pling and feed that model to the model checker. Experimental re-
sults show that their technique can obtain tighter lower bounds for
the mean time to first failure (MTTF) of network protocol models
with rare failures. Our work is orthogonal to theirs. Our technique
applies to imperative programs, such as those for controlling ve-
hicles while their technique applies to probabilistic programs. Our
technique expects as input a summary of the behavior characterized
with a set of complex constraints.

8. Conclusion
We have developed a compositional statistical approach for the
quantification of solution spaces for arbitrary complex mathemat-
ical constraints with application to probabilistic software analysis.
The approach is enhanced by an acceleration procedure to improve
the accuracy of the simulation based analysis with a limited num-
ber of additional experiments. Our initial experimental results are
promising. In principle, our statistical approach can be applied to
both integer and floating-point domains, but in practice it performs
poorly for integer constraints if compared to counting-based tech-
niques (particularly problematic are the equality constraints). Our
future work will therefore focus on handling mixed integer and
floating-point constraints, possibly through a combination with ex-
act volume computations or guidance heuristics. We also plan to
use the compositional approach in an incremental symbolic execu-
tion setting and to combine the technique with a statistical (as op-
posed to systematic) exploration of program paths as guided by the
estimated conditional probabilities for the conditions in the code.
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