Climate change effects on agriculture: Economic responses to biophysical shocks

Gerald C. Nelsona,1, Hugo Valinb, Ronald D. Sandsb, Petr Havlíkb, Helal Ahammadd, Delphine Deryngb, Joshua Elliotta,9, Shinichiro Fujimorib, Tomoko Hasegawab, Edwina Heyhoeb, Page Kyleb, Martin Von Lampeb, Hermann Lotze-Campenb, Daniel Mason d’Croizb, Hans van Meijlc, Dominique van der Mensbruggem, Christoph Müllerb, Alexander Poppb, Richard Robertsonb, Sherman Robinsonb, Erwin Schmidb, Christoph Schmitzb, Andrezj Tabeau, and Dirk Willenbockelo

aEnvironment and Production Technology Division, International Food Policy Research Institute, Washington, DC 20006-1002; bInternational Institute for Applied Systems Analysis, Ecosystems Services and Management Program, A-2361 Laxenburg, Austria; cResource and Rural Economics Division, Economic Research Service, US Department of Agriculture, Washington, DC 20250; dAustralian Bureau of Agricultural and Resource Economics and Sciences, Canberra, ACT 2601, Australia; eTyndall Centre for Climate Change Research and School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom; fUniversity of Chicago Computation Institute, Chicago, IL 60637; gColumbia University Center for Climate Systems Research, New York, NY 10025; hNational Institute for Environmental Studies, Center for Social and Environmental Systems Research, Tsukuba, Ibaraki 305-8506, Japan; iJoint Global Change Research Institute, Pacific Northwest National Laboratory, College Park, MD 20740; jTrade and Agriculture Directorate, Organisation for Economic Cooperation and Development, 75775 Paris Cedex 16, France; kPotsdam Institute for Climate Impact Research, 14473 Potsdam, Germany; lLEI (Agricultural Economics Research Institute), Wageningen University and Research Centre, 2585 DB, The Hague, The Netherlands; mAgricultural Development Economics Division, Food and Agriculture Organization of the United Nations, I-00153 Rome, Italy; nUniversity of Natural Resources and Life Sciences, Vienna, 1180 Vienna, Austria; and oInstitute of Development Studies, University of Sussex, Brighton BN1 9RE, United Kingdom

Agricultural production is sensitive to weather and thus directly affected by climate change. Plausible estimates of these climate change impacts require combined use of climate, crop, and economic models. Results from previous studies vary substantially due to differences in models, scenarios, and data. This paper is part of a collective effort to systematically integrate these three types of models. We focus on the economic component of the assessment, investigating how nine global economic models of agriculture represent endogenous responses to seven standardized climate change scenarios produced by two climate and five crop models. These responses include adjustments in yields, area, consumption, and international trade. We apply biophysical shocks derived from the Intergovernmental Panel on Climate Change’s representative concentration pathway with end-of-century radiative forcing of 8.5 W m-2. The mean biophysical yield effect with no incremental CO\textsubscript{2} fertilization is a 17% reduction globally by 2050 relative to a scenario with unchanging climate. Endogenous economic responses reduce yield loss to 11%, increase area of major crops by 11%, and reduce consumption by 3%. Agricultural production, crop land area, trade, and prices show the greatest degree of variability in response to climate change, and consumption the lowest. The sources of these differences include model structure and specification; in particular, model assumptions about ease of land use conversion, intensification, and trade. This study identifies where models disagree on the relative responses to climate shocks and highlights research activities needed to improve the representation of agricultural adaptation responses to climate change.

Climate change alters weather conditions and thus has direct, biophysical effects on agricultural production. Assessing the ultimate consequences of these effects after producers and consumers respond requires detailed assessments at every step in the impact chain from climate through to crop and economic modeling. Comparisons of results from global studies that have attempted such model integration in the past show substantial differences in effects on key economic variables. Studies in the early 1990s found that climate change would have limited agricultural impacts globally, but with varying effects across regions (1–3). Adaptation and carbon dioxide (CO\textsubscript{2}) fertilization effects were the two largest sources of variation in the results. New simulation approaches emerged in the mid-2000s, with gridded representation of yield impacts and more comprehensive coverage of variability in climate model projections (4, 5). However, these studies still relied on a single crop model and a single economic model. The number of economic models used for these types of analysis has remained relatively limited, and there has been no attempt to compare their behavior systematically.

The Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC) (6) renewed the call to “enhance crop model intercomparison” and noted that “economic, trade and technological assumptions used in many of the integrated assessment models to project food security under climate change were poorly tested against observed data” (ref. 6, p. 285).

This paper is part of a collective effort (7) to make progress in this direction by systematically integrating results from the three types of models—climate, crop, and economic—to assess how agriculture responds to climate change. The modeling chain is portrayed in Fig. 1. General circulation models (GCMs) use a...
representative (greenhouse gas) concentration pathway (RCP) to produce data on changes in climate variables such as temperature and precipitation. Process-based models of crop growth use the climate results as inputs to simulate biophysical yield effects and these, in turn, become inputs into economic models. The economic models then simulate the responses of key economic variables to the changes in biophysical crop yields.

This paper focuses on the endogenous responses of the economic models. Conceptually, the initial effect of climate change that reduces yields (given existing practices) is a leftward shift of the supply curve, reducing production and raising prices. Consumers respond by reducing consumption of more expensive crops and shifting to other goods. Producers respond by changing farm-level management practices and increasing the amount of acreage under these crops. Global reallocation of production and consumption through international trade further alters climate change impacts on global agriculture. The economic models represented in this paper all capture these general effects but have large differences in the relative contribution of these response options. The models represent a diversity of approaches to describing human-nature interactions, with five computable general equilibrium (CGE) models covering the full economy and four partial equilibrium models specialized in agriculture, including two grid-cell-based optimization models (see Table S1 for more details).

Results from seven scenarios on biophysical crop yield changes under climate change (described in Table S2) are compared across the nine economic models used in the exercise. These scenarios are based on a combination of five different crop models and two general circulation models. In the economic models, the climate change effects on agricultural productivity are added to a reference scenario that harmonizes socioeconomic and exogenous agricultural productivity drivers; other drivers and parameter choices remain specific to each model. All climate change scenarios use the same RCP (RCP 8.5), which is the most extreme of the emissions pathway scenarios developed for the IPCC’s Fifth Assessment Report. The crop models use a constant CO2 level equal to that of the early 2000s.

The standardization of model outputs allows us to compare the effects of the exogenous climate change shock on yields (YEXO) arising from differences in crop model outputs for four crop aggregates—coarse grains, oil seeds, wheat, and rice—which collectively account for about 70% of global crop harvested area. The differences in the endogenous responses in the economic models are measured through changes in 2050 in final yields (YTOT), crop area (AREA), net imports relative to production in the reference scenario (TRSH), and consumption (CONS) that accompany the market price effects (PRICE) of the climate shock.

Results

Endogenous Responses in the Economic Models Distribute the Effects of Climate Change. Together with the assumption of no incremental yield effects from CO2 fertilization, the mean biophysical effect of the climate change shock on yields (YEXO) of the four crop groups and 13 regions of the globe is a 17% decline. The distribution of the biophysical yield shocks (SD of ±13%) arises from both the heterogeneous impacts of climate change over crops and geography, and the diversity of modeling approaches in the GCM and crop models (8).

Fig. 2 provides an overview of how the initial shock at the crop and the regional level propagates through the response options in the economic modeling. The economic models transfer the shock effect to the response variables. Producers respond to the price increase associated with the shock both by intensifying management practices [the final yield change (YTOT)] is a mean decline of 11%] and by altering the area devoted to these crops (AREA), resulting in a mean area increase of 11%. The combined yield decline and area increase result in a mean decline in production of only 2%. Consumption (CONS) also declines only slightly (mean decline of 3%). Changes in trade shares cancel out across regions but the share of global trade in world production increases by 1% on average (see Fig. S1 for world aggregated effects). Finally, average producer prices (PRICE) increase by 20%. The direction of responses described above are common to all models, as can be seen in the correlation matrix (Tables S3–S5). However, the magnitude of responses varies significantly across models, crops, and regions (Figs. S2–S4).

More Heterogeneous Responses in Production than Consumption. The second interesting pattern of model responses is the change in variance of the shock across geography, crops, and scenarios along the modeling chain, displayed as box plots in Fig. 2. Economic adjustment occurs through the endogenous PRICE...
variable, which has variation comparable to variables \(\text{AREA}, \text{PROD}, \text{and TRSH} \). Variation in the initial productivity shock \(\text{YEXO} \) (SD of 13%) is similar to that of equilibrium yield \(\text{YTOT} \) (SD of 17%). Variability values for agricultural area (\(\text{AREA} \)), production (\(\text{PROD} \)), and trade share (\(\text{TRSH} \)) are similar in size (SD of 25–26%) and substantially larger than those for yields. Consumption (\(\text{CONS} \)) (SD of 6%) has the smallest variation of all variables in Fig. 2.

Model-specific results (Fig. S2) show notable differences in shock propagation from \(\text{YEXO} \) through yield and area responses to \(\text{PROD} \), a point to which we return below. Part of these differences can be explained by model-specific differences in regional impacts. This can be seen by comparing Fig. 2 with Figs. S1 and S5 that display world aggregates for the complete sample and by model. Consumption responds little because food demand globally is less sensitive to price changes than other variables. This effect is particularly visible when comparing the correlation of \(\text{PRICE} \) and \(\text{CONS} \) to the correlations of \(\text{PRICE} \) and other endogenous responses in the models (Table S6 and Fig. S6). The large variability in trade and area responses is the result of varying assumptions about trade flexibility and ease of land conversion in the models.

Analysis of variance (Table 1) allows us to investigate the individual contributions of a number of sources of variation for the seven response variables described above. Specifically, the variables’ responses are assessed for effects by economic model \((n = 9) \), crop type \((n = 4) \), region \((n = 13) \), and scenario \((n = 7) \), which we further decompose by GCM \((n = 2) \) and crop model \((n = 5) \). The sum of squared error (Sum Sq.) column in Table 1 displays the magnitude of total variance attributed to each source, with the remaining variance allocated to residuals. The mean squared error (Mean Sq.) column adjusts for the number of items in each group and provides an indication of the relative contribution of sources.

Variability in the exogenous productivity shock \(\text{YEXO} \) is primarily due to crop model and region. The only contribution from the economic models is due to differences in model-specific product and regional differences in how the shock is implemented. Final yield \(\text{YTOT} \) demonstrates the transition toward variation contributed by economic models, which is now the grouping with the largest contribution to variation. This pattern continues in agricultural area (\(\text{AREA} \)) and production (\(\text{PROD} \)), with large contributions from models to variability. Consumption (\(\text{CONS} \)) is an interesting variable, again with economic models as the largest contributor to variability, but with very low contributions from other groupings, and it has the smallest total sum of squared errors of all economic variables. For \(\text{TRSH} \), only the region is a significant source of variability because in other dimensions net imports sum to zero. Model-specific responses for scenarios and variables are available in Figs. S7–S16.

Distribution of Responses Across Models

More in-depth analysis of model responses is required to understand the origins of heterogeneity introduced along the chain of variables. For this purpose, Fig. 3 graphs univariate regression lines of response variables of each model against the initial shock (\(\text{YEXO} \)). The slope coefficient reflects the local response and can be roughly interpreted as an elasticity. A value of 1 indicates that a change in the climate shock generates an equivalent percentage change in the response variable; for yields, this means there is no endogenous response at the regional level. An intercept that differs from zero indicates that a local change arises from effects elsewhere via price effects transmitted through international trade. Table 2 reports regression results by individual model and by model type (general or partial equilibrium). One additional variable is added to the regression analysis to isolate the pure endogenous yield response (\(\text{YENDO} \)) (see Methods for more details).

Yield response varies by model with four different patterns. Four models [Asia-Pacific Integrated Model (AIM), The Global Change Assessment Model (GCAM), The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT), and The Modular Applied General Equilibrium Tool (MAGNET)] appear relatively unresponsive in terms of productivity management, with the \(\text{YTOT} \) slope coefficient close to 1 (little or no significant endogenous yield response \(\text{YENDO} \) to climate change). Three other models [The Environmental Impact and Sustainability Applied General Equilibrium model (ENVISAGE), Future Agricultural Resources Model (FARM), and Global Trade and Environment Model GTEM] show a significant management response to regional shocks but responses are mainly local (large negative slope value for \(\text{YENDO} \) and intercept close to 0). These models compensate the most through intensification in regions where yields are most severely affected. The final yield reduction is reduced on average to 65% of the initial shock for ENVISAGE and 32% for GTEM. A third pattern, represented by the MagPie model, is characterized by a strong response in all regions independent of the magnitude of the impact. This model displays a slope on \(\text{YTOT} \) close to 1 with a positive intercept. Finally, the yield response in the GLOBIOM (Global Biosphere Optimization Model) model is unique. Unlike all of the other models, its slope on final yield is greater than 1. This is due to a reallocation effect both through international trade, which is highly responsive in this model, and through intraregion spatial allocation of the most fertile lands to least severely hit crops with more severely affected ones being shifted to marginal lands, hence further exacerbating the climate change effect.

Area responses also differ substantially by model. Five models show an inverse relationship (as productivity declines, \(\text{AREA} \) increases) of moderate (ENVISAGE, GTEM) to relatively high magnitude (AIM, FARM, and MagPie). For these models, the intercept is zero, suggesting international price transmission does not affect area. MAGNET and IMPACT have the same inverse relationship but also show some price transmission effects (significant intercept dummies). Two models (GLOBIOM and GCAM) have a positive relationship between productivity and area, indicating strong reallocation patterns across regions. For

Table 1. Partition of the sum of squares and analysis of variance for the different variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Sum Sq.</th>
<th>Mean Sq.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Df</td>
<td></td>
</tr>
<tr>
<td>Economic model</td>
<td>8</td>
<td>0.11 0.01</td>
<td>10.64 1.33***</td>
<td>9.98 1.25***</td>
<td>1.80 0.22***</td>
<td>0.63 0.08</td>
<td>1.75 0.22***</td>
<td>35.71 4.46***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Climate model</td>
<td>1</td>
<td>0.12 0.12***</td>
<td>0.18 0.18**</td>
<td>0.29 0.29</td>
<td>0.01 0.01</td>
<td>0.07 0.07</td>
<td>0.02 0.02*</td>
<td>0.90 0.90***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop model</td>
<td>4</td>
<td>3.26 0.82***</td>
<td>1.67 0.42***</td>
<td>1.87 0.47***</td>
<td>0.67 0.17*</td>
<td>0.27 0.07</td>
<td>0.12 0.03***</td>
<td>9.69 2.42***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product</td>
<td>3</td>
<td>0.34 0.11***</td>
<td>0.96 0.32***</td>
<td>1.57 0.52***</td>
<td>0.38 0.13</td>
<td>0.49 0.16</td>
<td>0.24 0.08***</td>
<td>0.89 0.30***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Region</td>
<td>12</td>
<td>9.53 0.79***</td>
<td>7.35 0.61***</td>
<td>7.49 0.62***</td>
<td>13.06 1.09***</td>
<td>5.54 0.46***</td>
<td>1.17 0.10***</td>
<td>16.01 1.33***</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Residuals</td>
<td>2,862</td>
<td>36.09 0.02</td>
<td>58.87 0.06</td>
<td>157.60 0.06</td>
<td>164.84 0.06</td>
<td>194.94 0.07</td>
<td>8.23 0.00</td>
<td>105.90 0.04</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The point (.), single asterisk (*), double asterisk (**), and triple asterisk (****) indicate significance at the 10%, 5%, 1%, and 0.1% levels, respectively.
these two models, regions that are most affected by climate change decrease cultivated area and replace less profitable production with imports from more favorable areas. This reallocation pattern is also evident in the PROD regression, with slope much greater than 1 for these two models and a positive intercept. For these two models, production increases in regions with a small climate shock but in regions and crops where the negative effects are larger, production decreases, and imports grow.

Trade responses to the productivity shock are implicit in the intercept responses discussed above. The TRSH regression coefficients reinforce the observations above. GCAM and GLOBIO are the most trade-responsive models. They reallocate a significant share of production across regions and are less dependent on local yield and area responses. IMPACT and MAGNET show an intermediate level of trade responsiveness, resulting in a PROD slope close to 1. Finally, AIM, ENVISAGE, GTEM, FARM, and GCAM are the least trade-responsive models.

Table 2. Regressions of economic responses to climate change shock (YEXO) by model

<table>
<thead>
<tr>
<th>Model</th>
<th>YTOT</th>
<th>YENDO</th>
<th>AREA</th>
<th>PROD</th>
<th>TRSH</th>
<th>CONS</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIM</td>
<td>Int</td>
<td>0.004***</td>
<td>-0.001</td>
<td>0.001</td>
<td>0.047***</td>
<td>-0.038***</td>
<td>0.011*</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.923***</td>
<td>-0.143***</td>
<td>-1.140***</td>
<td>0.293***</td>
<td>-0.216***</td>
<td>0.122***</td>
</tr>
<tr>
<td>ENVISAGE</td>
<td>Int</td>
<td>0.044***</td>
<td>0.020***</td>
<td>0.032***</td>
<td>0.084***</td>
<td>-0.063***</td>
<td>0.020***</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.654***</td>
<td>-0.679***</td>
<td>-0.195***</td>
<td>0.537***</td>
<td>-0.331***</td>
<td>0.205***</td>
</tr>
<tr>
<td>FARM</td>
<td>Int</td>
<td>0.018***</td>
<td>0.001</td>
<td>0.018</td>
<td>0.055***</td>
<td>-0.063***</td>
<td>0.005</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.717***</td>
<td>-0.513***</td>
<td>-0.694***</td>
<td>0.262***</td>
<td>-0.239***</td>
<td>0.055*</td>
</tr>
<tr>
<td>GCAM</td>
<td>Int</td>
<td>-0.002</td>
<td>-0.002</td>
<td>0.315***</td>
<td>0.282***</td>
<td>-0.332***</td>
<td>-0.030***</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.998***</td>
<td>0.003</td>
<td>0.978***</td>
<td>1.862***</td>
<td>-1.871***</td>
<td>0.015</td>
</tr>
<tr>
<td>GLOBIOM</td>
<td>Int</td>
<td>0.098***</td>
<td>0.114***</td>
<td>0.119***</td>
<td>0.189***</td>
<td>-0.242***</td>
<td>-0.028***</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>1.277***</td>
<td>0.339***</td>
<td>0.382</td>
<td>1.436***</td>
<td>-1.11***</td>
<td>0.253***</td>
</tr>
<tr>
<td>GTEM</td>
<td>Int</td>
<td>-0.009</td>
<td>-0.055***</td>
<td>0.010</td>
<td>0.007***</td>
<td>-0.063***</td>
<td>0.014*</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.318***</td>
<td>-1.192***</td>
<td>-0.336***</td>
<td>0.375***</td>
<td>-0.261***</td>
<td>0.127***</td>
</tr>
<tr>
<td>IMPACT</td>
<td>Int</td>
<td>0.010</td>
<td>0.005</td>
<td>0.053***</td>
<td>0.070***</td>
<td>-0.115***</td>
<td>-0.044***</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.881***</td>
<td>-0.201***</td>
<td>-0.210***</td>
<td>0.802***</td>
<td>-0.573***</td>
<td>0.137***</td>
</tr>
<tr>
<td>MAGNET</td>
<td>Int</td>
<td>-0.017***</td>
<td>-0.015**</td>
<td>0.132***</td>
<td>0.123***</td>
<td>-0.139***</td>
<td>-0.005</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.960***</td>
<td>-0.021</td>
<td>-0.440***</td>
<td>0.916***</td>
<td>-0.707***</td>
<td>0.176***</td>
</tr>
<tr>
<td>MAgPIE</td>
<td>Int</td>
<td>0.179***</td>
<td>0.181***</td>
<td>-0.068*</td>
<td>0.011</td>
<td>-0.012</td>
<td>-0.004*</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.910***</td>
<td>-0.459***</td>
<td>-0.720***</td>
<td>0.123</td>
<td>-0.113</td>
<td>0.000</td>
</tr>
<tr>
<td>All models</td>
<td>Int</td>
<td>0.036***</td>
<td>0.022***</td>
<td>0.058***</td>
<td>0.090***</td>
<td>-0.106***</td>
<td>-0.011***</td>
</tr>
<tr>
<td></td>
<td>Slope</td>
<td>0.862***</td>
<td>-0.330***</td>
<td>-0.330***</td>
<td>0.649***</td>
<td>-0.538***</td>
<td>0.102***</td>
</tr>
</tbody>
</table>

The point (.), single asterisk (*), double asterisk (**), and triple asterisk (***)) indicate significance at the 10%, 5%, 1%, and 0.1% levels, respectively. Summary statistics for the different regressions are available in Table S7. Int, intercept.

*YENDO measures the yield endogenous response and is defined from the YTOT column as follows: YENDO = (1 + YTOT)/(1 + YEXO) − 1.
especially negative effects for the poor in rural areas who will also see
are likely to signifi-
the price increases caused by the inelastic nature of global demand
on the role of exploiting international comparative advantage. In
whether area or yield responses will be most important locally, and
estimate our capacity to respond. However, the models disagree on
climatiche changes occur through land use change, manage-
ment intensity, and trade adaptation.

Discussion
This paper offers a systematic comparison of responses of the
food system to climate change across a large set of global eco-
nomic models. The same economic behaviors are represented in the
models and their results are qualitatively similar. With a neg-
ative productivity effect from climate change, prices increase and
trigger more intensive management practices, area expansion, re-
able trends in international trade; and reduced consum-
ption. However, the relative magnitude of these responses varies
widely across the models, reflecting differences in model structure
and parameterization. The distribution and magnitude of these
effects are of crucial importance because of their effects on
human well-being.

Our analysis shows that all models transfer a large part of the
climate change shock to production-side and trade responses. An
important implication of this is that analyses that limit climate
change impact to biophysical effects alone significantly under-
estimate our capacity to respond. However, the models disagree on
whether area or yield responses will be most important locally, and
on the role of exploiting international comparative advantage. In
addition, although the average consumption effect is relatively small,
the price increases caused by the inelastic nature of global demand
are likely to significantly increase food costs for the poor, with
especially negative effects for the poor in rural areas who will also see
reduced income from production side effects.

Model Specification and Parameterization. Both model structure
and parameter choice affect the results. Parameter choice is the
most obvious way in which modeling teams represent their per-
spectives about the future. For example, on the demand side, how
quickly will other Asian countries follow Japan in reducing
rice consumption as incomes rise (represented as declining in-
come elasticities)? On the supply side, how easy is it to switch
from wheat to maize in Canada or Russia if temperatures rise?
How much tropical forest can be converted to agricultural land
and how easy is that conversion? The CGE models all have their
roots in the Global Trade Analysis Project database and the CGE
optimizing approach (10) and so have similar model specifications
but parameterization choices result in very different outcomes.
For instance, ENVISAGE and FARM absorb on average one-
third of the climate shock through intensification but for GTEM
it is as much as two-thirds. AIM and MAGNET parameterization
results in most of the response taking place in area expansion.

Model specification choices can also influence the results. For
example, in the case of trade, some models (e.g., GLOBIOM,
GCAM, and IMPACT) rely on an integrated world market
representation, which could overstate the degree of trade response
(11), whereas others use Armington elasticities which tend to re-
strict trade (CGE models) (12) or self-sufficiency constraints
(MAgPIE). With respect to land, both GLOBIOM and MAgPIE
have a full representation of land use and allocate it through an
optimization process with high spatial resolution, whereas, for
instance, the IMPACT model only considers cropland and assumes
it can be expanded as needed without constraint. On the
CGE side, land representation also varies strongly, from the
simplified structure of substitution found in GTEM or ENVIS-
AGE that does not consider land expansion into forest to
MAGNET that relies on a land supply curve calibrated on
a biophysical model (13). Finally, endogenous yield adjustments
can differ widely between a CGE, which represents substitution
with factors such as capital and labor; a bottom-up model like
GLOBIOM, which explicitly represents switches between dif-
ferent management systems and the relocation of production
between different grid-cell locations (14); and, for instance,
MAgPIE, which features an endogenous mechanisms of public
and private investments in agricultural productivity (15).

From Comparison to Improvement. This model comparison exercise
has not only enhanced understanding of the different economic
responses of agriculture to climate change; it has also created
a systematic process for improvement of model input data, in-
tegration with other models, and sharing of modeling insights.

A first set of envisioned improvements is more detailed as-
essment and, as appropriate, harmonization of specific types of
model parameters and drivers. For instance, price and income
elasticities are all currently sourced from different datasets with
little assessment of their appropriateness for long-term scenarios.
Although progress was made toward a standardized language
with respect to scenario assumptions such as macroeconomic
drivers, exogenous productivity paths, and behavioral parame-
ters, further efforts on protocol development and simulation
experiments are needed to effectively compare model behavior.
Finally, harmonization of some base data would also be benefi-
cial, but this appears especially challenging, with CGE models
relying on different versions of the GTAP database and partial
equilibrium models aligned with FAOSTAT data but with
different starting years. Still, some diversity in model approaches
will and should remain because of the inherent uncertainty about
the future of demand, trade, technological progress, and other
processes (16).

Model integration under a common protocol of data exchange
also constitutes a great potential for future improvement of
models and overall assessments. This study has compared the
results from 63 climate, crop, and economic model combina-
tions, with standardized procedures allowing full tracing of
modeling assumptions on choice of RCP, GCM, and level of
CO2 fertilization. Further harmonization with more detailed
geographical scales and products would also allow improvements
in future analysis and systematize the distinction of management
systems and spatially explicit analyses.

Finally, this exercise has focused on improving the model in-
tegration process. However, it has omitted some potential large
biophysical effects of climate change, including CO2 fertilization
effects on crops and weeds, plant nutrient management choices,
ozone damage, extreme events, or biotic stresses. In addition, it
has ignored the potential for policy and program responses
around the world to facilitate or hinder adaption to these chal-
enges. Attention to these topics should be high on the agenda
for future research across the modeling chain. The collective
experience gained in this first exercise of model integration and
comparison will help to improve current estimates, and to
refine the contribution of economic models to the full chain
uncertainty.

Methods
Climate Data. Climate model inputs were provided by the HadGEM2-ES (17)
and IPSL-CM5A-LR (18) GCMs using the RCP 8.5, the most extreme of the
RCPs developed for the IPCC’s Fifth Assessment Report (19). This RCP has
a radiative forcing of \(-8.5 \text{ W/m}^2\) by 2100. Its CO\(_2\) concentration in 2050 is 540 ppm (see www.iiasa.ac.at/web-apps/Int/RcpDb). The resulting climate outputs were bias-corrected and downscaled for the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP) model comparison project (20).

Crop Models. The ISI-MIP climate data were used as inputs into five crop growth models as part of a global gridded crop modeling exercise (8), Climate data for 2000 and 2050 were used to generate yields at 0.5° resolution (about 55.5 km at the equator). The crop models results used are all based on a constant CO\(_2\) atmospheric concentration assumption, eliminating any fertilization effect from the additional CO\(_2\) emitted during the period from 2000 to 2050. The combination of the most extreme RCP with the assumption of limited CO\(_2\) fertilization effects in 2050 means that the negative productivity effects are at the upper end of direct yield effects from climate change by 2050. However, they do not include the deleterious effects of increased ozone concentrations, biotic stresses from a range of pests and diseases that will thrive under higher temperatures and more CO\(_2\), and the likelihood of increased occurrence of extreme events. The process of transforming crop model data to inputs for economic modeling involves three challenges—deriving yield effects for crops not included in the crop models, aggregating from high resolution spatial crop model outputs to lower resolution country or regional units of the economic models, and determining yield effects over time. See SI Text for more technical discussion of the process, including the mapping of climate yield impacts for crops not available in the crop models (see Table S5).

Baseline in Economic Models. All models were run with gross domestic product (GDP) and population values from Shared Socioeconomic Pathway 2 (SSP2) (21, 22). In SSP2, global population reaches 9.3 billion by 2050, an increase of 35% relative to 2010, and global GDP triples. The SSP data are available at https://secure.iiasa.ac.at/web-apps/ene/SspDb. Exogenous agricultural productivity changes from research and extension efforts were also aligned across models using IMPACT modeling suite estimates (23), except for MAgPIE, which represents this effect through its own endogenous yield response (15). IMPACT values are based on expert opinion about potential biological yield gains for crops in individual countries based on historical yield gains and expectations about future private and public sector research and extension efforts. Table S10 reports the resulting yield changes between 2005 and 2050 for selected crops in selected countries. These estimates do not include crop model-based climate change effects or economic model yield responses to changes in input or output prices.

Economic Responses to Climate Shocks. Each of the global economic models used the exogenous productivity shocks as yield determinants (YEXO). For the computable general equilibrium economic models, the shocks were implemented as shifts in the land efficiency parameters of the sectoral production functions. For the partial equilibrium models, the shocks were additive shifts in a yield or supply equation.

The variables YETO, YTOT, AREA, CONS, and PRICE were reported by each model for the same set of regions (Table S11) and the four following crop aggregates: wheat, coarse grain, rice, and oil seeds. These variables are calculated as percentage change for a climate change scenario relative to the reference scenario. Trade share (TRSH) is defined as the 2050 difference in import or export volumes for the scenario divided by 2050 production in the reference scenario. For TRSH world aggregate, only positive net flows are accounted to obtain the share of production traded. Two additional variables are used in the main text or SI Text to isolate the endogenous yield response YENDO and supply response PENDO. The formulas are YENDO = (1 + YETO)/(1 + YEXO) – 1 and PENDO = (1 + PROD)/(1 + YEXO) – 1 = (1 + AREA)/(1 + YENDO) – 1. The price variable chosen for this comparison (PRICE) is the average producer price weighted by production volumes, and deflated by the GDP price index.

ACKNOWLEDGMENTS. We thank the CGIAR Research Program on Climate Change, Agriculture and Food Security, the US Department of Agriculture, and the UK Department for International Development for support of the Agricultural Model Intercomparison and Improvement Project. The scenarios in this study were constructed from a large body of work done in support of the Intergovernmental Panel on Climate Change’s Fifth Assessment Report. This prior work includes the Representative Concentration Pathways (www. iiasa.ac.at/web-apps/Int/RcpDb), the Coupled Model Intercomparison Project Phase 5 (http://cmip-pcmdi.llnl.gov/cmip5), the Shared Socioeconomic Pathways (https://secure.iiasa.ac.at/web-apps/ene/SspDb), and the climate impacts on agricultural crop yields from the Inter-Sectoral Impact Model Intercomparison Project (www.isi-mip.org). This study was also made possible by the support to institutions where authors are based by the following projects: Environment Research and Technology Development Fund (A-1103) of the Ministry of the Environment of Japan (for the National Institute for Environmental Studies), the Integrated Assessment Research Program in the Office of Science of the US Department of Energy (for the Pacific Northwest National Laboratory), European Union FP7 Projects Visions of Land Use Transitions in Europe (for Potsdam Institute for Climate Impact Research (PIK) and Agricultural Economics Research Institute (LEI)), GlobalAgII (PIK and International Institute for Applied Systems Analysis (IIASA)) and FoodSecure (LEI and IIASA), and Bundesministerium für Bildung und Forschung Global Assessment of Land Use Dynamics, Greenhouse Gas Emissions and Ecosystem Services and Modelling European Agriculture with Climate Change for Food Security (for PIK). This paper is a contribution to the Inter-Sectoral Impact Model Intercomparison Project (www.isi-mip.org) and was made possible by the Agricultural Model Intercomparison and Improvement Project’s global economic model intercomparison (www.agmip.org).