Durability and CMAS Resistance of Advanced Environmental Barrier Coatings Systems for SiC/SiC Ceramic Matrix Composites

Dongming Zhu

Materials and Structures Division
NASA John H. Glenn Research Center
Cleveland, Ohio 44135

Daytona Beach Conference, Florida
January 25-30, 2015
Acknowledgements

The work was supported by NASA Fundamental Aeronautics Program. NASA - Air Force Collaborative Program Venture 219 Project.

Ron Phillips and Ralph Pawlik for assistance in mechanical testing
Don Humphrey and Mike Cuy for their assistance in the TGA and furnace cyclic testing, respectively
Ram Bhatt in the collaborative work for EBC-CMC integrations
Louis Ghosn: FEM modeling
Sue Puleo: Testing support
NASA USRP Students Dan Miladinovich and Nadia Ahlborg, supported NASA CMAS Projects
NASA Intern Students Matt Appleby, Brad Richards
Terry McCue: SEM analysis
Francisco Sola-Lopez: TEM Analysis
ARFL: Oliver Easterday and Lynne M Pfledderer for helpful discussions and funding support for part of the research work

- The author is also grateful for helpful discussions: James Dicarlo, Janet Hurst, Bob Miller, James L. Smialek, Bryan Harder, Narottam Basal, Valerie Weiner

Other Collaborators:

Sulzer Metco (US) - Mitch Dorfman; Chis Dambra
Directed Vapor Technologies, International – Derek Hass and Balvinder Gogia
Southwest Research Institute – Ronghua Wei
General Electric Aviation, Rolls Royce, Pratt & Whitney, and Honeywell Engines
Penn-State - Professor Doug Wolfe; UES – Dr. A. K. Rai
Environmental Barrier Coating - CMAS Interaction Research Efforts

- Advanced EBC development – composition design and developments for improved CMAS resistance; thermomechanical-CMAS Interactions and durability – Zhu et al
- NASA-Air Force Venture and Viper Turbine Coating-CMAS Collaborative programs - Zhu, James Smialek, Robert A. Miller, Bryan Harder
- Formal NASA Intern Undergraduate Students – Nadia Ahlborg and Dan Miladinovich
- Fundamental NASA in-house CMAS properties - Narottam Bansal and Valerie Weiner
Outline

• Environmental barrier coating (EBC) development: the CMAS relevance

• Some generalized CMAS related failures

• CMAS degradation of environmental barrier coating (EBC) systems: rare earth silicates
 – Ytterbium silicate and yttrium silicate EBCs
 – Some reactions, kinetics and mechanisms

• Advanced EBCs, HfO$_2$- and Rare Earth - Silicon based 2700°F+ capable bond coats

• Summary
NASA Environmental Barrier Coatings (EBCs) and Ceramic Matrix Composite (CMC) System Development

- Emphasize material temperature capability, performance and long-term durability: Highly loaded EBC-CMCs with temperature capability of 2700°F (1482°C)
 - 2700-3000°F (1482-1650°C) turbine and CMC combustor coatings
 - 2700°F (1482°C) EBC bond coat technology for supporting next generation
 - Recession: <5 mg/cm² per 1000 h
 - Coating and component strength requirements: 15-30 ksi, or 100-207 Mpa
 - Resistance to Calcium Magnesium Alumino-Silicate (CMAS)

Step increase in the material's temperature capability

Cooling technologies:

Temperature Capability

- 2500°F Turbine TBC
- 2800°F combustor TBC
- 3000°F SiC/SiC CMC airfoil and combustor technologies
- 2700°F SiC/SiC thin turbine EBC systems for CMC airfoils

Increase in ΔT across T/EBC

- 2700°F (1482°C) Gen III SiC/SiC CMCs
- 2400°F (1316°C) Gen I and Gen II SiC/SiC CMCs
- 2000°F (1093°C), PtAl and NiAl bond coats

Gen I

Gen II – Current commercial

Gen III

Gen. IV

Year
EBC-CMAS Degradation is of Concern with Increasing Operating Temperatures

- Emphasize improving temperature capability, performance and long-term durability of ceramic turbine airfoils

 • Increased gas inlet temperatures for net generation engines lead to significant CMAS-related coating durability issues – CMAS infiltration and reactions

Calcium Magnesium Alumino-Silicate (CMAS) Systems Used in Laboratory Tests

- Synthetic CMAS compositions, in particular, NASA modified version (NASA CMAS), and the Air Force Powder Technology Incorporated PTI 02 CMAS currently being used
- Saudi Sands used for past turbine coating studies
- CMAS SiO$_2$ content typically ranging from 43-49 mole%; such as NASA’s CMAS (with NiO and FeO)
- Collaborations on-going with the Air Force; also planned DLR, ONEA etc on Volcanic Ash Composition selections

ARFL PTI 11717A 02 used at NASA for CMAS studies
CMAS Related Degradations in EBCs

- **CMAS effects**
 - Significantly reduce melting points of the EBCs and bond coats
 - Cause more severe degradations with thin airfoil EBCs
 - CMAS increase EBC diffusivities and permeability, thus less protective as an environmental barrier
 - Reduced mechanical properties: such as strength and toughness reductions
 - Leads to grain boundary attack thus disintegrate EBCs
 - CMAS interactions with heat flux, thermal cycling, erosion and thermomechanical fatigue
CMAS Related Degradations in EBCs - Continued

- CMAS effects on EBC temperature capability
 - Silicate reactions with NaO$_2$ and Al$_2$O$_3$ silicate

Phase diagrams showing yttrium di-silicate reactions with SiO$_2$, NaO and Al$_2$O$_3$
CMAS Related Degradations in EBCs

- Fatigue – environmental interaction is of great concern

A 20 micrometer thick EBC bond coated Prepreg SiC/SiC CMC after 40 hr, 20 Ksi, stress ratio R=0.05 fatigue testing in air
Current EBCs limited in their temperature capability, water vapor stability and long-term durability, especially for advanced high pressure, high bypass turbine engines.

Advanced EBCs also require higher strength and toughness:
- In particular, resistance to combined high-heat-flux, engine high pressure, combustion environment, creep-fatigue, loading interactions.

EBCs need improved erosion, impact and calcium-magnesium-alumino-silicate (CMAS) resistance and interface stability:
- Critical to reduce the EBC Si/SiO₂ reactivity and their concentration tolerance.

EBC-CMC systems need advanced processing for realizing complex coating compositions, architectures and thin turbine configurations for next generation high performance engines:
- Advanced high temperature processing of high stability cluster and nano-composites.
NASA EBC Systems

NASA EBC Systems

- HfO$_2$ -RE$_2$O$_3$ -SiO$_2$/RE$_2$Si$_{2-x}$O$_{7-2x}$ environmental barrier systems
 - Controlled silica content and transition element and rare earth dopants to improve EBC stability and toughness
 - Develop HfO$_2$-Si based + X (dopants) and more advanced rare earth composite compound composition systems for 2700°F+ long-term applications
 - Develop prime-reliant composite EBC-CMC interfaces for fully integrated EBC-bond coat systems
- RE$_2$O$_3$ -SiO$_2$ -Al$_2$O$_3$ Systems
 - Develop advanced NASA high toughness alternating layered systems
- Advanced 1500°C bond coats

High strength, high stability reinforced composites: HfO$_2$-Si and a series of Oxide-Si systems

HfO$_2$-Si based and minor alloyed systems for improved strength and stability

Advanced 2700°F bond coat systems: RE-Si based systems

Advanced 2700°F bond coat systems: RE-Si based Systems, grain boundary engineering designs and/or composite systems.
Strength Results of Selected EBC and EBC Bond Coats
- CMAS Reaction resulted in Strength Reduction in Silicates

Selected EBC systems
- HfO$_2$-RE-Si, along with co-doped rare earth silicates and rare earth alumino-silicates, for optimized strength, stability and temperature capability
- CMAS infiltrations can reduce the strength

![Diagram with data points and lines representing strength and temperature for different EBCs and bond coats.]

Strength test data compared
- Yb$_2$Si$_2$O$_7$ CMAS reacted tensile surface
- Yb$_2$Si$_2$O$_7$ CMAS reacted specimen fracture surface
Effect of CMAS Reaction on Toughness of HfO$_2$-Si Bond Coat and Yb$_2$Si$_2$O$_7$ EBC

- HfO$_2$-Si bond coat and ytterbium di-silicate fracture toughness studied
 - HfO$_2$-Si toughness >4-5 MPa m$^{1/2}$ achieved at higher temperature
 - Annealing heat treatments at 1300°C improved lower temperature toughness
 - CMAS effect unclear due to the compounded effects of possible 1350°C CMAS reaction degradation and annealing

- Ytterbium silicate EBC toughness may also be reduced due to CMAS reactions
 - More measurements are needed

![HfO$_2$-Si illustrating notch distortion due to CMAS exposure at 1350°C for 50 hrs](image1)

![Yb$_2$Si$_2$O$_7$ notch after CMAS exposure at 1350°C for 50 hrs](image2)

![Graph showing fracture toughness vs. temperature](image3)

"Apparent Toughness Drop" due to strength decrease
EBC CMAS Surface Reactions

- Ytterbium- and yttrium-disilicate silicates reactions and dissolutions in CAMS

Ytterbium silicate surface CMAS melts: 50 hr 1300°C

Ytterbium silicate surface CMAS melts: 5 hr 1500°C

Yttrium silicate surface CMAS melts: 50 hr 1300°C

Yttrium silicate surface CMAS melts: 5 hr 1500°C
EBC Reacted Apatite Phases under Long-Term Testing at 1500°C – Ytterbium silicate EBC

- Non stoichiometric characteristics of the CMAS – rare earth silicate reacted apatite phases
- Difference in partitioning of ytterbium vs. yttrium in apatite

Composition in apatite (100 hr):
EBC Reacted Apatite Phases under Long-Term Testing at 1500°C: Yttrium Silicate EBC

– Non stoichiometric characteristics of the CMAS – rare earth silicate reacted apatite phases

– Difference in partition of ytterbium vs. yttrium
 • Average AEO/RE$_2$O$_3$ ratio ~ 0.68 for ytterbium silicate – CMAS system
 • Average AEO/RE$_2$O$_3$ ratio ~ 0.22 for yttrium silicate – CMAS system

Composition in apatite (100 hr):
Stoichiometry of the Reacted Apatite Phases under Long-Term Testing at 1500°C

- Non stoichiometric characteristics of the CMAS – rare earth silicate reacted apatite phases – up to 200 hr testing
- Difference in partitioning of ytterbium vs. yttrium in apatite
 - Average $\text{AEO}/\text{RE}_2\text{O}_3$ ratio ~ 0.68 for ytterbium silicate – CMAS system
 - Average $\text{AEO}/\text{RE}_2\text{O}_3$ ratio ~ 0.22 for yttrium silicate – CMAS system

Effect of CMAS Reactions on Grain Boundary Phases

- CMAS and grain boundary phase has higher Al$_2$O$_3$ content (17-22 mole%)
 - Eutectic region with high Al$_2$O$_3$ content ~1200°C melting point
 - Loss of SiO$_2$ due to volatility

NASA modified CMAS

Grain boundary final phase – low SiO$_2$ and high Alumina

200 hr, 1500°C
Rare Earth Apatite Grain Growth

Grain growth of apatite phase at 1500°C at various times

Ytterbium silicate system

Yttrium silicate system
- Silica loss observed in the concentrated CMAS reacted regions
High Stability Rare Earth Silicon Bond Coat with High Melting Point Coating Compositions: Designed with Improved Temperature capability and CMAS Resistance

- Thermogravimetric analysis (TGA) in dry O₂ at 1500°C, tested up to 500 hr
- “Protective” scale of rare earth di-silicate formed in oxidizing environments
- Furnace cyclic test life also evaluated at 1500°C

Oxidation kinetics vs Si content
High Stability Rare Earth Silicon Bond Coat with High Melting Point Coating Compositions: Designed with Improved Temperature capability and CMAS Resistance - Continued

- Thermogravimetric analysis (TGA) in dry O₂ at 1500°C, tested up to 500 hr
- “Protective” scale of rare earth di-silicate formed in oxidizing environments
- Furnace cyclic or high heat flux test life evaluated at 1500°C up to 1000 hours with or without CMAS

An Yb-Gd2700°F EBC bond coat showed 500hr cyclic durability

FCT life of RE-Si coatings
High Stability and CMAS Resistance Observed from the Rare Earth Silicon High Melting Point Coating Compositions

- Demonstrated CMAS resistance of NASA RE-Si System at 1500°C, 100 hr
- Silica-rich phase precipitation
- Rare earth element leaching into the melts (low concentration ~9 mol%)
CMAS Reaction Kinetics in Bond Coats

- SiO₂ rich phase partitioning in the CMAS melts
- Rare earth content leaching low even at 1500°C
- More advanced compositions are being implemented for improved thermomechanical – CMAS resistance

CMAS Partitioning on RE-Si bond coat, 1500°C, 100hr
Advanced EBC Compositions Improve the Resistance to CMAS

- Controlling CMAS wetting, viscosity, stability and melting points
- Providing better EBC protections for CMCs in CMAS environments
- EBC durability being validated under CMAS-mechanical loading

400 hr, 69 Mpa creep rupture at EBC surface temperature 1400°C

202 hr, 69 MPa creep rupture at EBC surface temperature 1540°C; CMC failure
Advanced EBC Compositions Improve the Resistance to CMAS - Continued

- Controlling CMAS wetting, viscosity, stability and melting points
- Providing better EBC protections for CMCs in CMAS environments
- EBC durability initially validated under long-term CMAS-mechanical loading

400 hr, 69 Mpa creep rupture at EBC surface temperature 1400°C

202 hr, 69 MPa creep rupture at EBC surface temperature 1540°C; CMC failure
Creep-Fatigue of EBCs-CMCs in Complex Heat Flux and Simulated Engine Environments

- Long-term creep and fatigue used to validate EBCs at various loading levels
- Demonstrated 2700°F EBC and bond coat capability in complex environments

Fracture surface; 200+ hr at 2700°F+ creep rupture testing with CMAS; Advanced EBC protected CMCs

Advanced Bond Coat on CMC – intact after fatigue test with 15 ksi load and 2600-2700°F surface temperature for 460 hot hours

Advanced Bond Coat on CMC – intact after fatigue test with 15 ksi load and 2600-2700°F surface temp for 460 hot hours

Stress-oxidation and stress-CMAS environmental testing
Summary

• CMAS degradation remains a challenge for emerging turbine engine environmental barrier coating – SiC/SiC CMC component systems
• CMAS leads to lower melting point of EBC and EBC bond coat systems, and accelerated degradations
• NASA advanced EBC compositions showed promise for CMAS resistance at temperatures up to 1500°C+, and in combined with mechanical loading
• We have better understanding of CMAS interaction with rare earth silicates, and in controlling the compositions for CMAS resistance while maintaining high toughness
• We are developing better standardized CMAS testing, and working on CMAS induced life reductions, helping validate life modeling
EBC-CMAS Degradation under Thermal Gradients

- Effect of CMAS concentration on EBC-CMC system cyclic durability
 - CMAS reacts with high SiO₂ activity layer and reducing melting point
 - Low tough reaction layers such as apatite phases
 - Interactions with heat flux, thermal cycling, erosion and thermomechanical fatigue

EB-PVD ZrO₂

HfO₂-Yb₂O₃-
Aluminosilicate
Yb₂Si₂O₇
Si

More severe degradation and delamination:
Tsurface
1500°C
Tinterface
1316°C