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Introduction Methods Results ConclusionIntroduction

• Clinical signs of microgravity in the eye and optic 
nerve:

The Eye in Microgravity

Grade 3 edema

Choroidal folds

Posterior Globe Flattening
Optic Nerve ‘kinking’

~Mader et al. 2011; Kramer et al. 2012
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• Cephalad fluid shifts in microgravity affect 
intracranial and intraocular pressures, leading to 
altered biomechanical loads on the connective 
tissues of the posterior globe and optic nerve 
sheath. 

Hypothesis

MMMeeettthhhooodddsss RRReeesssuuullltttsss

~humanresearchroadmap.nasa.gov
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• Goal: To model the response of the lamina 
cribrosa and optic nerve head (ONH) to elevated 
intracranial pressure (ICP)

• Finite Element Analysis (FEA)
‒ Simulates effects of loads (pressures) on tissues with 

complex anatomy/material properties
‒ Previously used to understand how IOP-induced 

changes affect the stresses and strains in the lamina 
cribrosa and ONH

Goal & Approach
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1. Develop geometry of the posterior eye 
‒ Including all relevant tissue components

2. Perform a mesh convergence study 
‒ To ensure mesh independence

3. Simulate pressures estimated to occur in 
microgravity

Initial Steps
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Optic Nerve Head (ONH) Geometry

Sigal et al. 2005

• Based on models of Sigal et al., 2005
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Adopted from Liu and Kahn 1993
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• Our anatomical geometry is axisymmetric but it was 
required to be modeled as a 3D wedge in the FE solver 
(FEBio)
‒ Defined in-plane (y and z) and circumferential (s) element sizes

Geometry Continued
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Model Overview

• All tissues were modeled as isotropic, linear-elastic and 
incompressible.  

Component Modulus (MPa)

Sclera 3.0

Peripapillary sclera 3.0

Lamina cribrosa 0.3

Optic nerve 0.03

Pia mater 3.0

Dura mater 1.0

Central retinal vessel 0.3

~ Raykin et al. 2013; Sigal et al. 2004; Sigal et al. 2005
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• Intraocular Pressure (IOP)
• Retinal Vessel Pressure (RVp)
• Intracranial Pressure (ICP)

Boundary Conditions
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Convergence Overview

• The average effective strain for each tissue region was 
calculated for each mesh density.

• Convergence Criteria: Our production mesh was defined 
as having <5% relative error in the average effective 
strain from our most refined mesh 

Component
Number of 
Elements

(Hexahedral)

Sclera 689 – 7589

Peripapillary sclera 560 - 21145

Lamina cribrosa 265 - 13565

Optic nerve 8445 - 52147

Pia mater 662 – 53662

Dura mater 1835 – 44035

Central retinal vessel 243 - 126177
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Lamina Cribrosa Convergence Plot

Production Mesh
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• Intraocular Pressure (IOP) – 15 mmHg
• Retinal Vessel Pressure (RVp) – 55 mmHg
• Intracranial Pressure (ICP) – 30 mmHg

Estimated Pressures in Microgravity

~ Alexander et al. 2012; Mader et al. 2011 
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Linear Elastic Model

5 %

-5 %

ICP: 0 mmHg

First Principal Strain

ICP: 30 mmHg

Third Principal Strain
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• Developed a physiologically relevant model of the 
posterior eye and optic nerve sheath
‒ Performed a mesh convergence study

• We observed that elevating ICP alters the loading 
conditions in the optic nerve head 
‒ This may activate mechanosensitive cells and lead to a 

remodeling of the optic nerve sheath

• However linear-elastic materials may not completely 
describe the loading conditions of the eye in 
microgravity.

Conclusions
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• We explored implementing poroelastic materials 
and fluid loading conditions because:
‒ The intraocular, retinal vessel, and intracranial 

pressures are generated by fluids
‒ Poroelastic models allows volumetric changes when 

subjected to a fluid pressure
‒ Fluid movement occurs between and within each 

tissue

Poroelastic Models
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• Simulated the IOP and ICP as fluid pressures
• We modeled the components of the optic nerve head as 

poroelastic
‒ The lamina cribrosa, optic nerve, and pia mater were poroelastic

with a permeability of 0.001 mm2/MPa*s

Poroelastic Simulations

Optic
Nerve

Pia
Mater

Lamina
Cribrosa

~ Raykin et al. 2013
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First Principal Strain

ICP: 0 mmHg

PoroelasticLinear-Elastic
5 %

-5 %

Linear-Elastic Poroelastic

Mean Strain Mean Strain Percent 
Difference 

Lamina Cribrosa 1.64% 1.5% 2%

Optic Nerve 1% 1.4% 10.4%
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First Principal Strain

PoroelasticLinear-Elastic

Linear-Elastic Poroelastic

Mean Strain Mean Strain Percent 
Difference 

Lamina Cribrosa 1.5% 1.7% 2.4%

Optic Nerve 1.3% 2.1% 16.3%

ICP: 30 mmHg

5 %

-5 %
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Third Principal Strain

PoroelasticLinear-Elastic

Linear-Elastic Poroelastic

Mean Strain Mean Strain Percent 
Difference 

Lamina Cribrosa -2.8% -0.05% 24.5%

Optic Nerve -1.7% -1.0% 11.1%

ICP: 0 mmHg

5 %

-5 %
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Third Principal Strain

PoroelasticLinear-Elastic

Linear-Elastic Poroelastic

Mean Strain Mean Strain Percent 
Difference 

Lamina Cribrosa -2.6% -0.3% 22.2%

Optic Nerve -1.6% -0.44% 18.2%

ICP: 30 mmHg

5 %

-5 %
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• We observed large differences in the strains 
between the linear-elastic and poroelastic model 
simulations

• Poroelastic models may be more physiologically 
relevant because they can apply fluid pressures 
and allow fluid flow within tissues
‒ However, we need more information on the 

permeability of ocular structures to implement more 
accurate FE models

Conclusions
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