Applied Aeroscience and CFD Branch
Rarefied Gas Dynamics Discipline Overview

Dr. Benedicte Stewart
Dr. Forrest Lumpkin
Dr. Ben Kirk
Jay LeBeau
NASA JSC

UT Seminar – 4/9/2015
Presentation Overview

• NASA JSC
 – Applied Aeroscience and CFD Branch
 • Rarefied Gas Dynamics (RGD) Discipline

• RGD Tasks:
 – Tools
 • Direct Simulation Monte Carlo (DSMC) Analysis Code (DAC)
 – Program support
 • ISS
 • Orion
 • Commercial Crew
Lyndon B. Johnson Space Center
Principal Mission: Human Spaceflight

International Space Station
MPCV Orion
Commercial Crew

Mission Control
Astronauts

April 9, 2015
The Future of Human Space Exploration

NASA’s Building Blocks to Mars

Earth Reliant
- Proving Ground
- Missions: 6 to 12 months
- Return: hours

Earth Independent
- Missions: 1 month up to 12 months
- Return: days
- Missions: 2 to 3 years
- Return: months

U.S. companies provide affordable access to low Earth orbit

Learning the fundamentals aboard the International Space Station

Exploring Mars and other deep space destinations

Expanding capabilities by visiting an asteroid in a Lunar distant retrograde orbit

Traveling beyond low Earth orbit with the Space Launch System rocket and Orion crew capsule

April 9, 2015
Applied Aeroscience and CFD Branch

(1) Aerodynamic Characterization
(2) Aerothermodynamic Heating
(3) Rarefied Gas Dynamics (RGD) Discipline
(4) Decelerator (Parachute)

Ground Testing Modeling and Simulation Flight Testing

April 9, 2015
Rarefied Gas Dynamics

- Partial Diff. Equation Based
- Numerical Methods employed to obtain approximate solution
- Continuum Assumption - Invalid at large Knudsen #

CFD (Comp. Fluid Dyn.)

DSMC (Molecular Based)

Free Molecular Aerodynamics

\[
C_p = \cos^2 \left(\frac{1}{S_v} + \frac{1}{2S_v} \sqrt{\frac{T_r}{T_i}} \right)
\]

\[
+ \left[1 + \frac{1}{2S_v} + \sqrt{\frac{1}{2S_v} \sqrt{\frac{T_r}{T_i}}} \right] \text{erf}(S_v)
\]
Rarefied Gas Dynamics Discipline Overview

- **Objective:**
 - Provide state-of-the-art capabilities and tools for analysis of a variety of low density, non-continuum flows (from transitional to free molecular)

- **Methods:**
 - Mainly computational modeling

- **Tools:**
 - DAC (DSMC code)
 - RPM3D (Engineering tool for plume impingement analyses)
 - FREEMO (Free molecular code)
 - Other computational tools (RAMP, BLIMP, DPLR, …)

- **Customers:**
 - International Space Station
 - Orion
 - Commercial Crew

April 9, 2015
Rarefied Gas Dynamics Discipline

Products

Aerodynamics

Plume modeling

Aeroheating

Free Molecular

Plume impingement

Transitional

Continuum

April 9, 2015
Direct Simulation Monte Carlo (DSMC) Analysis Code (DAC)

Space Shuttle
Mars Pathfinder
Genesis
Stardust
Mars Odyssey
Shuttle / Mir
Plume Impingement
X-37
Shuttle RCS Plumes
Phoenix
Mars Lander
Hubble Servicing Mission Environments
Mars Global Surveyor
ISS Venting Self Impingement

April 9, 2015
Direct Simulation Monte Carlo (DSMC)

• Simulated molecules tracked through space and time.
 – Each simulated molecule represents many real molecules.

• Network of flow field cells used to group neighboring molecules into collision pairs.

• Move and collision phases decoupled and treated as distinct computational steps.
 – Move step is deterministic.
 – Collision step is a Monte-Carlo simulation of kinetic theory based collision statistics.

• Statistical sampling of the ensemble of molecules provides macroscopic properties.

• Fundamental requirements on simulation parameters must be satisfied to achieve an accurate result.

• Results shown to be equivalent to solutions of the Boltzmann equation.
DSMC Analysis Code (DAC)

- Geometric and boundary condition flexibility and gas chemistry options allow a wide variety of rarefied problems to be analyzed.
 - Including on-orbit plumes
- Provides automatic flow field discretization and solution adaptation such that fundamental simulation constraints are satisfied.
- Enabling feature of DAC is its ability to easily and efficiently utilize a large number of processors on a single problem.
 - Automatically performs domain decomposition
 - Re-partitions domain decomposition during runtime to maintain load balancing
 - A halted run can be restarted on a different number of processors
- The above features provide “ease of use” as well as versatile capabilities.
DAC Software

- A general purpose DSMC implementation
 - Pre-Processor: PREDAC / DPREDAC
 - Run Code: DAC / DDAC
 - Flow Field Post-Processor: SLICE
 - Surface Post-Processor: SPROP
 - Utility Code: STP

- Written primarily in “Modern” FORTRAN
 - Small amount of C (timing, 3rd party Delaunay routine)

- Uses the Message Passing Interface (MPI) message passing scheme to effect communication between the processors

- Initially developed for execution on a heterogeneous “cluster” of workstations

- Grew out of a homework assignment…

- ITAR but freely available
International Space Station Proximity Operations

- Three resupply vehicles HTV, Cygnus and Dragon berth to ISS US segment
- Need to verify their Monte-Carlo trajectories to make sure that they follow ISS requirements during their Proximity Operations
 - Loads
 - Heating
 - Contamination
- Use an engineering tool (RPM3D) to screen the trajectories
- Use high fidelity tool (DAC) for specific analyses
Proximity Operations Screening

- Quick engineering tools are desired
 - Need to examine hundreds of thousands of plume impingements
 - Thousands of plume events per docking
 - Must assess hundreds of dockings
- Can decompose into freely expanding flow and impingement analyses
- Vacuum plumes flow fields can be approximated by a source flow
- Impingement can be handled with bridging between Newtonian and free molecular expressions for pressure, shear, and heating.

Plume Modeling

\[
\rho = \rho(r, \theta) = f(r)g(\theta); \quad u = u_{\text{lim}} = \sqrt{2\gamma T / (\gamma - 1)}
\]

\[
P = c_p q = (c_{p_0} \sin^2 \alpha) \left(\frac{1}{2} \rho u^2 \right)
\]
Proximity Operations Complex Problems

- **Complex Plumes**
 - Scarfed Jets
 - Multiple Jets

- **Complex Interactions**
 - Wakes
 - Shadowing
 - Assumption
 - Infinite Mach
 - Free Molecular
 - Flow actually turns
 - Complex geometry
 - Target affects plume flow field
 - Multiple Surface Interactions

Flow Turning
Complex Plume Impingement Effect Analyses

- Flow expands from continuum in the nozzle to free molecular in the far field
- Complex flow fields must be properly modelled at each stage

Step 1:
Near field modeling (Continuum -> CFD)

Step 2:
Far field modeling (Transitional -> DSMC)

Step 3:
Surface interaction modeling (Transitional -> DSMC or Free molecular -> Engineering tool)
HTV Main Engine Abort
Flow Field

\[\frac{N_d}{N_d_0} = \begin{cases} 1.00E00 & \text{at } t = 1s \\ 1.00E03 & \text{at } t = 7s \end{cases} \]

\[\frac{Q}{Q_0} = \begin{cases} 1.00E00 & \text{at } t = 1s \\ 1.00E02 & \text{at } t = 7s \end{cases} \]
• Engineering method maximum heat load value = q_0

• DAC maximum heat load value $\sim 65\% q_0$

• Refined analysis required to obtain more accurate results and eliminate unnecessary conservatism
ISS End of Life

• When decommissioned, ISS will de-orbit and will have a targeted fall into the South Pacific Ocean Unpopulated Area

• Challenges:
 – Heaviest vehicle to have a planned de-orbit
 – Complex geometry which limit the Delta-V that can be imparted

• Detailed understanding of the aerodynamics and aeroheating to ISS during the earliest portions (130-105 km) of re-entry will assist in:
 – Determining controllability and initial break up altitude
 – Developing strategies for ISS configuration and attitude plan

• DSMC analyses will provide detailed information of the surface pressures, surface heating, and integrated forces and moments to the ISS during re-entry
 – Detailed physical features such as shock-shock interactions are captured
Surface Heating and Flow Field Pressure

ISS Re-entry
120 km (US Standard Atmosphere)
7.74 km/sec.

Pressure (N/m²)
1000xP₀
P₀

Qₜ
Q₀
0.5Q₀
0
RGD Discipline Challenge: Bridging the gap between CFD and DSMC

- The DSMC method can be used to model continuum flows but is generally too expensive to use for real-life problems.
- For re-entry databases, a bridging function is used between the highest CFD solution and the lowest DSMC solution → not as accurate a model in that region as everywhere else.

Challenges:
- Match gas parameters and chemistry models between codes.
- Improve the DSMC code efficiency.
- Incorporate advanced models in the CFD code to better model the rarefaction effects.

Surface properties on a capsule heat shield at 80 km and at zero angle of attack and sideslip angle with out-of-the-box codes.

80 km - 8 km/s
BONUS SLIDES

Orion Exploration Flight Test 1
Orion Exploration Flight Test 1

Launch

Splashdown