Complex Parts, Complex Data: Why You Need to Understand What Radiation Single Event Testing Data Does and Doesn’t Show and the Implications Thereof

Kenneth A. LaBel
ken.label@nasa.gov
Co-Manager, NASA Electronic Parts and Packaging (NEPP) Program

Melanie D. Berg
melanie.d.berg@nasa.gov
ASRC Space & Defense Inc
Acronyms

- Brookhaven National Laboratories (BNL)
- commercial-off-the-shelf (COTS)
- device under test (DUT)
- Electrical and Electronics Engineers (IEEE)
- field programmable gate array (FPGA)
- integrated circuits (ICs)
- intellectual property (IP)
- Joint Electron Devices Council (JEDEC)
- Joint Test Action Group JTAG 1149.1 (JTAG)
- power-on-reset (POR)
- Radiation Effects Data Workshop (REDW)
- single event burnout (SEB)
- single event effects (SEE)
- single event functional interrupt (SEFI)
- single event transient (SET)
- Single Event Upset Test Facility (SEUTF)
- single-event latch-up (SEL)
- test access port (TAP)
- windowed shift register (WSR)
Outline

• Abstract
• Introduction
• Diatribe 1: Why you may not really understand what a single event functional interrupt (SEFI) is
• Tenet 1: The Data
• Tenet 2: The Test
• Tenet 3: The Analysis
• Diatribe 2: Limiting cross-sections
• Caveat Emptor!
• Discussion
• Summary
• Acknowledgements
Abstract

• Electronic parts (integrated circuits) have grown in complexity such that determining all failure modes and risks from single particle event testing is impossible.
• In this presentation, the authors will present why this is so and provide some realism on what this means.

It’s all about understanding actual risks and not making assumptions.
Introduction

• Device complexity has increased the challenges related to radiation single event effects (SEE) testing.
 – Obtaining appropriate test coverage and understanding of the response of billion-transistor commercial devices, for example, are a concern for every tester.
 • This is akin to test vector coverage – have we stimulated sufficient nodes (or states) during our SEE test to understand risk properly?
• We present three tenets for SEE testing to consider:
 – Tenet 1: All SEE test data are “good” data;
 – Tenet 2: Not all test sets/methods are appropriate or complete; and,
 – Tenet 3: Not all interpretation and analysis of SEE data are accurate.
• Each of these tenets will be discussed in turn with two related technical diatribes included.
Diatribe 1: SEFIs – Definitions

• JEDEC JESD89A* Definition
 – “A soft error that causes the component to reset, lock-up, or otherwise malfunction in a detectable way, but does not require power cycling of the device (off and back on) to restore operability, unlike single-event latch-up (SEL), or result in permanent damage as in single event burnout (SEB).”
 • An example is an SEU in a control register changing operational modes of a device.

• Modern integrated circuits (ICs) are not that straightforward (see next chart)

*Joint Electron Devices Council (JEDEC) - Measurement and Reporting of Alpha Particle and Terrestrial Cosmic Ray-Induced Soft Errors in Semiconductor Devices (note: soft errors are terrestrial version of single event upsets (SEUs))
Diatrib e 1 – SEFIs?

• Are these SEFIs?
 – An SEU in hidden circuitry
 • May not change apparent device operation, but is observed via changes in power consumption (power cycle may be required to recover),
 – A single event transient (SET) in a power-on-reset (POR) circuit that power cycles/resets the device
 • Problem clears itself, but there is down time and to-be-determined operating state after recovery,
 – An SEU that latches in a redundant (weak or flawed) row/column in a memory array
 • May not be recoverable by power reset, or
 – An SEU in a security block
 • Device may continue working, but user’s ability to change modes may be disabled.

• We’d say YES!
Diatribe 1: SEFI – The Term

- Originally coined in the mid-1990s by Gary Swift (then at Jet Propulsion Laboratories) to describe a class of single event upsets (SEUs) (or a propagated SET) that causes a functional “hiccup” to occur and may be “soft” (can be cleared by reprogramming, restarting, or other non-power cycling means) or “hard” (requires power cycle).
 - Operational changes would be included as well as those “non-operational” changes like current creep.
 - This is a more general description than the JEDEC definition.
A SEFI Example (1)

- The figure below illustrates a step load increase in the power consumption (supply current) that occurred during an SEU test on a field programmable gate array (FPGA) device (Katz, et al).
 - Single event latchup (SEL) is often assumed when power increased as observed.
 - Device configuration also was altered during the event.
A SEFI Example (2)

- SEU event was associated with the built in test circuit (Electrical and Electronics Engineers (IEEE) Joint Test Action Group JTAG 1149.1 (JTAG) Test Access Port (TAP) controller as illustrated below.
A SEFI Example (3)

- The bottom line is that the observational line between a SEFI and SEL can be very blurry.
- Without a true understanding of the device’s operation (for both that which is accessible to the user and that which isn’t) as well as a maximization of visibility by the test set/method, understanding and classifying an event may be problematic.
Tenet 1: The Data is Always “Good”

In short, data is just data.

- It is what was observed and captured during an SEE test.
- Now the question becomes are the data captured complete, appropriate, and interpreted correctly?

Think of the questions this brings into play:

- Have all data points been captured? (adequate and reliable data capture),
- Was the test prognostic enough to gather the right range of data (think of the simple SET capture from an operational amplifier – was the minimum pulse width/amplitude sensitivity of your oscilloscope set appropriately)? (appropriate test set granularity); or,
- Have all the right test vehicles been used to generate that data? (adequate test circuits/operation)

The point is simple: the data are correct, but there’s either not enough of it or insufficient granularity of information.

The simple takeaway is that testing requires a look far below the surface…

Tenet 2: The Test (1)

- The first complication comes from the way the device under test (DUT) is tested and the way data capture was performed.
- The general idea is to focus on prognostic testing—ensuring that your test design is inquisitive enough to capture all available information on an event.
- We will define design *visibility* as ensuring that the interface between what the DUT is doing and how the test system is operating is adequate to capture all relevant event information.
Tenet 2: The Test (2)

- While this presentation isn’t a “how-to-test” document, it does recommend a thought process on what needs to be thoroughly considered in advance of test.

- An example would be having a high-speed logic string, such as a shift register, with inadequate output buffer performance that limits operation to 10% of the frequency capability.
 - In a case like this, choice of output buffer type along with a concept such as a windowed shift register (WSR) approach [Berg, et al] would allow for a proper operation and data capture.

- Bottom line: know how the testing was done and the level of completeness and granularity of data captured.
Tenet 3: The Analysis

- The real output of any SEE test campaign is not only the ability to determine rates for space usage, but also the error signatures of the events.
- This is the key to understanding the risk beyond the SEE rates and to provide the system designers the information to properly design mitigation or fault tolerance approaches.
- The simple way of viewing this is that all SEU events that cause SEFIs are not created equal:
 - They have different circuit responses and capturing and diagnosing them can be a challenge.
 - One SEFI may change the operating mode, while another may cause a current increase.
Diatribe 2: Limiting cross-sections (1)

- The theory is pretty straightforward:
 - Just because an event is not observed during a SEE test run doesn’t rule out the potential that the next particle will cause the event (or a different event).
- SEE is known to be a Markov process in that past performance is not necessarily an indicator what happens next.
 - One then assumes that the next particle will cause an event.
 - The *limiting cross-section* is then usually designated as $1/(\text{fluence of the test run, i.e., the total number of particles/cm}^2 \text{ accumulated during that run})$.
Diatribes 2: Limiting cross-sections (2)

A simple example was documented in 1998 by LaBel, et al.
- Proton SEE tests were performed with a sample size of 3 and a proton test fluence of 1×10^{10} p/cm2
- A specific SEFI condition was not observed (row/column errors).
- The project utilizing this device did not understand that this implied a limiting cross-section, as opposed to a zero cross-section or immunity to the effect.
- They flew 1000 samples of this device and observed this SEFI in flight.
- A re-test with 100 parts and a higher proton fluence confirmed this rare event and device sensitivity.

In cases of billion transistor devices, the probability of stimulating all possible error signatures is statistically zero for a typical test campaign. Thus, the best we can try to do is provide the limits for other error types not observed.
Caveat Emptor!

- The figure below is from the 1992 IEEE Radiation Effects Data Workshop (REDW) record (LaBel, et al.)
- To summarize what was presented,
 - A system level test of an INTEL 80386 processor and several peripherals was performed at Brookhaven National Laboratories (BNL) Single Event Upset Test Facility (SEUTF).
 - The data were for a representative test run and interpreted as “microlatchup” – a series of SEL events that caused a step-like increase with each event in the power supply current consumption.
 - However, the device continued to function during the test run even with the increases.
Mea Culpa!

• Realistically, more diagnostics were needed to determine if these really were SEL events and not possibly caused by SEU hits to hidden logic or bus contention or another SEFI event.

• Even over twenty years ago, device complexity and understanding should have been better explored.
Discussion

- The realistic implications are different depending on whether the device is commercial-off-the-shelf (COTS) or custom-designed for radiation tolerance..
 - For COTS, you will be dealing with unknowns and limitations, hence capturing as many error signatures as possible provides the most useful information.
 - It’s what the designers need to build appropriate mitigation into their systems.
 - For custom design, you should be able to predict error signatures as long as there aren’t intellectual property (IP) blocks of unknown design (black box designs).
 - Thus, tests here are usually more about statistics to meet SEU rates or threshold levels.
 - That is, unless unexpected SEFI events occur.
- Devices like FPGAs are afflicted with both implications:
 - Custom designs are created, but there’s also manufacturer-embedded IP and hidden functions that require detailed error signature capture.
 - *Double the challenge!*
Summary

• While far from a complete treatise on testing, we have provided some caveats in reviewing a device’s SEE performance based on collected data.

• The level of understanding of the device’s internal workings as well as the limitations of the test setup, allow proper risk-based analyses to be performed on the collected SEE data.
 – It’s not just event rates, but event signatures and interpretation!
Acknowledgements

- We would like to thank the support of the NASA Electronic Parts and Packaging Program (NEPP).
- The authors would also like to thank Martha O’Bryan for her aid in putting this paper and its accompanying presentation together.