VIIP: Central Nervous System (CNS) Modeling

Jerry Vera\(^1\), Lealem Mulugeta\(^3\), Emily Nelson\(^1\), Julia Raykin\(^2\), Andrew Feola\(^2\), Rudy Gleason\(^2\), Brian Samuels\(^4\), C. Ross Ethier\(^2\) and Jerry Myers\(^1\)

NASA Human Research Program Investigators Workshop
Galveston, TX
January 15, 2015

\(^1\)NASA Glenn Research Center, Cleveland, OH
\(^2\)Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA
\(^3\)Universities Space Research Association, Houston, TX
\(^4\)Department of Ophthalmology, U. Alabama at Birmingham, Birmingham, AL
Multiscale model for VIIP research

- CNS model includes intra/extracranial cerebrospinal fluid (CSF) and cranial blood compartments
- For details on other modules, see companion works for IWS2015 by Ethier et al., Feola et al., Nelson et al., and Price et al.
CNS Blood flow and pressure model

- Several lumped CNS models exist. Our starting point was a model that had been applied to microgravity (μg) (Stevens et al., 2005; Lakin et al., 2007):
 - Time-dependent model composed of 6 fluid compartments (nodes)
 - 3 vascular:
 - Intracranial Arteries (1)
 - Capillaries (2)
 - Venous Sinous (3)
 - 2 cerebrospinal fluid
 - Ventricular CSF (4)
 - Extraventricular CSF (6)
 - 1 Brain node (5)
 - Boundary conditions at cranium and whole-body interaction provided by extracranial nodes
 - Central Arteries [A]
 - Central Veins [V]
 - Thoracic Space [Y]

Q = Flowrates between compartments (ml/min)
C = Compartment compliance

- Stevens et al. (2005)
Governing Equations

- Defining the pressures in the 6 compartments as dependent variables, the system is modeled in matrix form as a system of ordinary differential equations:

\[
C \frac{dP}{dt} + ZP = S
\]

Note that G is explicitly included in the forcing terms in S.

<table>
<thead>
<tr>
<th>(C_{15})</th>
<th>(-C_{15})</th>
<th>(dP_1/dt)</th>
<th>(Z_{A1})</th>
<th>(P_1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_{25})</td>
<td>(-C_{25})</td>
<td>(-Z_{23} + K_{25})</td>
<td>(-Z_{23})</td>
<td>(-Z_{25})</td>
</tr>
<tr>
<td>(C_{35} + C_{36})</td>
<td>(-C_{53})</td>
<td>(-Z_{25} + Z_{45})</td>
<td>(-Z_{45})</td>
<td>(-Z_{45})</td>
</tr>
<tr>
<td>(C_{45})</td>
<td>(-C_{45})</td>
<td>(-Z_{45})</td>
<td>(-Z_{45})</td>
<td>(-Z_{45})</td>
</tr>
<tr>
<td>(-C_{15})</td>
<td>(-C_{25})</td>
<td>(-C_{35})</td>
<td>(-C_{36})</td>
<td>(-C_{36})</td>
</tr>
<tr>
<td>(-C_{15})</td>
<td>(-C_{25})</td>
<td>(-C_{35})</td>
<td>(-C_{36})</td>
<td>(-C_{36})</td>
</tr>
</tbody>
</table>

\(C \) — compliance
\(G \) — gravity
\(K \) — filtration coefficient
\(P \) — pressure
\(Q \) — flow rate
\(S \) — source/forcing terms

\(Z \) — fluidity ~ 1/resistance
\(\theta \) — tilt angle
\(\pi \) — osmotic pressure
\(\sigma \) — reflection coefficient
MATLAB Implementation

The boundary pressure in the Central Arteries [A] node is prescribed using an oscillating pressure function \(P_A(t) \) simulating the carotid pulsatile pressure wave.

At the current timestep, a unique solution for the timestep-forward pressure at every node is calculated using the Matrix inverse.

Pressures are integrated through time using an adaptive-timestep 4th and 5th order Runga-Kutta solver.

After solutions are found, pressure equations are used to calculate flow rates.

Data for pressures and flow rate at current time is stored.

Timestep is advanced.
Verification Tests

- 20 independent verification tests that included variation in hydrostatic pressure
- 3 independent users of the code

TEST

- Short-term head down tilt (HDT)
- Long-term HDT
- Microgravity
- Blood-brain barrier influence

Verification tests also had a validation component
- Used Lakin and Stevens equation structure and parameters, but
- Developed independent implementation, arterial pressure that drives unsteady response and solution methodology
Short-term head down tilt

- Tests called for monitoring of changes in pressure differences pre- to post-tilt:

<table>
<thead>
<tr>
<th>Tilt angle (°)</th>
<th>$\Delta(P_s-P_v)$ (mmHg)</th>
<th>Δ ICP (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-10</td>
<td>3.1</td>
<td>3.86</td>
</tr>
<tr>
<td>-15</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Conclusion: The current model agrees with prior experimental and numerical work.

Long-term HDT and Microgravity

Conclusion: Using their parameters, our predicted ΔICP is consistent with the prior model in μg and long-duration HDT, but are their parameters correct?

<table>
<thead>
<tr>
<th>Condition</th>
<th>ΔICP (mmHg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model [1]</td>
<td>Our Model</td>
</tr>
<tr>
<td>Long-term HDT</td>
<td>4.9</td>
</tr>
<tr>
<td>μg</td>
<td><0</td>
</tr>
</tbody>
</table>

[1] Stevens et al. (2005)
Blood-brain barrier influence

- Later work by the Stevens/Lakin team hypothesized that the blood/brain barrier might weaken in μg
- In Lakin et al. (2007), they performed a sensitivity study for a hypothetical change in the reflection and filtration coefficients
- This changed their findings on ICP in μg

<table>
<thead>
<tr>
<th></th>
<th>sigma</th>
<th>K</th>
<th>Simulated ICP (mmHg)</th>
<th>Target ICP (mmHg)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test0</td>
<td>1.000</td>
<td>0.066</td>
<td>13.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test1</td>
<td>0.583</td>
<td>0.052</td>
<td>15.15</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Test2</td>
<td>0.665</td>
<td>0.105</td>
<td>17.18</td>
<td>17</td>
<td>1.06</td>
</tr>
<tr>
<td>Test3</td>
<td>1.081</td>
<td>0.064</td>
<td>13.23</td>
<td>13</td>
<td>1.77</td>
</tr>
<tr>
<td>Test4</td>
<td>0.438</td>
<td>0.113</td>
<td>19.14</td>
<td>19</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Conclusion: Our model agrees with literature results to within 2% or better.

Revising prior findings, authors concluded that ICP could increase in μg. But how do we assess the credibility of this claim?
Preparing for μg simulations

• Before weighing in on the potential change in ICP in μg, we need to:
 • Re-assess parameters used by Lakin/Stevens based on the most current VIIP research
 • Quantify uncertainty in model parameters
 • Define a physiological envelope for parameters that will be relevant for the astronaut corps on orbit
 • Perform sensitivity studies over a much larger parameter space
 • Examine model predictions against independent studies in HDT, μg, and postural change, particularly for chronic conditions. We need our model to do a good job in predicting:
 • Volumes of intra/extracranial CSF compartments
 • Volumes of intracranial blood compartments
 • Only after these steps are taken can we make intelligent predictions about μg response
Sensitivity analysis

- We are analyzing this system by testing model sensitivity
 - Parameters include: compliances, resistances and filtration coefficients
 - Each described by statistical parameters
 - Mean and range of variation (variance)
 - Distribution of variation (density function)

- Methodology
 - Partial Rank Correlation Coefficient (PRCC) Analysis
 - Provides the linear relationships between two variables
 - one input parameter and one output parameter
 - All linear effects of other variables are removed after rank transformation
 - Rank Transformation: transforms nonlinear monotonic relations to linear
 - Latin Hypercube sampling
 - Efficient method to randomly characterize the sets of combined parameters
 - Many independent runs with randomly chosen parameter sets provide statistics on the system response
Conclusions

• A CNS lumped parameter model has been produced based on the model developed by Lakin and Stevens
 – Our solution methodology and computational platform is unique
• Our model has been tested and verified
 – ICP predictions agree with Lakin/Stevens in 20 cases of acute and chronic μg and HDT
• CNS model infrastructure is complete, but additional work is needed
 – Re-assess parameters used by Lakin/Stevens
 – Define flight and flight analog derived parameter ranges
 – Perform parameter sensitivity studies
 – Validate against the latest VIIP research
• In the future this model will be
 – integrated with lumped CVS and eye models
 – Used to establish spaceflight responses with fidelity sufficient to supply boundary conditions for more complex VIIP eye simulations.