Immune Dysregulation Persists during Spaceflight: Case Study of an ISS Astronaut

Clinical and Research Findings

Brian Crucian, Satish Mehta, Raymond Stowe, Smith Johnston, Heather Quiriarte, Duane Pierson, Clarence Sams
Spaceflight Effects on Human Physiology

- Muscle and bone weakening
- Dysregulation of the immune system
- Fluid Redistribution to upper body
- Elevated kidney stone risk
- Elevated radiation may increase cancer risk
- Plasma volume decreases, anemia
- Otoliths in inner ear respond differently, eyes become main way to sense motion

Image of an astronaut in space.
Figure 28-1a.—RNA synthesis rates in lymphocytes, cultured with and without PHA, obtained from the Skylab crews and control groups. The cells were pulsed with 3H-uridine at 23 h and harvested at 24 h after initiation of the cultures.
Humoral immunity
- Immunization with antigen generates normal antibody response during flight (MIR-18)

Reduced cell mediated immunity
- CMI Multitest, common recall antigens, long duration flight

Post-flight observations
- Altered circulating leukocyte distribution
- Altered cytokine production patterns (secreted, intracellular, Th1/Th2)
- Decreased NK cell function
- Decreased granulocyte function
- Decreased T cell function*
- Altered immunoglobulin levels
- Latent viral reactivation
- Altered virus-specific immunity
- Expression of EBV IE/late genes*
- Altered neuroendocrine responses

*Post-flight observations differ between long vs. short duration space flight.

In-flight cell culture
- Intracellular signaling, cytoskeleton rearrangement, microtubule organizing center orientation, generalized proliferative responses all altered during flight.

Reactivation of latent herpesviruses
- EBV, CMV, VZV reactivation during flight
- Infectious VZV particles secreted in saliva

Summary of pre-ISS Evidence
ISS Sample Types:

- Blood
- Saliva (Liquid)
- Saliva (Dry)
- Urine
- Health Survey

ISS Sample Schedule:

- Early: ~2 weeks
- Mid: 2-4 mos
- Late: R-1-2 days

Preflight: L-180, L-45

In-flight: Green bar

Postflight: R+0, R+30
JSC Immunology Laboratory

- Leukocyte subsets
- Intracellular cytokine profiles (4hr culture)
- T cell function (24h culture)
- Mitogen-stimulated cytokine profiles (48h culture)

JSC Microbiology Laboratory

- Latent herpesvirus reactivation (saliva/urine)

Assays

- Stress hormone levels
- Circadian rhythm alignment

Physiological Stress

Immune System Changes (Status and Function)

- Plasma cytokine balance
- Leukocyte cytokine RNA

Adverse clinical outcomes (Latent Viral Reactivation)

- Virus specific T cell number
- Virus specific T cell function
Flight Hardware
Peripheral leukocyte distribution, T cell function, mitogen-stimulated cytokine profiles are all persistently dysregulated for the duration of a 6-month ISS mission.

Appears to be a pan-suppression of adaptive function, including viral specific T cells.

Latent herpesviruses, including VZV, persistently reactivate for the duration of a 6-month ISS mission.

Circadian misalignment occurs, difficult to regain a ‘normal’ circadian rhythm. (Sleep meds most commonly prescribed Rx)
Clinical Incidence onboard ISS?

• A definitive tabulation in the literature is lacking, although various NASA activities have created incidence numbers (Clinical Finding Forms, etc.)

• Inability to confirm diagnoses

• Restricted to electronic examination

• Treatment options limited

• Data privacy restricted

• Missions vary in workload, stress

• Surgeons may record data differently

• Crew may be reluctant to report medical events
Crew weekly PMC records found within the EMR (Electronic Medical Record) were reviewed.

Reported symptoms were evaluated for correlation to the listed adverse event categories.

There could be multiple events for individual crewmembers. Events were not double scored into multiple categories.

Data tabulated from 37 long-duration ISS crewmembers (Exp. 1-28/29; totals 16.63 person flight years)

This data represents a standard epidemiological survey of the EMR, reports symptoms not diagnosis
ISS Incidence Tabulation

Data tabulated from 37 long-duration ISS crewmembers (Exp. 1-28/29; totals 16.63 person flight years)

<table>
<thead>
<tr>
<th>Medical Conditions</th>
<th>Total events</th>
<th>Events/person year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allergic Reaction</td>
<td>1</td>
<td>0.06</td>
</tr>
<tr>
<td>Anaphylaxis</td>
<td>0</td>
<td>---</td>
</tr>
<tr>
<td>Upper Respiratory Infection (combination of rhinitis, nasal stuffiness and sneezing)</td>
<td>5</td>
<td>0.301</td>
</tr>
<tr>
<td>Eye Infection</td>
<td>0</td>
<td>---</td>
</tr>
<tr>
<td>Herpes Zoster</td>
<td>5</td>
<td>0.301</td>
</tr>
<tr>
<td>Otitis Media/Externa (ear pain, or ear stuffiness+congestion)</td>
<td>17</td>
<td>1.022</td>
</tr>
<tr>
<td>Pharyngitis (sore throat)</td>
<td>1</td>
<td>0.06</td>
</tr>
<tr>
<td>Sepsis</td>
<td>0</td>
<td>---</td>
</tr>
<tr>
<td>Sinus Infection</td>
<td>0</td>
<td>---</td>
</tr>
<tr>
<td>Skin Infection (including scalp pruritis, pus forming wounds on wrist, finger)</td>
<td>5</td>
<td>0.301</td>
</tr>
<tr>
<td>Skin Rash/Hypersensitivity (including skin conditions such as tinea versicolor, dermatitis, rosacea)</td>
<td>23</td>
<td>1.383</td>
</tr>
<tr>
<td>Urinary Tract Infection</td>
<td>1</td>
<td>0.06</td>
</tr>
<tr>
<td>Malignancies*</td>
<td>0</td>
<td>---</td>
</tr>
<tr>
<td>Autoimmunity*</td>
<td>0</td>
<td>---</td>
</tr>
<tr>
<td>Infections, Other*</td>
<td>11</td>
<td>0.666</td>
</tr>
</tbody>
</table>

Total: 69 4.18
Additional Crew Incidence Observations

Breakdown of 69 in-flight medical events in the context of clinical significance: significant versus non-significant in 37 six-month ISS crew-missions.

- **Significant Events**: 20 crew (54%) - 42 Reported Events
- **Non-Significant Events**: 8 crew (22%)
- **No Reported Events**: 9 crew (24%)
Breakdown of 42 reported significant medical events reported in 20 of 37 ISS crewmembers. Relative percentages among the reported events are indicated.
Terrestrial Incidence of Skin Rashes

- Skin conditions account for 7% of out-patient visits to primary care providers in the U.S.
- In 2001, there were 37.9 visits to office-based dermatologists for skin conditions in the U.S. (0.136 visits/person-year)
- In 2001, there were 12.1 million visits to physician offices for skin rashes in the U.S. (0.044 visits/person-year)

References:
- National Ambulatory Medical Care Survey: 2001 Summary
- U.S. Census Bureau, Statistical Abstract of the United States: 2001
Case Study ISS Astronaut

• Typical busy pre-mission training schedule
• Launch on Soyuz; docking to ISS + 2 days
• 191 day mission onboard ISS
• 3 Shuttle dockings, 2 Progress dockings, 1 ATV docking
• 5 EVA activities (12 Shuttle EVA)
• Typically busy mission schedule
• Landing on Soyuz, GCTC 1 week
ANTI-HISTAMINE C C C C C C C C C C C C C C C C
STEROID H as needed throughout mission ---->
ANTI-VIRAL T

FLIGHT DAY

HOURS SLEEP SHIFT

RASH SEVERITY

MEDICATIONS KEY

- Claratin C
- Zyrtec Z
- Benedryl B
- Prednosone P
- Medrol M
- Hydrocortisone Cream H

Significant On Orbit Ops

Shuttle Dock to ISS

Urine Collection

Blood/Saliva Collection

Oral Herpesviral Reactivation

Progress Docking

ATV Docking

Soyuz Dock to ISS

Shuttle Crew EVA
In-Flight Rash Image
Peripheral Leukocyte Subsets

Bulk Leukocyte Subsets
- WBC
- Neutrophils
- Lymphocytes
- Monocytes
- Eosinophils
- Basophils

Lymphocyte Subsets
- T cells
- B cells
- NK cells

Central Memory CD8+ T Cell Subsets
- CD8+ True Naive
- Central Memory
- CD8+ Effector Mem.
- Term. Diff.
T Cell Subsets

- CD4+
- CD8+
- Memory CD4
- Memory CD8

Cytotoxic/Senescent CD8+ T Cells

- Undifferentiated
- Active Cytotoxic
- Senescent
Peripheral Blood Cytokine mRNA Expression

- IL-2
- IFNγ
- IL-4
- IL-10
- IL-1
- IL-6
- TNFα

Time points:
- L-180
- L-45
- FD25
- FD130
- FD191
- R+0
- R+30
Plasma Cytokine Profile

- TNF-a
- IFN-g
- IL-4
- IL-12
- IL-1b
- IFN-a

Time points:
- L-180
- L-45
- FD25
- FD130
- FD191
- R+0
- R+30
T Cell Function
SEA+SEB (24hr)
Circadian Rhythm of Salivary Cortisol

- **Preflight**
 - L-180
 - L-45

- **In-flight**
 - FD28
 - FD130
 - FD191

- **Landing**
 - R+0

- **Recovery**
 - R+30
Mitogen Stimulated Cytokine Profiles (pg/ml)
anti-CD3+CD28 (48hr)

<table>
<thead>
<tr>
<th></th>
<th>L-180</th>
<th>L-45</th>
<th>EAR</th>
<th>MID</th>
<th>LATE</th>
<th>R+0</th>
<th>R+30</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-1b</td>
<td>11828</td>
<td>16269</td>
<td>114</td>
<td>665</td>
<td>247</td>
<td>442</td>
<td>10918</td>
</tr>
<tr>
<td>TNFa</td>
<td>3651</td>
<td>5045</td>
<td>1319</td>
<td>1810</td>
<td>5382</td>
<td>2077</td>
<td>4405</td>
</tr>
<tr>
<td>IL-6</td>
<td>8890</td>
<td>8673</td>
<td>2785</td>
<td>6301</td>
<td>8625</td>
<td>7005</td>
<td>8732</td>
</tr>
<tr>
<td>IL-8</td>
<td>12165</td>
<td>11408</td>
<td>11708</td>
<td>12005</td>
<td>12131</td>
<td>12014</td>
<td>11706</td>
</tr>
<tr>
<td></td>
<td>L-180</td>
<td>L-45</td>
<td>EAR</td>
<td>MID</td>
<td>LATE</td>
<td>R+0</td>
<td>R+30</td>
</tr>
<tr>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td>---------</td>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>IFNg</td>
<td>1794</td>
<td>14610</td>
<td>912.36</td>
<td>341.64</td>
<td>5607</td>
<td>1936</td>
<td>13754</td>
</tr>
<tr>
<td>IL-2</td>
<td>740.75</td>
<td>674.44</td>
<td>1479</td>
<td>865.92</td>
<td>370.83</td>
<td>109.96</td>
<td>1374</td>
</tr>
<tr>
<td>IL-4</td>
<td>169.08</td>
<td>185.22</td>
<td>152.54</td>
<td>137.16</td>
<td>149.46</td>
<td>117.85</td>
<td>176.36</td>
</tr>
<tr>
<td>IL-5</td>
<td>31.68</td>
<td>29.16</td>
<td>31.09</td>
<td>16.96</td>
<td>15.62</td>
<td>16.45</td>
<td>29.39</td>
</tr>
<tr>
<td>IL-10</td>
<td>3163</td>
<td>3080</td>
<td>152.77</td>
<td>184.68</td>
<td>150.93</td>
<td>551.93</td>
<td>3377</td>
</tr>
<tr>
<td>IL-12p70</td>
<td>5.85</td>
<td>7.48</td>
<td>3.89</td>
<td>2.38</td>
<td>22.97</td>
<td>3.24</td>
<td>8.13</td>
</tr>
</tbody>
</table>
Mitogen Stimulated Cytokine Profiles (pg/ml)
anti-CD3+CD28 (48hr)

<table>
<thead>
<tr>
<th></th>
<th>L-180</th>
<th>L-45</th>
<th>EAR</th>
<th>MID</th>
<th>LATE</th>
<th>R+0</th>
<th>R+30</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-13</td>
<td>284.07</td>
<td>738.17</td>
<td>362.64</td>
<td>184.89</td>
<td>812.5</td>
<td>659.26</td>
<td>1543</td>
</tr>
<tr>
<td>IL-7</td>
<td>25.81</td>
<td>21.27</td>
<td>20.23</td>
<td>23.19</td>
<td>25.81</td>
<td>23.63</td>
<td>25.71</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>1092</td>
<td>985.34</td>
<td>686.15</td>
<td>986.86</td>
<td>1059</td>
<td>462.01</td>
<td>1645</td>
</tr>
</tbody>
</table>
Conclusions

• Spaceflight is associated with persistent immune system dysregulation and latent herpesvirus reactivation
• There is some degree of clinical incidence onboard ISS, with rashes among the most frequently reported symptomology
• Case study astronaut developed novel allergy symptoms and atopic eczema on mission day 17 and never fully resolved
• Supplies of anti-histamines and topical steroids were periodically exhausted
• Symptoms generally correlated with stressful mission events
• Case study subject displayed typical depressions in T cell function, cytokine dysregulation
• Case study subject shed EBV through mid-mission, and VZV late in-flight through R+30
Conclusions

• Spaceflight is a granular experience consisting of chronic stress interspersed with periodic acute stressors

• Immune dysregulation during flight appears to be polar, with some adaptive processes depressed (T cell function, HV shedding); whereas some innate processes are elevated (inflammation, hypersensitivity reactions)

• Exploration immune countermeasures must be considered carefully from among multisystem (exercise, etc.), benign supplements (probiotics, etc.) to pharmacological interventions (beta blockers, etc.)