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Here we present the results from an intercomparison of multiple
global gridded crop models (GGCMs) within the framework of the
Agricultural Model Intercomparison and Improvement Project and
the Inter-Sectoral Impacts Model Intercomparison Project. Results
indicate strong negative effects of climate change, especially at
higher levels of warming and at low latitudes; models that include
explicit nitrogen stress project more severe impacts. Across seven
GGCMs, five global climate models, and four representative con-
centration pathways, model agreement on direction of yield
changes is found in many major agricultural regions at both low
and high latitudes; however, reducing uncertainty in sign of re-
sponse in mid-latitude regions remains a challenge. Uncertainties
related to the representation of carbon dioxide, nitrogen, and high
temperature effects demonstrated here show that further re-
search is urgently needed to better understand effects of climate
change on agricultural production and to devise targeted adapta-
tion strategies.
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The magnitude, rate, and pattern of climate change impacts on
agricultural productivity have been studied for approximately

two decades. To evaluate these impacts, researchers use bio-
physical process-based models (e.g., refs. 1–5), agro-ecosystem
models (e.g., ref. 6), and statistical analyses of historical data
(e.g., refs. 7 and 8). Although these and other methods have been
widely used to forecast potential impacts of climate change on
future agricultural productivity, the protocols used in previous
assessments have varied to such an extent that they constrain cross-
study syntheses and limit the ability to devise relevant adaptation
options (9, 10). In this project we have brought together seven
global gridded crop models (GGCMs) for a coordinated set of
simulations of global crop yields under evolving climate conditions.
This GGCM intercomparison was coordinated by the Agricul-

tural Model Intercomparison and Improvement Project (AgMIP;
11) as part of the Inter-Sectoral Impact Model Intercomparison
Project (ISI-MIP; 12). In order to facilitate analyses across models
and sectors, all global models are driven with consistent bias-
corrected climate forcings derived from the Coupled Model
Intercomparison Project Phase 5 (CMIP5) archive (13). The objec-
tives are to (i) establish the range of uncertainties of climate
change impacts on crop productivity worldwide, (ii) determine key
differences in current approaches used by cropmodeling groups in
global analyses, and (iii) propose improvements in GGCMs and in
the methodologies for future intercomparisons to produce more
reliable assessments.

We examine the basic patterns of response to climate across
crops, latitudes, time periods, regional temperatures, and atmo-
spheric carbon dioxide concentrations [CO2]. In anticipation of
the wider scientific community using these model outputs and the
expanded application of GGCMs, we introduce these models and
present guidelines for their practical application. Related studies
in this special issue focus on crop water demand and the fresh-
water supply for irrigation (14), the application of the crop model
results as part of wider intersectoral analyses (15), and the in-
tegration of crop-climate impact assessments with agro-economic
models (16).

1. Global Gridded Crop Models
Details of the seven global crop models used in this study are
provided in SI Appendix, Tables S1–S6. These include the En-
vironmental Policy Integrated Climate Model [EPIC (17–20);
originally the Erosion Productivity Impact Calculator (17)], the
Geographic Information System (GIS)-based Environmental
Policy Integrated Climate Model (GEPIC; 18–21), the Global
AgroEcological Zone Model in the Integrated Model to Assess
the Global Environment (GAEZ-IMAGE; 22, 23), the Lund-
Potsdam-Jena managed Land Dynamic Global Vegetation and
Water Balance Model (LPJmL; 24–26), the Lund-Potsdam-Jena
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General Ecosystem Simulator with Managed Land (LPJ-GUESS;
24, 27, 28), the parallel Decision Support System for Agro-tech-
nology Transfer [pDSSAT; 29, 30; using the Crop Environment
Resource Synthesis (CERES) models for maize, wheat, and rice
and the Crop Template approach (CROPGRO) for soybean], and
the Predicting Ecosystem Goods And Services Using Scenarios
model (PEGASUS; 31).
These models differ in regard to model type, inclusion and

parameterization of soil and crop processes, management inputs,
and outputs. These dissimilarities must be taken into account in
interpreting the results of the intercomparison and in the use of
results in other analyses (SI Appendix, Table S1). Examples in-
clude the biological and environmental stresses affecting crops in
each model and the treatment of how increasing [CO2] affects
plant growth and yield. GAEZ-IMAGE, LPJ-GUESS, and
LPJmL focus on water and temperature responses, whereas the
other four models also consider stresses related to nitrogen de-
ficiency and severe heat during various stages of development. In
addition to these, pDSSAT considers oxygen stress, PEGASUS
considers phosphorus and potassium stresses, and EPIC and
GEPIC both consider oxygen, phosphorus, bulk density, and
aluminum stresses.

2. Comparison with Intergovernmental Panel on Climate
Change Fourth Assessment Report Results
A relevant question is to what extent findings of this substantial
effort of coordinated GGCM modeling are different from what
was reported in the Intergovernmental Panel on Climate Change
Fourth Assessment Report (IPCC AR4; 32) (Fig. 1). Crop
modeling results in the IPCC AR4 showed that small beneficial
impacts on rainfed crop yields may be found in mid- and high-
latitude regions with moderate-to-medium local increases in
temperature (1–3 °C) along with associated [CO2] increase and
rainfall changes (figure 5.2 in ref. 32; reproduced as orange dots
and quadratic fit in Fig. 1). In low-latitude regions, even moderate
temperature increases (1 to 2 °C) were found to have negative
yield impacts for major cereals, because the climate of many
tropical agricultural regions is already quite close to the high-
temperature thresholds for suitable production of these cereals
(33, 34). Furthermore, increases in tropical temperatures can lead
to greater evaporative demand and thus water stress on crops.
We find that general patterns of the GGCM results are simi-

lar, especially among those models that simulate nitrogen stress
on crops and include fertilizer application rates based on ob-
servational databases (red line in Fig. 1). GGCMs without ni-
trogen stress tend to be more optimistic in yield response (green
line in Fig. 1). The 15–85% range of all GGCM results (indicated
by the shaded envelope) suggests that climate impacts on trop-
ical croplands are generally more negative than the mid- and
high-latitude impacts. There is considerable variation in response
within these broader latitudinal bands, with mid- and high-latitude
crop yields spanning both positive and negative responses, es-
pecially at high levels of temperature change (which are also
associated with higher [CO2]). The GGCM results generally dis-
play a wider range of uncertainty compared to the AR4 results,
reflecting the much broader geographical coverage, projected
temperature, and diversity of crop models represented in the
current study.

3. GGCM Structural Differences
A major source of uncertainties in projected climate impacts
across the globe is the result of variations in GGCM approaches,
assumptions, and structures. Documentation of these differences
is fundamental to at least partially constraining them and to im-
proving analyses of ensemble crop projections.

3.1 Model Types. The seven GGCMs may be grouped into three
types according to their original purpose, structure, and pro-
cesses: site-based crop models (EPIC, GEPIC, and pDSSAT),
agro-ecosystem models (LPJ-GUESS, LPJmL, and PEGASUS),
and agro-ecological zone models (GAEZ-IMAGE) (SI Appen-
dix, Fig. S1). A critical question is whether two models from the
same lineage, such as EPIC and GEPIC, and LPJ-GUESS and
LPJmL are truly independent. For instance, in the case of EPIC
and GEPIC, the same model version is used (0810), but with dif-
ferent parameterizations and assumptions about soil and manage-
ment input data that are reflected in the variations in their results.
Site-based models were developed to simulate processes at the

field scale, and include dynamic interactions among crop, soil,
atmosphere, and management components (2, 20, 30). These
models are often calibrated and validated with data from agro-
nomic field experiments. The versions of the site-based models
used in this study have been developed to run simulations on
global grids, as has been done using DSSAT (29, 35–37).
Agro-ecosystem models were primarily developed to simulate

carbon and nitrogen dynamics, surface energy balance, and soil
water balance. The LPJmL and LPJ-GUESS models are dy-
namic global vegetation models that simulate the full global
carbon and water cycles. Vegetation dynamics and agricultural
modules were originally introduced to improve the simulations of
these cycles. PEGASUS is a simple global vegetation model
designed to test how agroecosystems respond to climate change
and to evaluate potential benefits of various farming adaptation
options at the global scale.
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Fig. 1. Mean relative yield change (%) from reference period (1980–2010)
compared to local mean temperature change (°C) in 20 top food-producing
regions for each crop and latitudinal band. Results shown for the 7 GGCMs (6
for rice) for all GCM combinations of RCP8.5 compared to results from IPCC
AR4 (represented as orange dots and quadratic fit; 36). Quadratic least-
squares fits are used to estimate the general response for the GGCMs with
explicit nitrogen stress (EPIC, GEPIC, pDSSAT, and PEGASUS; red line) and for
those without (GAEZ-IMAGE, LPJ-GUESS, and LPJmL; green line). The 15–
85% range of all models for each ¼°C band is represented in gray. Limits of
local temperature changes reflect differences in projected warming in cur-
rent areas of cultivation.
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The agro-ecological zone methodology (used here by GAEZ-
IMAGE) was developed to assess agricultural resources and
potential at regional and global scales and has been embedded
into integrated assessment models for global environmental
change (6, 23).

3.2 Model Processes. Crop processes simulated in all or some of
the GGCMs include leaf area development, light interception
and utilization, yield formation, crop phenology, root distribu-
tion responsiveness to water availability at soil depth, water and
heat stress, soil–crop–atmosphere water cycle dynamics, evapo-
transpiration, soil carbon and nitrogen cycling, and the effect of
[CO2] (SI Appendix, Table S1). All of the GGCMs explicitly
simulate the effects of temperature and water on crop growth;
fewer models simulate, for example, the effects of specific heat
stress at critical stages of crop development or the effects of
water-logging on root function. GGCMs differ as to their simu-
lation of some processes in individual crops, such as which
models simulate rice phenology as sensitive to day length as well
as temperature.
Thus the GGCMs vary in their interactive responses to in-

creasing [CO2], rising temperature, and changes in water avail-
ability, which are the core characteristics of projected climate
changes in agricultural regions around the world (32). How the
GGCMs handle these factors and their interactions with nutrient
availability (especially N) has significant impacts on the results (41).
This GGCM intercomparison focuses on long-term yield levels

affected by inputs (climate, [CO2], water, nutrients) rather than
on short-term shocks. The effects of pests and diseases are not
included explicitly; pest vulnerability may be implicitly included
through calibration to observed yields in some of the models.
LPJmL and PEGASUS, for instance, reflect the level of farming
intensification and technological inputs (such as the use of
pesticides). However this method does not allow for estimation
of how the effects of pests and diseases may change under
changing climate conditions, an important area for future model
development.
Climate change influences on short-term temperature extremes,

monsoon dynamics, and the frequency and intensity of pre-
cipitation may also play a substantial role in the nature of future
agricultural impacts. GCMs do not fully resolve these features,
and the representation of corresponding stresses remains an active
area of GGCM development.

3.3 Model Inputs. A key contrast among the GGCMs is in nutrient
response in regard to underlying soil properties and to nutrients
applied (nitrogen, phosphorus, and potassium), amount, and
timing. Disparities in the resulting nutrient stress may affect the
sensitivity of yields to climate change because climate stresses and
benefits may also interact with (or be overwhelmed by) nutrient
stresses. Alternate approaches in the GGCMs’ fertilization and
nutrient schemes therefore need to be taken into account in
interpreting crop yield responses to [CO2] and other variables.
GGCM differences in the simulation of water availability and

the application of irrigation also have a direct effect on climate
sensitivity in irrigated regions. While the GGCMs deviate in how
water availability is determined, the effects of these deviations
were reduced by testing two irrigation scenarios: 1) no irrigation,
and 2) full irrigation (assuming water is available to fully irrigate
crops) (see SI Appendix). In GEPIC, full irrigation was set as a
complete elimination of water stress of crops. In other GGCMs,
full irrigation does not necessarily eliminate water stress com-
pletely, as irrigation events are triggered by model-specific soil
moisture thresholds (rainfed and irrigated production responses
are shown in Fig. S5). In some cases, the ability of the crop plant
to transpire water may not be sufficient to satisfy the atmospheric
demand (i.e., stomata may close despite full irrigation).

3.4 Model Procedures.An important disparity in GGCM outputs is
whether the models calculate actual or potential yields as the
primary output. The GAEZ-IMAGE and LPJ-GUESS results

represent potential yields, unlimited by nutrient or management
constraints and without calibration of growth parameters to repro-
duce historical yields. They are best suited to studies that are de-
signed to advance scientific understanding of the plant-atmosphere
processes being represented and their sensitivity to climatic stresses,
rather than for economic forecasts or sensitivity to soil edaphic
conditions. LPJmL is similar to LPJ-GUESS in that nitrogen
stress is not explicitly represented; however, growth parameters
in the model are calibrated so that simulations over the historical
period reproduce realistic average yield patterns (see SI Appendix
for details). GEPIC, PEGASUS, and pDSSAT used historical
patterns of fertilizer application rates, while EPIC used stan-
dardized low-, moderate-, and high-input management systems
with thresholds that trigger fertilizer and irrigation automatically.
All four of these models explicitly represent nitrogen stress. The
issue of actual vs. potential yields is further complicated by the
presence of numerous other “yield gap” factors, including varia-
tions in cultivars and farmer management, as well as soil char-
acteristics, pests, diseases, and weeds (38).

4. Current and Future Yield Simulations
4.1 Simulation of Current Crop Yields. The seven GGCMs largely
reproduce relative patterns of current crop yields (39) at multi-
national regional scales but are dissimilar in the levels of their
base yields (maize: Fig. 2; wheat, rice, and soybean results in SI
Appendix, Figs. S2–S4). PEGASUS displayed the largest regional
variation in simulated yields, whereas GAEZ-IMAGE displayed
the least. Each model has regions where crop yield simu-
lations vary markedly from the patterns observed in the ref-
erence period.
LPJmL and LPJ-GUESS vary in reproducing current maize

yields, even though they both have a common base model, as do
EPIC and GEPIC. Each of these two GGCM pairs vary in pa-
rameter settings, assumptions, inputs (e.g., management, fertil-
izer), processes (e.g., carbon allocation), and model procedures

EPIC

GEPIC

pDSSAT

M3-Observations

LPJ-GUESS

LPJmL

PEGASUS

IMAGE

Baseline Maize Yield (t/ha)

>1050

A B

C D

E F

G H

Fig. 2. Average reference period (1980–2010) GGCM maize yield (A–F, H),
rescaled to a common global average to make the spatial patterns more
apparent, and historical yield M3 observation set (G) (39). Note that because
some models are calibrated and others are not and because some models
simulate potential rather than actual yields, it is not advisable to compare
the absolute yields in the ensemble with observations.
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(e.g., calibration) that are reflected in the wide variations in their
results (SI Appendix).

4.2 Global Relative Yield Changes by Crop. Despite the differences
among models in their assumed inputs and simulations of ab-
solute yields, relative yield changes provide a more consistent set
of results for comparison across models and with previously re-
ported climate change impact results. When taken as a multi-GGCM
andmulti-GCM ensemble, global results for relative changes in the
major crops under representative concentration pathway 8.5
(RCP8.5; 42) with CO2 effects show broad agreement with results
and regional patterns seen in previous studies (Fig. 3, Upper).
End-of-century (2070–2099) maize yield changes with CO2

effects for RCP8.5 show substantial impacts and broad agree-
ment among GGCMs, at least as to the sign of the effect. Results
for maize and wheat indicate high-latitude increases and low-lat-
itude decreases with general agreement among models. However,
the quality, depth, and hydraulic properties of soils for agricultural
production at high latitudes merit further investigation. Results for
rice and soybean are consistent in the mid- and high-latitude
regions showing yield increases, but show less agreement among
models in the tropical regions where median changes are small.
Generally, the tropics are subject to more severe (or less benefi-
cial) climate change impacts whereby CO2 fertilization does not
compensate for increases in water demand and shortening of
already-short growing periods for annual C3 crops.

When the results are grouped by GGCMs with and without
explicit nitrogen fertilization (Lower Left and Lower Right in
Fig. 3; red and green lines in Fig. 1), results are substantially
more negative with explicit nitrogen fertilization than without.
The GGCMs with explicit nitrogen fertilization may capture
enhanced dynamics of crop growth and yield interactions with
CO2 fertilization; experiments show lower CO2 enhancement of
yield under nitrogen limitation (41). Further work is needed to
understand how these interactions affect the GGCM results and
identify how variations in crop model parameter values also
affect simulated yields (e.g., ref. 43).

4.3 Sensitivity of Yield Response to CO2. Projections of global rel-
ative yield changes under RCP8.5 differ substantially among
GGCMs but also between simulations with and without CO2
effects for maize, wheat, rice, and soybean (Fig. 4). By the end of
the 21st century, most GGCMs show a range of approximately ±
10% yield change across the five GCM scenarios when CO2
effects are included (GCMs cause nearly double that range for
PEGASUS and only half that range for GAEZ-IMAGE). Rel-
ative global average model response to climate is more similar
and much more negative across tropical and midlatitude bands
once CO2 effects are removed, indicating that crop model pa-
rameterization of CO2 effects remains a crucial area of research.
Relative yield changes with and without CO2 effects are much
closer in C4 maize than in the C3 crops.

Maize

Rice Soy

Wheat

Maize MaizeWheat Wheat

Rice RiceSoy Soy

All GGCMs

GGCMs with explicit N stress GGCMs without explicit N stress

<-50 >50
0

%

Fig. 3. Median yield changes (%) for RCP8.5 (2070–2099 in comparison to 1980–2010 baseline) with CO2 effects over all five GCMs x seven GGCMs (6 GGCMs for rice)
for rainfed maize (35 ensemble members), wheat (35 ensemble members), rice (30 ensemble members), and soy (35 ensemble members). Hatching indicates areas
where more than 70% of the ensemble members agree on the directionality of the impact factor. Gray areas indicate historical areas with little to no yield capacity.
The bottom 8 panels show the corresponding yield change patterns over all five GCMs x four GGCMs with nitrogen stress (20 ensemble members from EPIC, GEPIC,
pDSSAT, and PEGASUS; except for rice which has 15) (Left); and 3 GGCMs without nitrogen stress (15 ensemble members from GAEZ-IMAGE, LPJ-GUESS, and LPJmL).
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In near decades, relative yield changes display a lower range,
both with and without CO2 effects, but after the 2050s that range
widens considerably. LPJ-GUESS, a potential yield model that
allows for nutrient-unlimited yield increases, consistently dis-
plays the highest relative changes with CO2 effects for all crops.
The projected yield changes both with and without CO2 effects

for PEGASUS (an ecosystem model) are more negative than the
LPJ ecosystem models (note that PEGASUS does not simulate
rice), which is likely due to its utilization of radiation use effi-
ciency (RUE) instead of leaf-level photosynthesis (40) for CO2
effects and the inclusion of explicit heat stress. RUE-based
models simulate a universal saturating response to CO2 and af-
fect water efficiency via adjustment of canopy conductance. In
the leaf-level models, stomatal opening controls both photo-
synthesis (CO2 availability) and transpiration. Recently, Free-Air
CO2 Enrichment (FACE) experiment results (40) are being used
more intensively to calibrate and test crop models in AgMIP.

4.4 Quantifying Uncertainty from GCMs and RCPs. GCMs and RCPs
contribute substantially to the uncertainties of the results (Fig.
5). Uncertainty is higher for soybean and rice than for maize and
wheat, because they have more concentrated production areas
and are therefore more sensitive to regional differences in GCM
projections. Uncertainties are greater in the later decades of the
century, where GCM inputs and GGCM results can lead to
uncertainties several times larger in the highest RCP8.5 than in
the lowest RCP2.6. Uncertainty is higher for all crops when CO2
effects are included, especially in soybean (which is not directly
limited by nitrogen) and in the end of the century when [CO2] is
highest. Note that the RCP nomenclature is misleading for earlier
decades, because RCP4.5 actually has slightly higher [CO2] than
RCP6.0 until ∼2060 (42).

5. Discussion and Conclusions
The models used in this GGCM intercomparison are tools to
analyze the response of crops to climate change, and to better
understand risks and opportunities in regard to food production
and food security. For this information to be useful for decision
makers, it needs to include analysis of sources of uncertainty due
to multiple greenhouse gas emissions pathways, climate models,
and crop impact models (44). The work presented here begins to
characterize the uncertainty cascade for GGCM simulations, in-
cluding greenhouse gas emission scenarios, global climate simu-
lations, variations in structure and implementation in crop models,
and assumptions about agricultural management, in a framework
that can be compared across sectors.

Because of such variations in model structure, processes, inputs,
assumptions, parameterizations, and outputs, the ensemble results
from the GGCM intercomparison need to be used with care and
may not be appropriate for certain studies (see recommendations
on data use in SI Appendix). Although the experimental design
and climate change scenarios were meant to harmonize simu-
lations to facilitate full comparability, several differences remain
that affect the GGCMs’ response to climate change and their
utility for different types of assessments, including economic
analyses. Particularly important are the parameterization of CO2
effects, handling of fertilizer applications, simulation of actual vs.
potential yields, and the extent of calibration. AgMIP is addressing
these in continuing work.
Given these important caveats, we can conclude that the re-

sults from the GGCMs used in this study show general agree-
ment with previous results, especially for those models that include
nitrogen stress (e.g., 6, 32, 45). They indicate negative impacts on
major crops in many agricultural regions at higher levels of
warming. The inclusion of ecosystem-based models in this analysis
has increased the range of uncertainty (previous analyses primarily
used site-based models). Relative global average model response
to climate is more similar once CO2 effects are removed, indicating
that model parameterization of CO2 effects (on both photosyn-
thesis and transpiration) remains a vital area of research.
There is ample reason to be concerned in regard to climate

change and crop production. Many regions throughout the world
are projected to experience climate change-induced reductions

Fig. 4. Relative change (%) in RCP8.5 decadal mean production for each
GGCM (based on current agricultural lands and irrigation distribution) from
ensemble median for all GCM combinations with (solid) and without (dashed)
CO2 effects for maize, wheat, rice, and soy; bars show range of all GCM com-
binations with CO2 effects. GEPIC, GAEZ-IMAGE, and LPJ-GUESS only contrib-
uted one GCM without CO2 effects.

Maize Wheat  Rice Soy

With CO2
effects

Without 
CO2 effects

A

B

Fig. 5. Absolute deviation of decadal average production changes from
ensemble median yield changes (as fraction of 1980–2010 reference period
mean production) for all GCM × GGCM combinations in RCP2.6 (dark blue),
RCP4.5 (light blue), RCP6.0 (orange), and RCP8.5 (red) for maize, wheat, rice,
and soy with (Upper) and without (Lower) CO2 effects. Simulations in A with
CO2 effects included five GCMs and seven GGCMs (35 members), whereas
GAEZ-IMAGE, GEPIC, and LPJ-GUESS ran only a single GCM without CO2

effects, resulting in 23 members in B.

3272 | www.pnas.org/cgi/doi/10.1073/pnas.1222463110 Rosenzweig et al.



in crop yields in the climate scenario–crop model ensemble tested
here, and additional challenges are mounting (e.g., pests, water
supply, and soil degradation). The 2012 drought in the United States
led to a reduction of maize yields of up to 25% (which is moderate
compared with the impacts projected here for some regions at
higher levels of temperature increase), but US maize exports
declined by an even greater percentage (46). Although some high-
latitude regions may become more climatically viable for crops,
further study is needed to determine whether soil quality is suf-
ficient for sustained agricultural production in these locations.
AgMIP is dedicated to exploring the underlying mechanisms

behind GGCM differences and to quantifying uncertainties in
climate change impact assessments. AgMIP further endeavors to
improve agricultural models and expand the community of trans-
disciplinary modelers, thus supporting effective adaptation and
mitigationdecisions inagriculture at both global and regional scales.

Materials and Methods
Critical sources of uncertainty for climate change impacts on agricultural pro-
ductivity are identified and characterized, including contrasts in results arising
from a range of global crop models, global climate models, and RCPs (42). SI
Appendix provides a full description of materials and methods.

Simulations are driven using 20 climate scenarios from the Coupled Model
Intercomparison Project Phase 5 archive with five GCMs and four RCPs, each

bias-corrected at daily resolution based on the historical Water and Global
Change forcing dataset derived from the European Centre for Medium-
Range Weather Forecasts 40 Year Re-analysis (13). The reference period used
throughout this analysis is 1980–2010. All models submitted simulations with
CO2 effects for five GCMs for maize, wheat, and soybean (35 members). All
models except PEGASUS simulated five GCMs for rice (30 members). All
models simulated the Hadley Centre Global Environment Model (HadGEM)
climate model without CO2 effects, but only LPJmL, pDSSAT, PEGASUS, and
EPIC simulated the other four GCMs (23 members for maize and wheat
without CO2 effects, and 18 members for rice).
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